共查询到20条相似文献,搜索用时 15 毫秒
1.
Structural basis for specific recognition of Lys 63‐linked polyubiquitin chains by NZF domains of TAB2 and TAB3 下载免费PDF全文
Yusuke Sato Azusa Yoshikawa Masami Yamashita Atsushi Yamagata Shuya Fukai 《The EMBO journal》2009,28(24):3903-3909
TAB2 and TAB3 activate the Jun N‐terminal kinase and nuclear factor‐κB pathways through the specific recognition of Lys 63‐linked polyubiquitin chains by its Npl4 zinc‐finger (NZF) domain. Here we report crystal structures of the TAB2 and TAB3 NZF domains in complex with Lys 63‐linked diubiquitin at 1.18 and 1.40 Å resolutions, respectively. Both NZF domains bind to the distal ubiquitin through a conserved Thr‐Phe dipeptide that has been shown to be important for the interaction of the NZF domain of Npl4 with monoubiquitin. In contrast, a surface specific to TAB2 and TAB3 binds the proximal ubiquitin. Both the distal and proximal binding sites of the TAB2 and TAB3 NZF domains recognize the Ile 44‐centred hydrophobic patch on ubiquitin but do not interact with the Lys 63‐linked isopeptide bond. Mutagenesis experiments show that both binding sites are required to enable binding of Lys 63‐linked diubiquitin. We therefore propose a mechanism for the recognition of Lys 63‐linked polyubiquitin chains by TAB2 and TAB3 NZF domains in which diubiquitin units are specifically recognized by a single NZF domain. 相似文献
2.
3.
The geometry of metal coordination by proteins is well understood, but the evolution of metal binding sites has been less studied. Here we present a study on a small number of well-documented structural calcium and zinc binding sites, concerning how the geometry diverges between relatives, how often nonrelatives converge towards the same structure, and how often these metal binding sites are lost in the course of evolution. Both calcium and zinc binding site structure is observed to be conserved; structural differences between those atoms directly involved in metal binding in related proteins are typically less than 0.5 A root mean square deviation, even in distant relatives. Structural templates representing these conserved calcium and zinc binding sites were used to search the Protein Data Bank for cases where unrelated proteins have converged upon the same residue selection and geometry for metal binding. This allowed us to identify six "archetypal" metal binding site structures: two archetypal zinc binding sites, both of which had independently evolved on a large number of occasions, and four diverse archetypal calcium binding sites, where each had evolved independently on only a handful of occasions. We found that it was common for distant relatives of metal-binding proteins to lack metal-binding capacity. This occurred for 13 of the 18 metal binding sites we studied, even though in some of these cases the original metal had been classified as "essential for protein folding." For most of the calcium binding sites studied (seven out of eleven cases), the lack of metal binding in relatives was due to point mutation of the metal-binding residues, whilst for zinc binding sites, lack of metal binding in relatives always involved more extensive changes, with loss of secondary structural elements or loops around the binding site. 相似文献
4.
XPF‐St7 (GLLSNVAGLLKQFAKGGVNAVLNPK) is an antimicrobial peptide isolated from Silurana tropicalis. We developed an α‐helical segment of XPF‐St7 termed as XPF2. Using the XPF2 as a framework, we increased the positive net charge of XPF2 by amino acid substitutions, and thus obtained two novel antimicrobial peptides XPF4 and XPF6. These were each fused with an ubiquitin tag and successfully expressed in Escherichia coli. This ubiquitin fusion system may present a viable alternative for industrial production of antimicrobial peptides. XPF4 and XPF6 showed much better overall antimicrobial activity against both Gram‐negative and Gram‐positive bacteria than XPF2. The therapeutic index of XPF4 and XPF6 was 5.6‐fold and 6.7‐fold of XPF2, respectively. Bacterial cell membrane permeabilization and genomic DNA interaction assays were utilized to explore the mechanism of action of XPF serial peptides. The results revealed that the target of these antimicrobial peptides was the bacterial cytoplasmic membrane. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd. 相似文献
5.
Crystal structure of the UBR‐box from UBR6/FBXO11 reveals domain swapping mediated by zinc binding 下载免费PDF全文
Juliana Muñoz‐Escobar Guennadi Kozlov Kalle Gehring 《Protein science : a publication of the Protein Society》2017,26(10):2092-2097
The UBR‐box is a 70‐residue zinc finger domain present in the UBR family of E3 ubiquitin ligases that directly binds N‐terminal degradation signals in substrate proteins. UBR6, also called FBXO11, is an UBR‐box containing E3 ubiquitin ligase that does not bind N‐terminal signals. Here, we present the crystal structure of the UBR‐box domain from human UBR6. The dimeric crystal structure reveals a unique form of domain swapping mediated by zinc coordination, where three independent protein chains come together to regenerate the topology of the monomeric UBR‐box fold. Analysis of the structure suggests that the absence of N‐terminal residue binding arises from the lack of an amino acid binding pocket. 相似文献
6.
Kazuhide Miyamoto Arisa Nakatani Kazuki Saito 《Protein science : a publication of the Protein Society》2017,26(12):2451-2457
Synaptotagmin‐like protein 4 (Slp4), expressed in human platelets, is associated with dense granule release. Slp4 is comprised of the N‐terminal zinc finger, Slp homology domain, and C2 domains. We synthesized a compact construct (the Slp4N peptide) corresponding to the Slp4 N‐terminal zinc finger. Herein, we have determined the solution structure of the Slp4N peptide by nuclear magnetic resonance (NMR). Furthermore, experimental, chemical modification of Cys residues revealed that the Slp4N peptide binds two zinc atoms to mediate proper folding. NMR data showed that eight Cys residues coordinate zinc atoms in a cross‐brace fashion. The Simple Modular Architecture Research Tool database predicted the structure of Slp4N as a RING finger. However, the actual structure of the Slp4N peptide adopts a unique C4C4‐type FYVE fold and is distinct from a RING fold. To create an artificial RING finger (ARF) with specific ubiquitin‐conjugating enzyme (E2)‐binding capability, cross‐brace structures with eight zinc‐ligating residues are needed as the scaffold. The cross‐brace structure of the Slp4N peptide could be utilized as the scaffold for the design of ARFs. 相似文献
7.
8.
Tiandi Wei Jing Gong Ferdinand Jamitzky Wolfgang M. Heckl Robert W. Stark Shaila C. Rössle 《Protein science : a publication of the Protein Society》2009,18(8):1684-1691
Toll‐like receptors (TLRs) play a key role in the innate immune system. The TLR7, 8, and 9 compose a family of intracellularly localized TLRs that signal in response to pathogen‐derived nucleic acids. So far, there are no crystallographic structures for TLR7, 8, and 9. For this reason, their ligand‐binding mechanisms are poorly understood. To enable first predictions of the receptor–ligand interaction sites, we developed three‐dimensional structures for the leucine‐rich repeat ectodomains of human TLR7, 8, and 9 based on homology modeling. To achieve a high sequence similarity between targets and templates, structural segments from all known TLR ectodomain structures (human TLR1/2/3/4 and mouse TLR3/4) were used as candidate templates for the modeling. The resulting models support previously reported essential ligand‐binding residues. They also provide a basis to identify three potential receptor dimerization mechanisms. Additionally, potential ligand‐binding residues are identified using combined procedures. We suggest further investigations of these residues through mutation experiments. Our modeling approach can be extended to other members of the TLR family or other repetitive proteins. 相似文献
9.
Energy calculations based on MM-GBSA were employed to study various zinc finger protein (ZF) motifs binding to DNA. Mutants of both the DNA bound to their specific amino acids were studied. Calculated energies gave evidence for a relationship between binding energy and affinity of ZF motifs to their sites on DNA. ΔG values were ?15.82(12), ?3.66(12), and ?12.14(11.6) kcal/mol for finger one, finger two, and finger three, respectively. The mutations in the DNA bases reduced the value of the negative energies of binding (maximum value for ΔΔG = 42Kcal/mol for F1 when GCG mutated to GGG, and ΔΔG = 22 kcal/mol for F2, the loss in total energy of binding originated in the loss in electrostatic energies upon mutation (r = .98). The mutations in key amino acids in the ZF motif in positions-1, 2, 3, and 6 showed reduced binding energies to DNA with correlation coefficients between total free energy and electrostatic was .99 and with Van der Waal was .93. Results agree with experimentally found selectivity which showed that Arginine in position-1 is specific to G, while Aspartic acid (D) in position 2 plays a complicated role in binding. There is a correlation between the MD calculated free energies of binding and those obtained experimentally for prepared ZF motifs bound to triplet bases in other reports (), our results may help in the design of ZF motifs based on the established recognition codes based on energies and contributing energies to the total energy. 相似文献
10.
11.
12.
Fahu He Weirong Dang Chikage Abe Kengo Tsuda Makoto Inoue Satoru Watanabe Naohiro Kobayashi Takanori Kigawa Takayoshi Matsuda Takashi Yabuki Masaaki Aoki Eiko Seki Takushi Harada Yuri Tomabechi Takaho Terada Mikako Shirouzu Akiko Tanaka Peter Güntert Yutaka Muto Shigeyuki Yokoyama 《Protein science : a publication of the Protein Society》2009,18(1):80-91
The muscleblind‐like (MBNL) proteins 1, 2, and 3, which contain four CCCH zinc finger motifs (ZF1–4), are involved in the differentiation of muscle inclusion by controlling the splicing patterns of several pre‐mRNAs. Especially, MBNL1 plays a crucial role in myotonic dystrophy. The CCCH zinc finger is a sequence motif found in many RNA binding proteins and is suggested to play an important role in the recognition of RNA molecules. Here, we solved the solution structures of both tandem zinc finger (TZF) motifs, TZF12 (comprising ZF1 and ZF2) and TZF34 (ZF3 and ZF4), in MBNL2 from Homo sapiens. In TZF12 of MBNL2, ZF1 and ZF2 adopt a similar fold, as reported previously for the CCCH‐type zinc fingers in the TIS11d protein. The linker between ZF1 and ZF2 in MBNL2 forms an antiparallel β‐sheet with the N‐terminal extension of ZF1. Furthermore, ZF1 and ZF2 in MBNL2 interact with each other through hydrophobic interactions. Consequently, TZF12 forms a single, compact global fold, where ZF1 and ZF2 are approximately symmetrical about the C2 axis. The structure of the second tandem zinc finger (TZF34) in MBNL2 is similar to that of TZF12. This novel three‐dimensional structure of the TZF domains in MBNL2 provides a basis for functional studies of the CCCH‐type zinc finger motifs in the MBNL protein family. 相似文献
13.
14.
15.
16.
Tal Keren‐Kaplan Ilan Attali Michael Estrin Lillian S Kuo Efrat Farkash Moran Jerabek‐Willemsen Noa Blutraich Shay Artzi Aviyah Peri Eric O Freed Haim J Wolfson Gali Prag 《The EMBO journal》2013,32(4):538-551
The ubiquitylation signal promotes trafficking of endogenous and retroviral transmembrane proteins. The signal is decoded by a large set of ubiquitin (Ub) receptors that tether Ub‐binding domains (UBDs) to the trafficking machinery. We developed a structure‐based procedure to scan the protein data bank for hidden UBDs. The screen retrieved many of the known UBDs. Intriguingly, new potential UBDs were identified, including the ALIX‐V domain. Pull‐down, cross‐linking and E3‐independent ubiquitylation assays biochemically corroborated the in silico findings. Guided by the output model, we designed mutations at the postulated ALIX‐V:Ub interface. Biophysical affinity measurements using microscale‐thermophoresis of wild‐type and mutant proteins revealed some of the interacting residues of the complex. ALIX‐V binds mono‐Ub with a Kd of 119 μM. We show that ALIX‐V oligomerizes with a Hill coefficient of 5.4 and IC50 of 27.6 μM and that mono‐Ub induces ALIX‐V oligomerization. Moreover, we show that ALIX‐V preferentially binds K63 di‐Ub compared with mono‐Ub and K48 di‐Ub. Finally, an in vivo functionality assay demonstrates the significance of ALIX‐V:Ub interaction in equine infectious anaemia virus budding. These results not only validate the new procedure, but also demonstrate that ALIX‐V directly interacts with Ub in vivo and that this interaction can influence retroviral budding. 相似文献
17.
18.
Hui Yang Shuai Liu Wen-Tian He Jian Zhao Lei-Lei Jiang Hong-Yu Hu 《The Journal of biological chemistry》2015,290(36):21996-22004
19.
John F. Repass Micheline N. Laurent Carla Carter Boris Reizis Mark T. Bedford Kim Cardenas Priyanka Narang Mark Coles Ellen R. Richie 《Genesis (New York, N.Y. : 2000)》2009,47(4):281-287
IL‐7 is a cytokine that is required for T‐cell development and homeostasis as well as for lymph node organogenesis. Despite the importance of IL‐7 in the immune system and its potential therapeutic relevance, questions remain regarding the sites of IL‐7 synthesis, specific cell types involved and molecular mechanisms regulating IL‐7 expression. To address these issues, we generated two bacterial artificial chromosome (BAC) transgenic mouse lines in which IL‐7 regulatory elements drive expression of either Cre recombinase or a human CD25 (hCD25) cell surface reporter molecule. Expression of the IL‐7.hCD25 BAC transgene, detected by reactivity with anti‐hCD25 antibody, mimicked endogenous IL‐7 expression. Fetal and adult tissues from crosses between IL‐7.Cre transgenic mice and Rosa26R or R26‐EYFP reporters demonstrated X‐gal or YFP staining in tissues known to express endogenous IL‐7 at some stage during development. These transgenic lines provide novel genetic tools to identify IL‐7 producing cells in various tissues and to manipulate gene expression selectively in IL‐7 expressing cells. genesis 47:281–287, 2009. © 2009 Wiley‐Liss, Inc. 相似文献
20.
The C‐terminal three‐Cys2His2 zinc‐finger domain (TZD) of mouse testis zinc‐finger protein binds to the 5′‐TGTACAGTGT‐3′ at the Aie1 (aurora‐C) promoter with high specificity. Interestingly, the primary sequence of TZD is unique, possessing two distinct linkers, TGEKP and GAAP, and distinct residues at presumed DNA binding sites at each finger, especially finger 3. A Kd value of ~10?8 M was obtained from surface plasmon resonance analysis for the TZD‐DNA complex. NMR structure of the free TZD showed that each zinc finger forms a typical ββα fold. On binding to DNA, chemical shift perturbations and the R2 transverse relaxation rate in finger 3 are significantly smaller than those in fingers 1 and 2, which indicates that the DNA binding affinity in finger 3 is weaker. Furthermore, the shift perturbations between TZD in complex with the cognate DNA and its serial mutants revealed that both ADE7 and CYT8, underlined in 5′‐ATATGTACAGTGTTAT‐3′, are critical in specific binding, and the DNA binding in finger 3 is sequence independent. Remarkably, the shift perturbations in finger 3 on the linker mutation of TZD (GAAP mutated to TGEKP) were barely detected, which further indicates that finger 3 does not play a critical role in DNA sequence‐specific recognition. The complex model showed that residues important for DNA binding are mainly located on positions ?1, 2, 3, and 6 of α‐helices in fingers 1 and 2. The DNA sequence and nonsequence‐specific bindings occurring simultaneously in TZD provide valuable information for better understanding of protein–DNA recognition. Proteins 2010. © 2010 Wiley‐Liss, Inc. 相似文献