首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Acetylcholinesterase cDNAs from Drosophila melanogaster modified on its primary sequence were cloned into baculovirus and were expressed in Sf9 cells with the aim to identify a mutant form that produces the enzyme at a high level. Directed mutagenesis was used in order to independently knockout different sites of post-translational modifications: exchange of the C-terminal hydrophobic peptide for a glycolipid molecule, dimerization by disulfide bridge, N-linked glycosylation at the five accessible sites, and subunit formation by proteolytic cleavage of a hydrophilic peptide found in the precursor. Another mutation involved the elimination of a free cysteine in the mature protein. All mutations involving post-translational modifications resulted in lower recoveries, suggesting that they are useful for maintaining high amounts of protein in the synapse. By contrast, elimination of a free cysteine in the mature protein permitted an increase in the level of production of the enzyme. These mutations did not affect specific activity of the enzyme at substrate concentrations ranging from 3 μM to 200 mM, suggesting that activation and inhibition of the enzyme activity does not originate from a polymorphism in post-translational modifications. Arch. Insect Biochem. Physiol. 38:84–90, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

3.
Aging can be defined as time-dependent, gradual anddetrimental changes in the structure and physiologicalfunction of an organism, ultimately leading to death [1].Factors influencing the aging process would change thelongevity. In Drosophila melanogaster, …  相似文献   

4.
Adaptive evolution of the histone fold domain in centromeric histones   总被引:5,自引:0,他引:5  
Centromeric DNA, being highly repetitive, has been refractory to molecular analysis. However, centromeric structural proteins are encoded by single-copy genes, and these can be analyzed by using standard phylogenetic tools. The centromere-specific histone, CenH3, replaces histone H3 in centromeric nucleosomes, and is required for the proper distribution of chromosomes during cell division. Whereas histone H3s are nearly identical between species, CenH3s are divergent, with an N-terminal tail that is highly variable in length and sequence. Both the N-terminal tail and histone fold domain (HFD) are subject to adaptive evolution in Drosophila. Similarly, comparisons between Arabidopsis thaliana and Arabidopsis arenosa detected adaptive evolution, but only in the N-terminal tail. We have extended our evolutionary analyses of CenH3s to other members of the Brassicaceae, which allowed the detection of positive selection in both the N-terminal tail and in the HFD. We find that adaptively evolving sites in the HFD can potentially interact with DNA, including sites in the loop 1 region of the HFD that are required for centromeric targeting in Drosophila. Other adaptively evolving sites in the HFD can be localized on the structure of the nucleosome core particle, revealing an extended surface in addition to loop 1 in which conformational changes might alter histone-DNA contacts or water bridges. The identification of adaptively evolving sites provides a structural basis for the interaction between centromeric DNA and the protein that is thought to underlie the evolution of centromeres and the accumulation of pericentric heterochromatin.  相似文献   

5.
The core histones are the primary protein component of chromatin, which is responsible for the packaging of eukaryotic DNA. The NH(2)-terminal tail domains of the core histones are the sites of numerous post-translational modifications that have been shown to play an important role in the regulation of chromatin structure. In this study, we discuss the recent application of modern analytical techniques to the study of histone modifications. Through the use of mass spectrometry, a large number of new sites of histone modification have been identified, many of which reside outside of the NH(2)-terminal tail domains. In addition, techniques have been developed that allow mass spectrometry to be effective for the quantitation of histone post-translational modifications. Hence, the use of mass spectrometry promises to dramatically alter our view of histone post-translational modifications.  相似文献   

6.
A genetic short-term test is described that allows (i) detection and (ii) quantitative evaluation of aneuploidy induced in somatic cells of Drosophila melanogaster. In this somatic aneuploidy test (SAT) larvae of the genotype z w/ w+JY are exposed to the test compound. Gain and/or loss of the w+JY chromosome leads to the formation of aneupliod daughter cells: z w/w+JY and z w/O, respectively. These cells are fully viable, proliferate and, when they are part of an eye primordium, form a yellow/ /white twin spot on the otherwise red background after metamorphosis. The number of eyes screened, the size and number of spots allow for a quantitative estimate of the frequency of induced aneuploidy. Induced aneuploidy was detected after exposure of larvae to X-rays and to vincristine. The somatic aneuploidy test seems to be a simple, sensitive and fast method to screen environmental chemicals for their ability to induce aneuploidy.  相似文献   

7.
8.
Stem cells have the unique ability to undergo asymmetric division which produces two daughter cells that are genetically identical, but commit to different cell fates. The loss of this balanced asymmetric outcome can lead to many diseases, including cancer and tissue dystrophy. Understanding this tightly regulated process is crucial in developing methods to treat these abnormalities. Here, we report that during a Drosophila female germline stem cell asymmetric division, the two daughter cells differentially inherit histones at key genes related to either maintaining the stem cell state or promoting differentiation, but not at constitutively active or silenced genes. We combine histone labeling with DNA Oligopaints to distinguish old versus new histones and visualize their inheritance patterns at a single‐gene resolution in asymmetrically dividing cells in vivo. This strategy can be applied to other biological systems involving cell fate change during development or tissue homeostasis in multicellular organisms.  相似文献   

9.
Little is known about the factors determining the location and activity of the rapidly evolving meiotic crossover hotspots that shape genome diversity. Here, we show that several histone modifications are enriched at the active mouse Psmb9 hotspot, and we distinguish those marks that precede from those that follow hotspot recombinational activity. H3K4Me3, H3K4Me2 and H3K9Ac are specifically enriched in the chromatids that carry an active initiation site, and in the absence of DNA double-strand breaks (DSBs) in Spo11−/− mice. We thus propose that these marks are part of the substrate for recombination initiation at the Psmb9 hotspot. In contrast, hyperacetylation of H4 is increased as a consequence of DSB formation, as shown by its dependency on Spo11 and by the enrichment detected on both recombining chromatids. In addition, the comparison with another hotspot, Hlx1, strongly suggests that H3K4Me3 and H4 hyperacetylation are common features of DSB formation and repair, respectively. Altogether, the chromatin signatures of the Psmb9 and Hlx1 hotspots provide a basis for understanding the distribution of meiotic recombination.  相似文献   

10.
《Epigenetics》2013,8(7):1007-1017
The genetic mechanisms that regulate CFTR, the gene responsible for cystic fibrosis, have been widely investigated in cultured cells. However, mechanisms responsible for tissue-specific and time-specific expression are not completely elucidated in vivo. Through the survey of public databases, we found that the promoter of CFTR was associated with bivalent chromatin in human embryonic stem (ES) cells. In this work, we analyzed fetal (at different stages of pregnancy) and adult tissues and showed that, in digestive and lung tissues, which expressed CFTR, H3K4me3 was maintained in the promoter. Histone acetylation was high in the promoter and in two intronic enhancers, especially in fetal tissues. In contrast, in blood cells, which did not express CFTR, the bivalent chromatin was resolved (the promoter was labeled by the silencing mark H3K27me3). Cis-regulatory sequences were associated with lowly acetylated histones. We also provide evidence that the tissue-specific expression of CFTR is not regulated by dynamic changes of DNA methylation in the promoter. Overall, this work shows that a balance between activating and repressive histone modifications in the promoter and intronic enhancers results in the fine regulation of CFTR expression during development, thereby ensuring tissue specificity.  相似文献   

11.
The genetic mechanisms that regulate CFTR, the gene responsible for cystic fibrosis, have been widely investigated in cultured cells. However, mechanisms responsible for tissue-specific and time-specific expression are not completely elucidated in vivo. Through the survey of public databases, we found that the promoter of CFTR was associated with bivalent chromatin in human embryonic stem (ES) cells. In this work, we analyzed fetal (at different stages of pregnancy) and adult tissues and showed that, in digestive and lung tissues, which expressed CFTR, H3K4me3 was maintained in the promoter. Histone acetylation was high in the promoter and in two intronic enhancers, especially in fetal tissues. In contrast, in blood cells, which did not express CFTR, the bivalent chromatin was resolved (the promoter was labeled by the silencing mark H3K27me3). Cis-regulatory sequences were associated with lowly acetylated histones. We also provide evidence that the tissue-specific expression of CFTR is not regulated by dynamic changes of DNA methylation in the promoter. Overall, this work shows that a balance between activating and repressive histone modifications in the promoter and intronic enhancers results in the fine regulation of CFTR expression during development, thereby ensuring tissue specificity.  相似文献   

12.
In a previous communication (Saigo, K., Millstein, L. and Thomas, C.A., Jr. (1981) Cold Spring Harbor Symp. Quant. Biol. 45, 815–827), the overall structure of histone genes of Schneider line 2 cells was shown to extensively differ from that of Oregon-R embryo from which the cell line was established, and it was speculated that the histone genes might be reshuffled extensively during either the periods of the establishment, or maintenance of cell lines, or both. To establish the validity of this notion the structure of histone genes was examined in Drosophila melanogaster cultured cells. The overall organization of histone gene clusters was found to be stably maintained in both the periods for the establishment and maintenance of cultured cells, indicating that the previous assumption is inadequate. Instead of an extensive rearrangement, minor structural changes were found to occasionally occur probably by simple base substitutions and/or, deletion or insertion of very short DNA pieces. It was also shown that the extensive variation in structures of histone genes in cultured cells such as Schneider line 2 are attributable to polymorphism on the level of individual flies.  相似文献   

13.
14.
Two factors that can affect genetic load, synergistic epistasis and sexual selection, were investigated in Drosophila melanogaster. A set of five chromosomal regions containing visible recessive mutations were put together in all combinations to create a full set of 32 homozygous lines fixed for different numbers of known mutations. Two measures of fitness were made for each line: productivity (a combined measure of fecundity and egg-to-adult survivorship) and competitive male mating success. Productivity, but not male mating success, showed a pattern of strong average synergistic epistasis, such that the log fitness declined nonlinearly with increasing numbers of mutations. Synergistic epistasis is known to reduce the mutation load. Both fitness components show some positive and some negative interactions between specific sets of mutations. Furthermore, alleles with deleterious effects on productivity tend to also diminish male mating success. Given that male mating success can affect relative fitness without changing the mean productivity of a population, these additional effects would lead to lower frequencies and lower fixation rates of deleterious alleles without higher costs to the mean fitness of the population.  相似文献   

15.
Two genetic models exist to explain the evolution of ageing – mutation accumulation (MA) and antagonistic pleiotropy (AP). Under MA, a reduced intensity of selection with age results in accumulation of late‐acting deleterious mutations. Under AP, late‐acting deleterious mutations accumulate because they confer beneficial effects early in life. Recent studies suggest that the mitochondrial genome is a major player in ageing. It therefore seems plausible that the MA and AP models will be relevant to genomes within the cytoplasm. This possibility has not been considered previously. We explore whether patterns of covariation between fitness and ageing across 25 cytoplasmic lines, sampled from a population of Drosophila melanogaster, are consistent with the genetic associations predicted under MA or AP. We find negative covariation for fitness and the rate of ageing, and positive covariation for fitness and lifespan. Notably, the direction of these associations is opposite to that typically predicted under AP.  相似文献   

16.
The chromosomal locations of the genes in common wheat that encode the five histones and five members of the HBP (histone gene-binding protein)-1 family were determined by hybridizing their cloned DNAs to genomic DNAs of nullitetrasomic and telosomic lines of common wheat, Triticum aestivum cv. Chinese Spring. The H1 and H2a genes are located on different sets of homoeologous chromosomes or chromosome arms, namely, 5A, 5B and 5D, and 2AS, 2BS and 2DS, respectively. Genes for the other histones, H2b, H3 and H4, are found in high copy number and are dispersed among a large number of chromosomes. The genes for all members of the HBP-1 family are present in small copy numbers. Those for HBP-1a(1) are located on six chromosome arms, 3BL, 5AL, 5DL, 6AL, 6BS and 7DL, whereas those for each HBP-1a(c14), 1a(17), 1b(c1), and 1b(c38) are on a single set of homoeologous chromosome arms; 4AS, 4BL, 4DL; 6AS, 6BS, 6DS; 3AL, 3BL, 3DL; and 3AS, 3BS, 3DS, respectively. The genes for histones H1 and H2a, and for all members of the HBP-1 family except HBP-1a(1) are assumed to have different phylogenetic origins. The genes for histone 2a and HBP-1a(17) are located in the RFLP maps of chromosomes 2B and 6A, respectively. Gene symbols are proposed for all genes whose chromosomal locations have been determined.  相似文献   

17.
18.
用紫外线、抗氧化剂、化妆品等多种生活中潜在的诱变剂处理野生型黑腹果蝇,观察果蝇的存活率及性状遗传变异情况,进而分析这些诱变剂对于果蝇的影响。实验结果表明,随紫外线照射时间的增加,果蝇生活力降低,子代果蝇突变率增加;随培养基中抗氧化剂浓度的增加,果蝇突变率与死亡率均呈上升趋势;不同化妆品也对果蝇造成了明显伤害,造成亲代个体死亡,后代出现突变型果蝇。  相似文献   

19.
Type-2 cannabinoid receptors (CB2, encoded by the Cnr2 gene) are mainly expressed in immune cells, and CB2 agonists normally have no analgesic effect. However, nerve injury upregulates CB2 in the dorsal root ganglion (DRG), following which CB2 stimulation reduces neuropathic pain. It is unclear how nerve injury increases CB2 expression or how CB2 activity is transformed in neuropathic pain. In this study, immunoblotting showed that spinal nerve ligation (SNL) induced a delayed and sustained increase in CB2 expression in the DRG and dorsal spinal cord synaptosomes. RNAscope in situ hybridization also showed that SNL substantially increased CB2 mRNA levels, mostly in medium and large DRG neurons. Furthermore, we found that the specific CB2 agonist JWH-133 significantly inhibits the amplitude of dorsal root–evoked glutamatergic excitatory postsynaptic currents in spinal dorsal horn neurons in SNL rats, but not in sham control rats; intrathecal injection of JWH-133 reversed pain hypersensitivity in SNL rats, but had no effect in sham control rats. In addition, chromatin immunoprecipitation–qPCR analysis showed that SNL increased enrichment of two activating histone marks (H3K4me3 and H3K9ac) and diminished occupancy of two repressive histone marks (H3K9me2 and H3K27me3) at the Cnr2 promoter in the DRG. In contrast, SNL had no effect on DNA methylation levels around the Cnr2 promoter. Our findings suggest that peripheral nerve injury promotes CB2 expression in primary sensory neurons via epigenetic bivalent histone modifications and that CB2 activation reduces neuropathic pain by attenuating nociceptive transmission from primary afferent nerves to the spinal cord.  相似文献   

20.
Effects of DNA methylation inhibitor; 5-azacytidine (5-aza-C); and histone acetylation inhibitor, trichostatine A (TSA), on the structure of pericentric heterochromatin of L929 mouse cells have been studied. 5-aza-C treatment for 48 h resulted in the transformation of ovoid chromocenters into elongated structures in 85% of cells. Hypotonic treatment of these cells reveals tandemly arranged DAPI-positive globules that are well distinguishable by light microscopy. Similar globular units can be observed in hypotonic-treated control cells. TSA treatment for 48 h causes dramatic decrease in HP1α content in cells. In 25% of treated cells chromocenters became highly decondensed and can not be reliably detected by light and electron microscopy. 85% cells demonstrate globular chromocenters with low HP1α content. Hypotonic treatment induces transformation of compact chromocenters into ring-like structures that can be either single or clustered. Rings are formed by uniform fiber in which no globular subunits are detected. The data obtained are discussed concerning several mechanisms of heterochromatin structure maintenance and the role of epigenetic factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号