首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The white belt pattern of Brown Swiss cattle is characterized by a lack of melanocytes in a stretch of skin around the midsection. This pattern is of variable width and sometimes the belt does not fully circle the body. To identify the gene responsible for this colour variation, we performed linkage mapping of the belted locus using six segregating half-sib families including 104 informative meioses for the belted character. The pedigree confirmed a monogenic autosomal dominant inheritance of the belted phenotype in Brown Swiss cattle. We performed a genome scan using 186 microsatellite markers in a subset of 88 animals of the six families. Linkage with the belt phenotype was detected at the telomeric region of BTA3. Fine-mapping and haplotype analysis using 19 additional markers in this region refined the critical region of the belted locus to a 922-kb interval on BTA3. As the corresponding human and mouse chromosome segments contain no obvious candidate gene for this coat colour trait, the mutation causing the belt pattern in the Brown Swiss cattle might help to identify an unknown gene influencing skin pigmentation.  相似文献   

2.
Naturally, hornless cattle are called polled. Although the POLL locus could be assigned to a c. 1.36‐Mb interval in the centromeric region of BTA1, the underlying genetic basis for the polled trait is still unknown. Here, an association mapping design was set up to refine the candidate region of the polled trait for subsequent high‐throughput sequencing. The case group comprised 101 homozygous polled animals from nine divergent cattle breeds, the majority represented by Galloway, Angus, Fleckvieh and Holstein Friesian. Additionally, this group included some polled individuals of Blonde d’Aquitaine, Charolais, Hereford, Jersey and Limousin breeds. The control group comprised horned Belgian Blue, Fleckvieh, Holstein Friesian and Illyrian Bu?a cattle. A genome‐wide scan using 49 163 SNPs was performed, which revealed one shared homozygous haplotype block consisting of nine neighbouring SNPs in all polled animals. This segment defines a 381‐kb interval on BTA1 that we consider to be the most likely location of the POLL mutation. Our results further demonstrate that the polled‐associated haplotype is also frequent in horned animals included in this study, and thus the haplotype as such cannot be used for population‐wide genetic testing. The actual trait‐associated haplotype may be revealed by using higher‐density SNP arrays. For the final identification of the causal mutation, we suggest high‐throughput sequencing of the entire candidate region, because the identification of functional candidate genes is difficult owing to the lack of a comparable model.  相似文献   

3.
A specific white spotting phenotype, termed finching or line‐backed spotting, is known for all Pinzgauer cattle and occurs occasionally in Tux‐Zillertaler cattle, two Austrian breeds. The so‐called Pinzgauer spotting is inherited as an autosomal incompletely dominant trait. A genome‐wide association study using 27 white spotted and 16 solid‐coloured Tux‐Zillertaler cattle, based on 777k SNP data, revealed a strong signal on chromosome 6 at the KIT locus. Haplotype analyses defined a critical interval of 122 kb downstream of the KIT coding region. Whole‐genome sequencing of a Pinzgauer cattle and comparison to 338 control genomes revealed a complex structural variant consisting of a 9.4‐kb deletion and an inversely inserted duplication of 1.5 kb fused to a 310‐kb duplicated segment from chromosome 4. A diagnostic PCR was developed for straightforward genotyping of carriers for this structural variant (KITPINZ) and confirmed that the variant allele was present in all Pinzgauer and most of the white spotted Tux‐Zillertaler cattle. In addition, we detected the variant in all Slovenian Cika, British Gloucester and Spanish Berrenda en negro cattle with similar spotting patterns. Interestingly, the KITPINZ variant occurs in some white spotted animals of the Swiss breeds Evolèner and Eringer. The introgression of the KITPINZ variant confirms admixture and the reported historical relationship of these short‐headed breeds with Austrian Tux‐Zillertaler and suggests a mutation event, occurring before breed formation.  相似文献   

4.
5.

Background

The Bovine HapMap Consortium has generated assay panels to genotype ~30,000 single nucleotide polymorphisms (SNPs) from 501 animals sampled from 19 worldwide taurine and indicine breeds, plus two outgroup species (Anoa and Water Buffalo). Within the larger set of SNPs we targeted 101 high density regions spanning up to 7.6 Mb with an average density of approximately one SNP per 4 kb, and characterized the linkage disequilibrium (LD) and haplotype block structure within individual breeds and groups of breeds in relation to their geographic origin and use.

Results

From the 101 targeted high-density regions on bovine chromosomes 6, 14, and 25, between 57 and 95% of the SNPs were informative in the individual breeds. The regions of high LD extend up to ~100 kb and the size of haplotype blocks ranges between 30 bases and 75 kb (10.3 kb average). On the scale from 1–100 kb the extent of LD and haplotype block structure in cattle has high similarity to humans. The estimation of effective population sizes over the previous 10,000 generations conforms to two main events in cattle history: the initiation of cattle domestication (~12,000 years ago), and the intensification of population isolation and current population bottleneck that breeds have experienced worldwide within the last ~700 years. Haplotype block density correlation, block boundary discordances, and haplotype sharing analyses were consistent in revealing unexpected similarities between some beef and dairy breeds, making them non-differentiable. Clustering techniques permitted grouping of breeds into different clades given their similarities and dissimilarities in genetic structure.

Conclusion

This work presents the first high-resolution analysis of haplotype block structure in worldwide cattle samples. Several novel results were obtained. First, cattle and human share a high similarity in LD and haplotype block structure on the scale of 1–100 kb. Second, unexpected similarities in haplotype block structure between dairy and beef breeds make them non-differentiable. Finally, our findings suggest that ~30,000 uniformly distributed SNPs would be necessary to construct a complete genome LD map in Bos taurus breeds, and ~580,000 SNPs would be necessary to characterize the haplotype block structure across the complete cattle genome.  相似文献   

6.
In the present study, a sample of 88 animals belonging to four local (Modicana, Sarda, Sardo‐Bruna and Sardo‐Modicana) and one cosmopolitan (Italian Brown Swiss) cattle breeds were genotyped with a medium density SNP beadchip and compared to investigate their genetic diversity and the existence of selection signatures. A total of 43 012 SNPs distributed across all 29 autosomal chromosomes were retained after data quality control. Basic population statistics, Wright fixation index and runs of homozygosity (ROH) analyses confirmed that the Italian Brown Swiss genome was shaped mainly by selection, as underlined by the low values of heterozygosity and minor allele frequency. As expected, local cattle exhibited a large within‐breed genetic heterogeneity. The FST comparison revealing the largest number of significant SNPs was Sardo‐Bruna vs. Sardo‐Modicana, whereas the smallest was observed for Italian Brown Swiss vs. Sardo‐Modicana. Modicana exhibited the largest number of detected ROHs, whereas the smallest was observed for Sardo‐Modicana. Signatures of selection were detected in genomic regions that harbor genes involved in milk production traits for Italian Brown Swiss and fitness traits for local breeds. According to the results of multi‐dimensional scaling and the admixture analysis the Sardo‐Bruna is more similar to the Sarda than to the Italian Brown Swiss breed. Moreover, the Sardo‐Modicana is genetically closer to the Modicana than to the Sarda breed. Results of the present work confirm the usefulness of single nucleotide polymorphisms in deciphering the genetic architecture of livestock breeds.  相似文献   

7.
Arachnomelia in Brown Swiss cattle is a monogenic autosomal recessive inherited congenital disorder of the skeletal system giving affected calves a spidery look (OMIA ID 000059). Over a period of 20 years 15 cases were sampled in the Swiss and Italian Brown cattle population. Pedigree data revealed that all affected individuals trace back to a single acknowledged carrier founder sire. A genome scan using 240 microsatellites spanning the 29 bovine autosomes showed homozygosity at three adjacent microsatellite markers on bovine Chr 5 in all cases. Linkage analysis confirmed the localization of the arachnomelia mutation in the region of the marker ETH10. Fine-mapping and haplotype analysis using a total of 34 markers in this region refined the critical region of the arachnomelia locus to a 7.19-Mb interval on bovine Chr 5. The disease-associated IBD haplotype was shared by 36 proven carrier animals and allows marker-assisted selection. As the corresponding human and mouse chromosome segments do not contain any clear functional candidate genes for this disorder, the mutation causing arachnomelia in the Brown Swiss cattle might help to identify an unknown gene in bone development. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
9.
Bovine Progressive Degenerative Myeloencephalopathy (Weaver Syndrome) is a recessive neurological disease that has been observed in the Brown Swiss cattle breed since the 1970’s in North America and Europe. Bilateral hind leg weakness and ataxia appear in afflicted animals at 6 to 18 months of age, and slowly progresses to total loss of hind limb control by 3 to 4 years of age. While Weaver has previously been mapped to Bos taurus autosome (BTA) 4∶46–56 Mb and a diagnostic test based on the 6 microsatellite (MS) markers is commercially available, neither the causative gene nor mutation has been identified; therefore misdiagnosis can occur due to recombination between the diagnostic MS markers and the causative mutation. Analysis of 34,980 BTA 4 SNPs genotypes derived from the Illumina BovineHD assay for 20 Brown Swiss Weaver carriers and 49 homozygous normal bulls refined the Weaver locus to 48–53 Mb. Genotyping of 153 SNPs, identified from whole genome sequencing of 10 normal and 10 carrier animals, across a validation set of 841 animals resulted in the identification of 41 diagnostic SNPs that were concordant with the disease. Except for one intergenic SNP all are associated with genes expressed in nervous tissues: 37 distal to NRCAM, one non-synonymous (serine to asparagine) in PNPLA8, one synonymous and one non-synonymous (lysine to glutamic acid) in CTTNBP2. Haplotype and imputation analyses of 7,458 Brown Swiss animals with Illumina BovineSNP50 data and the 41 diagnostic SNPs resulted in the identification of only one haplotype concordant with the Weaver phenotype. Use of this haplotype and the diagnostic SNPs more accurately identifies Weaver carriers in both Brown Swiss purebred and influenced herds.  相似文献   

10.
11.
DNA from four cattle breeds was used to re-sequence all of the exons and 56% of the introns of the bovine tyrosine hydroxylase (TH) gene and 97% and 13% of the bovine dopamine β-hydroxylase (DBH) coding and non-coding sequences, respectively. Two novel single nucleotide polymorphisms (SNPs) and a microsatellite motif were found in the TH sequences. The DBH sequences contained 62 nucleotide changes, including eight non-synonymous SNPs (nsSNPs) that are of particular interest because they may alter protein function and therefore affect the phenotype. These DBH nsSNPs resulted in amino acid substitutions that were predicted to destabilize the protein structure. Six SNPs (one from TH and five from DBH non-synonymous SNPs) were genotyped in 140 animals; all of them were polymorphic and had a minor allele frequency of > 9%. There were significant differences in the intra- and inter-population haplotype distributions. The haplotype differences between Brahman cattle and the three B. t. taurus breeds (Charolais, Holstein and Lidia) were interesting from a behavioural point of view because of the differences in temperament between these breeds.  相似文献   

12.
13.
White-spotting coat colour phenotypes in cattle are either fixed characteristics of specific cattle breeds or occur sporadically owing to germline genetic variation of solid-coloured parents. A Brown Swiss cow showing a piebald pattern resembling colour-sidedness was referred for genetic evaluation. Both parents were normal solid-brown-coloured cattle. The cow was tested negative for the three known DNA variants in KIT, MITF and TWIST2 associated with different depigmentation phenotypes in Brown Swiss cattle. Whole-genome sequencing of the cow was performed and a heterozygous variant affecting the coding sequence of the bovine KIT gene was identified on chromosome 6. The variant is a 40 bp deletion in exon 9, NM_001166484.1:c.1390_1429del, and leads to a frameshift that is predicted to produce a novel 50 amino acid-long C-terminus replacing almost 50% of the wt KIT protein, including the functionally important intracellular tyrosine kinase domain (NP_001159956.1:p.(Asn464AlafsTer50)). Interestingly, among three available offspring, two solid-coloured daughters were genotyped as homozygous wt whereas a single son showing a slightly milder but still obvious depigmentation phenotype inherited a copy of the novel variant allele. The genetic findings provide strong evidence that the identified loss-of-function KIT variant most likely represents a de novo germline mutation that is causative owing to haploinsufficiency.  相似文献   

14.

Background

The absence of horns, called polled phenotype, is the favored trait in modern cattle husbandry. To date, polled cattle are obtained primarily by dehorning calves. Dehorning is a practice that raises animal welfare issues, which can be addressed by selecting for genetically hornless cattle. In the past 20 years, there have been many studies worldwide to identify unique genetic markers in complete association with the polled trait in cattle and recently, two different alleles at the POLLED locus, both resulting in the absence of horns, were reported: (1) the Celtic allele, which is responsible for the polled phenotype in most breeds and for which a single candidate mutation was detected and (2) the Friesian allele, which is responsible for the polled phenotype predominantly in the Holstein-Friesian breed and in a few other breeds, but for which five candidate mutations were identified in a 260-kb haplotype. Further studies based on genome-wide sequencing and high-density SNP (single nucleotide polymorphism) genotyping confirmed the existence of the Celtic and Friesian variants and narrowed down the causal Friesian haplotype to an interval of 145 kb.

Results

Almost 6000 animals were genetically tested for the polled trait and we detected a recombinant animal which enabled us to reduce the Friesian POLLED haplotype to a single causal mutation, namely a 80-kb duplication. Moreover, our results clearly disagree with the recently reported perfect co-segregation of the POLLED mutation and a SNP at position 1 390 292 bp on bovine chromosome 1 in the Holstein-Friesian population.

Conclusion

We conclude that the 80-kb duplication, as the only remaining variant within the shortened Friesian haplotype, represents the most likely causal mutation for the polled phenotype of Friesian origin.  相似文献   

15.
The persistent horns are an important trait of speciation for the family Bovidae with complex morphogenesis taking place briefly after birth. The polledness is highly favourable in modern cattle breeding systems but serious animal welfare issues urge for a solution in the production of hornless cattle other than dehorning. Although the dominant inhibition of horn morphogenesis was discovered more than 70 years ago, and the causative mutation was mapped almost 20 years ago, its molecular nature remained unknown. Here, we report allelic heterogeneity of the POLLED locus. First, we mapped the POLLED locus to a ~381-kb interval in a multi-breed case-control design. Targeted re-sequencing of an enlarged candidate interval (547 kb) in 16 sires with known POLLED genotype did not detect a common allele associated with polled status. In eight sires of Alpine and Scottish origin (four polled versus four horned), we identified a single candidate mutation, a complex 202 bp insertion-deletion event that showed perfect association to the polled phenotype in various European cattle breeds, except Holstein-Friesian. The analysis of the same candidate interval in eight Holsteins identified five candidate variants which segregate as a 260 kb haplotype also perfectly associated with the POLLED gene without recombination or interference with the 202 bp insertion-deletion. We further identified bulls which are progeny tested as homozygous polled but bearing both, 202 bp insertion-deletion and Friesian haplotype. The distribution of genotypes of the two putative POLLED alleles in large semi-random sample (1,261 animals) supports the hypothesis of two independent mutations.  相似文献   

16.
Domestic species allow us to study dramatic evolutionary changes at an accelerated rate due to the effectiveness of modern breeding techniques and the availability of breeds that have undergone distinct selection pressures. We present a worldwide survey of haplotype variability around a known causative mutation in porcine gene IGF2, which increases lean content. We genotyped 34 SNPs spanning 27 kb in 237 domestic pigs and 162 wild boars. Although the selective process had wiped out variability for at least 27 kb in the haplotypes carrying the mutation, there was no indication of an overall reduction in genetic variability of international vs. European local breeds; there was also no evidence of a reduction in variability caused by domestication. The haplotype structure and a plot of Tajima's D against the frequency of the causative mutation across breeds suggested a temporal pattern, where each breed corresponded to a different selective stage. This was observed comparing the haplotype neighbor-joining (NJ) trees of breeds that have undergone increasing selection pressures for leanness, e.g., European local breeds vs. Pietrain. These results anticipate that comparing current domestic breeds will decisively help to recover the genetic history of domestication and contemporary selective processes.  相似文献   

17.
18.
DNA fingerprinting in cattle using the probe pV47   总被引:1,自引:0,他引:1  
The multilocus probe pV47 detected an average of nine bands in cattle between 23 kb and 4 kb. Band sharing was estimated for three groups of unrelated animals. The first group comprised 20 individuals of 12 different breeds, the second group 10 individuals of the Swiss Simmental population and the third group 11 individuals of the Swiss Brown Swiss population. The band sharing probabilities were 33%, 42% and 58% respectively. The DNA fingerprints of 38 offspring with a total of 277 bands revealed no bands that could not be traced to the parents.  相似文献   

19.
β-defensins are small cationic peptides, with potent immunoregulatory and antimicrobial activity which are produced constitutively and inducibly by eukaryotic cells. This study profiles the expression of a cluster of 19 novel defensin genes which spans 320 kb on chromosome 13 in Bos taurus. It also assesses the genetic variation in these genes between two divergently selected cattle breeds. Using quantitative real-time PCR (qRT-PCR), all 19 genes in this cluster were shown to be expressed in the male genital tract and 9 in the female genital tract, in a region-specific manner. These genes were sequenced in Norwegian Red (NR) and Holstein-Friesian (HF) cattle for population genetic analysis. Of the 17 novel single nucleotide polymorphisms (SNPs) identified, 7 were non-synonymous, 6 synonymous and 4 outside the protein coding region. Significant frequency differences in SNPs in bovine β-defensins (BBD) 115, 117, 121, and 122 were detected between the two breeds, which was also reflected at the haplotype level (P < 0.05). There was clear segregation of the haplotypes into two blocks on chromosome 13 in both breeds, presumably due to historical recombination. This study documents genetic variation in this β-defensin gene cluster between Norwegian Red and Holstein-Friesian cattle which may result from divergent selection for production and fertility traits in these two breeds. Regional expression in the epididymis and fallopian tube suggests a potential reproductive-immunobiology role for these genes in cattle.  相似文献   

20.
The genetic diversity among Canadienne, Brown Swiss, Holstein, and Jersey cattle was estimated from relationships determined by genotyping 20 distantly related animals in each breed for 15 microsatellites located on separate chromosomes. The Canadienne, Holstein, and Jersey cattle had an average of six alleles per loci compared with five alleles for Brown Swiss. Furthermore, a number of potentially breed-specific alleles were identified. The allele size variance among breeds was similar, but varied considerably among loci. All of the loci studied were equally heterozygous, as were Brown Swiss, Canadienne, and Holstein cattle (0.68-0.69) whereas Jersey cattle showed lower heterozygosity (0.59). The within-breed estimates of genetic distance were greater than zero and significant. The genetic distance between Canadienne and Holstein (0.156), Brown Swiss (0.243), and Jersey (0.235) was negligible, suggesting close relationship. Concurrently, Brown Swiss and Holstein (0.211) cattle also demonstrated close relationship. In contrast, the Jersey breed was genetically distant from the Brown Swiss and Holstein cattle (0.427 and 0.320, respectively). The characterization of Canadienne cattle, as part of the genetic resource conservation effort currently underway in Canada, underscores the difficulty in scientifically establishing unique breeds. Therefore, the need to consider all relevant morphological characteristics and production performance in combination with available cultural, historical, pedigree, and molecular information becomes relevant when identifying breeds for conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号