首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Inga (Caesalpinioideae) is the type genus of the Ingeae tribe in the mimosoid clade. It comprises about 300 species, all trees or treelets, and has an exclusively neotropical distribution, with Brazil as its main center of diversity. In this study, we analyzed the diversity of 40 strains of rhizobia isolated from root nodules collected from ten species of Inga belonging to different types of vegetation in Brazil. Sequences of their housekeeping genes (dnaK, recA, rpoB, gyrB and glnII), 16S rRNA genes, internal transcribed spacer (ITS) regions, as well as their symbiosis-essential genes (nodC and nifH) were used to characterize them genetically. The ability of the rhizobia to form nodules on Inga spp., and on the promiscuous legume siratro (Macroptilium atropurpureum) was also evaluated. A multilocus sequence analysis (MLSA) combined with an analysis of the ITS region showed that the isolates were distributed into four main groups (A-D) within the large genus Bradyrhizobium. Analysis of the nodC and nifH genes showed that the isolates formed a separate branch from all described species of Bradyrhizobium, except for B. ingae. Most of the tested isolates formed nodules on siratro and all isolates tested nodulated Inga spp. Our results suggest a unique co-evolutionary history of Bradyrhizobium and Inga and demonstrate the existence of potential new species of microsymbionts nodulating this important and representative genus of leguminous tree from the Caesalpinioideae mimosoid clade.  相似文献   

2.
Chamaecrista mimosoides is an annual herb legume widely distributed in tropical and subtropical Asia and Africa. It may have primitive and independently-evolved root nodule types but its rhizobia have not been systematically studied. Therefore, in order to learn the diversity and species affinity of its rhizobia, root nodules were sampled from C. mimosoides plants growing in seven geographical sites along the coast line of Shandong Peninsula, China. A total of 422 rhizobial isolates were obtained from nodules, and they were classified into 28 recA haplotypes. By using multilocus sequence analysis of the concatenated housekeeping genes dnaK, glnII, gyrB, recA and rpoB, the representative strains for these haplotypes were designated as eight defined and five candidate novel genospecies in the genus Bradyrhizobium. Bradyrhizobium elkanii and Bradyrhizobium ferriligni were predominant and universally distributed. The symbiotic genes nodC and nifH of the representative strains showed very similar topology in their phylogenetic trees indicating their co-evolution history. All the representative strains formed effective root nodules in nodulation tests. The correlation between genospecies and soil characteristics analyzed by CANOCO software indicated that available potassium (AK), organic carbon (OC) and available nitrogen (AN) in the soil samples were the main factors affecting the distribution of the symbionts involved in this current study. The study is the first systematic survey of Chamaecrista mimosoides-nodulating rhizobia, and it showed that Chamaecrista spp. were nodulated by bradyrhizobia in natural environments. In addition, the host spectrum of the corresponding rhizobial species was extended, and the study provided novel information on the biodiversity and biogeography of rhizobia.  相似文献   

3.
As an introduced plant, Lablab purpureus serves as a vegetable, herbal medicine, forage and green manure in China. In order to investigate the diversity of rhizobia associated with this plant, a total of 49 rhizobial strains isolated from ten provinces of Southern China were analyzed in the present study with restriction fragment length polymorphism and/or sequence analyses of housekeeping genes (16S rRNA, IGS, atpD, glnII and recA) and symbiotic genes (nifH and nodC). The results defined the L. purpureus rhizobia as 24 IGS-types within 15 rrs-IGS clusters or genomic species belonging to Bradyrhizobium, Rhizobium, Ensifer (synonym of Sinorhizobium) and Mesorhizobium. Bradyrhizobium spp. (81.6%) were the most abundant isolates, half of which were B. elkanii. Most of these rhizobia induced nodules on L. purpureus, but symbiotic genes were only amplified from the Bradyrhizobium and Rhizobium leguminosarum strains. The nodC and nifH phylogenetic trees defined five lineages corresponding to B. yuanmingense, B. japonicum, B. elkanii, B. jicamae and R. leguminosarum. The coherence of housekeeping and symbiotic gene phylogenies demonstrated that the symbiotic genes of the Lablab rhizobia were maintained mainly through vertical transfer. However, a putative lateral transfer of symbiotic genes was found in the B. liaoningense strain. The results in the present study clearly revealed that L. purpureus was a promiscuous host that formed nodules with diverse rhizobia, mainly Bradyrhizobium species, harboring different symbiotic genes.  相似文献   

4.
The nodulation of Erythrophleum fordii has been recorded recently, but its microsymbionts have never been studied. To investigate the diversity and biogeography of rhizobia associated with this leguminous evergreen tree, root nodules were collected from the southern subtropical region of China. A total of 166 bacterial isolates were obtained from the nodules and characterized. In a PCR-based restriction fragment length polymorphism (RFLP) analysis of ribosomal intergenic sequences, the isolates were classified into 22 types within the genus Bradyrhizobium. Sequence analysis of 16S rRNA, ribosomal intergenic spacer (IGS), and the housekeeping genes recA and glnII classified the isolates into four groups: the Bradyrhizobium elkanii and Bradyrhizobium pachyrhizi groups, comprising the dominant symbionts, Bradyrhizobium yuanmingense, and an unclassified group comprising the minor symbionts. The nodC and nifH phylogenetic trees defined five or six lineages among the isolates, which was largely consistent with the definition of genomic species. The phylogenetic results and evolutionary analysis demonstrated that mutation and vertical transmission of genes were the principal processes for the divergent evolution of Bradyrhizobium species associated with E. fordii, while lateral transfer and recombination of housekeeping and symbiotic genes were rare. The distribution of the dominant rhizobial populations was affected by soil pH and effective phosphorus. This is the first report to characterize E. fordii rhizobia.  相似文献   

5.
In search of effective nitrogen-fixing strains for inoculating Leucaena leucocephala, we assessed the symbiotic efficiency of 41 rhizobial isolates from root nodules of L. leucocephala growing in the arid–hot river valley area in Panxi, China. The genetic diversity of the isolates was studied by analyzing the housekeeping genes 16S rRNA and recA, and the symbiotic genes nifH and nodC. In the nodulation and symbiotic efficiency assay, only 11 of the 41 isolates promoted the growth of L. leucocephala while the majority of the isolates were ineffective in symbiotic nitrogen fixation. Furthermore, one fourth of the isolates had a growth slowing effect on the host. According to the 16S rRNA and recA gene analyses, most of the isolates were Ensifer spp. The remaining isolates were assigned to Rhizobium, Mesorhizobium and Bradyrhizobium. The sequence analyses indicated that the L. leucocephala rhizobia had undergone gene recombination. In contrast to the promiscuity observed as a wide species distribution of the isolates, the results implied that L. leucocephala is preferentially nodulated by strains that share common symbiosis genes. The symbiotic efficiency was not connected to chromosomal background of the symbionts and isolates carrying a similar nifH or nodC showed totally different nitrogen fixation efficiency.  相似文献   

6.
Sixty-seven isolates were isolated from nodules collected on roots of Mediterranean shrubby legumes Retama raetam and Retama sphaerocarpa growing in seven ecological–climatic areas of northeastern Algeria. Genetic diversity of the Retama isolates was analyzed based on genotyping by restriction fragment length polymorphism of PCR-amplified fragments of the 16S rRNA gene, the intergenic spacer (IGS) region between the 16S and 23S rRNA genes (IGS), and the symbiotic genes nifH and nodC. Eleven haplotypes assigned to the Bradyrhizobium genus were identified. Significant biogeographical differentiation of the rhizobial populations was found, but one haplotype was predominant and conserved across the sites. All isolates were able to cross-nodulate the two Retama species. Accordingly, no significant genetic differentiation of the rhizobial populations was found in relation to the host species of origin. Sequence analysis of the 16S rRNA gene grouped the isolates with Bradyrhizobium elkanii, but sequence analyses of IGS, the housekeeping genes (dnaK, glnII, recA), nifH, and nodC yielded convergent results showing that the Retama nodule isolates from the northeast of Algeria formed a single evolutionary lineage, which was well differentiated from the currently named species or well-delineated unnamed genospecies of bradyrhizobia. Therefore, this study showed that the Retama species native to northeastern Algeria were associated with a specific clade of bradyrhizobia. The Retama isolates formed three sub-groups based on IGS and housekeeping gene phylogenies, which might form three sister species within a novel bradyrhizobial clade.  相似文献   

7.
Fifty-one rhizobial strains isolated from root nodules of Cytisus villosus growing in Northeastern Algeria were characterized by genomic and phenotypic analyses. Isolates were grouped into sixteen different patterns by PCR-RAPD. The phylogenetic status of one representative isolate from each pattern was examined by multilocus sequence analyses of four housekeeping genes (16S rRNA, glnII, recA, and atpD) and one symbiotic gene (nodC). Analysis of 16S rRNA gene sequences showed that all the isolates belonged to the genus Bradyrhizobium. Phylogenetic analyses based on individual or concatenated genes glnII, recA, and atpD indicated that strains cluster in three distinct groups. Ten out of the sixteen strains grouped together with Bradyrhizobium japonicum, while a second group of four clustered with Bradyrhizobium canariense. The third group, represented by isolates CTS8 and CTS57, differed significantly from all other bradyrhizobia known to nodulate members of the Genisteae tribe. In contrast with core genes, sequences of the nodC symbiotic gene from all the examined strains form a homogeneous group within the genistearum symbiovar of Bradyrhizobium. All strains tested nodulated Lupinus angustifolius, Lupinus luteus, and Spartium junceum but not Glycine max. From these results, it is concluded that C. villosus CTS8 and CTS57 strains represent a new lineage within the Bradyrhizobium genus.  相似文献   

8.
Several bacterial isolates were recovered from surface-sterilized root nodules of Arachis hypogaea L. (peanut) plants growing in soils from Córdoba, Argentina. The 16S rDNA sequences of seven fast-growing strains were obtained and the phylogenetic analysis showed that these isolates belonged to the Phylum Proteobacteria, Class Gammaproteobacteria, and included Pseudomonas spp., Enterobacter spp., and Klebsiella spp. After storage, these strains became unable to induce nodule formation in Arachis hypogaea L. plants, but they enhanced plant yield. When the isolates were co-inoculated with an infective Bradyrhizobium strain, they were even found colonizing pre-formed nodules. Analysis of symbiotic genes showed that the nifH gene was only detected for the Klebsiella-like isolates and the nodC gene could not be amplified by PCR or be detected by Southern blotting in any of the isolates. The results obtained support the idea that these isolates are opportunistic bacteria able to colonize nodules induced by rhizobia.  相似文献   

9.
Rhizobia nodulating native Astragalus and Oxytropis spp. in Northern Europe are not well-studied. In this study, we isolated bacteria from nodules of four Astragalus spp. and two Oxytropis spp. from the arctic and subarctic regions of Sweden and Russia. The phylogenetic analyses were performed by using sequences of three housekeeping genes (16S rRNA, rpoB and recA) and two accessory genes (nodC and nifH). The results of our multilocus sequence analysis (MLSA) of the three housekeeping genes tree showed that all the 13 isolates belonged to the genus Mesorhizobium and were positioned in six clades. Our concatenated housekeeping gene tree also suggested that the isolates nodulating Astragalus inopinatus, Astragalus frigidus, Astragalus alpinus ssp. alpinus and Oxytropis revoluta might be designated as four new Mesorhizobium species. The 13 isolates were grouped in three clades in the nodC and nifH trees. 15N analysis suggested that the legumes in association with these isolates were actively fixing nitrogen.  相似文献   

10.
The study of the nitrogen fixation and phylogenetic diversity of nodule microsymbionts of grain legumes in many parts of the globe is often carried out in order to identify legume-rhizobia combinations for agricultural sustainability. Several reports have therefore found that rhizobial species diversity is shaped by edapho-climatic conditions that characterize different geographic locations, suggesting that rhizobial communities often possess traits that aid their adaptation to their habitat. In this study, the soybean-nodulating rhizobia from semi-arid savannahs of Ghana and South Africa were evaluated. The authenticated rhizobial isolates were highly diverse based on their colony characteristics, as well as their BOX-PCR profiles and gene sequences. In the 16S rRNA phylogeny, the isolates were placed in the different clades Bradyrhizobium iriomotense and Bradyrhizobium jicamae together with two superclades Bradyrhizobium japonicum and Bradyrhizobium elkanii. The multilocus (atpD, glnII, gyrB, recA) phylogenetic analyses indicated the dominance of Bradyrhizobium diazoefficiens and putative new Bradyrhizobium species in the semi-arid Ghanaian region. The phylogenetic analyses based on the symbiotic genes (nifH and nodC) clustered the test isolates into different symbiovars (sv. glycinearum, sv. retame and sv. sojae). Principal component analysis (PCA) showed that soil factors played a significant role in favoring the occurrence of soybean-nodulating microsymbionts in the tested local conditions. The results suggested that isolates had marked local adaptation to the prevailing conditions in semi-arid regions but further studies are needed to confirm new Bradyrhizobium species.  相似文献   

11.
Aiming at learning the microsymbionts of Arachis duranensis, a diploid ancestor of cultivated peanut, genetic and symbiotic characterization of 32 isolates from root nodules of this plant grown in its new habitat Guangzhou was performed. Based upon the phylogeny of 16S rRNA, atpD and recA genes, diverse bacteria belonging to Bradyrhizobium yuanmingense, Bradyrhizobium elkanii, Bradyrhizobium iriomotense and four new lineages of Bradyrhizobium (19 isolates), Rhizobium/Agrobacterium (9 isolates), Herbaspirillum (2 isolates) and Burkholderia (2 isolates) were defined. In the nodulation test on peanut, only the bradyrhizobial strains were able to induce effective nodules. Phylogeny of nodC divided the Bradyrhizobium isolates into four lineages corresponding to the grouping results in phylogenetic analysis of housekeeping genes, suggesting that this symbiosis gene was mainly maintained by vertical gene transfer. These results demonstrate that A. duranensis is a promiscuous host preferred the Bradyrhizobium species with different symbiotic gene background as microsymbionts, and that it might have selected some native rhizobia, especially the novel lineages Bradyrhizobium sp. I and sp. II, in its new habitat Guangzhou. These findings formed a basis for further study on adaptation and evolution of symbiosis between the introduced legumes and the indigenous rhizobia.  相似文献   

12.
Bacteria belonging to the genus Bradyrhizobium nodulate various leguminous woody plants and herbs, including economically important crops such as soybean, peanut and cowpea. Here we analysed 39 Bradyrhizobium strains originating from root nodules of the leguminous trees and crops Acacia saligna, Faidherbia albida, Erythrina brucei, Albizia gummifera, Millettia ferruginea, Cajanus cajan, Vigna unguiculata and Phaseolus vulgaris, growing in southern Ethiopia. Multilocus sequence analyses (MLSA) of the 16S rRNA, glnII, recA, gyrB and dnaK genes and the ITS region grouped the test strains into seven well-supported genospecies (I–VII), six of which occupied distinct positions excluding all hitherto defined Bradyrhizobium species. Analyses of the nodA, nodC and nifH genes suggested different evolutionary history of the chromosomal and symbiosis-related genes. Our study corroborates earlier findings that Ethiopia is a hotspot for rhizobial biodiversity, justifying further search for novel strains from this region and calling for intensified research on the ecology and biochemistry of these organisms.  相似文献   

13.
A total of 103 root nodule isolates were used to estimate the diversity of bacteria nodulating Lotus tenuis in typical soils of the Salado River Basin. A high level of genetic diversity was revealed by repetitive extragenic palindromic PCR, and 77 isolates with unique genomic fingerprints were further differentiated into two clusters, clusters A and B, after 16S rRNA restriction fragment length polymorphism analysis. Cluster A strains appeared to be related to the genus Mesorhizobium, whereas cluster B was related to the genus Rhizobium. 16S rRNA sequence and phylogenetic analysis further supported the distribution of most of the symbiotic isolates in either Rhizobium or Mesorhizobium: the only exception was isolate BA135, whose 16S rRNA gene was closely related to the 16S rRNA gene of the genus Aminobacter. Most Mesorhizobium-like isolates were closely related to Mesorhizobium amorphae, Mesorhizobium mediterraneum, Mesorhizobium tianshanense, or the broad-host-range strain NZP2037, but surprisingly few isolates grouped with Mesorhizobium loti type strain NZP2213. Rhizobium-like strains were related to Rhizobium gallicum, Rhizobium etli, or Rhizobium tropici, for which Phaseolus vulgaris is a common host. However, no nodC or nifH genes could be amplified from the L. tenuis isolates, suggesting that they have rather divergent symbiosis genes. In contrast, nodC genes from the Mesorhizobium and Aminobacter strains were closely related to nodC genes from narrow-host-range M. loti strains. Likewise, nifH gene sequences were very highly conserved among the Argentinian isolates and reference Lotus rhizobia. The high levels of conservation of the nodC and nifH genes suggest that there was a common origin of the symbiosis genes in narrow-host-range Lotus symbionts, supporting the hypothesis that both intrageneric horizontal gene transfer and intergeneric horizontal gene transfer are important mechanisms for the spread of symbiotic capacity in the Salado River Basin.  相似文献   

14.
The phylogeny of 16 isolates from root nodules of Genista germanica, Genista tinctoria, Cytisus ratisbonensis, and Cytisus scoparius growing in southeast Poland was estimated by comparative sequence analysis of core (16S rDNA, atpD, glnII, recA) and symbiosis-related (nodC, nodZ, nifH) genes. All the sequences analyzed placed the studied rhizobia in the genus Bradyrhizobium. Phylogenetic analysis of individual and concatenated housekeeping genes showed that the Genisteae microsymbionts form a homogeneous group with Bradyrhizobium japonicum strains. The phylogeny of nodulation and nitrogen fixation genes indicated a close relationship of the examined rhizobia with B. japonicum, Bradyrhizobium canariense, Bradyrhizobium cytisi, Bradyrhizobium rifense and Bradyrhizobium lupini strains infecting other plants of the tribe Genisteae. For the first time, the taxonomic position of G. germanica and C. ratisbonensis rhizobia, inferred from multigenic analysis, is described. The results of the phylogenetic analysis based on the protein-coding gene sequences presented in this study also indicate potential pitfalls concerning the choice of marker and reference strains, which may lead to conflicting conclusions in species delineation.  相似文献   

15.
A collection of 18 previously unstudied strains isolated from root nodules of Genista germanica (German greenweed) grown in southeast Poland was evaluated for the level of genetic diversity using the BOX-PCR technique and the phylogenetic relationship based on both core (16S rRNA, dnaK, ftsA, glnII, gyrB, recA, rpoB) and nodulation (nodC and nodZ) gene sequences. Each of the 18 G. germanica root nodule isolates displayed unique BOX-PCR patterns, indicating their high level of genomic heterogeneity. Based on the comparative 16S rDNA sequence analysis, 12 isolates were affiliated to the Bradyrhizobium genus and the other strains were most similar to Rhizobium species. Phylogenetic analysis of the core gene sequences indicated that the studied Bradyrhizobium bacteria were most closely related to Bradyrhizobium japonicum, whereas Rhizobium isolates were most closely related to Rhizobium lusitanum and R. leguminosarum. The phylogenies of nodC and nodZ for the Rhizobium strains were incongruent with each other and with the phylogenies inferred from the core gene sequences. All Rhizobium nodZ gene sequences acquired in this study were grouped with the sequences of Bradyrhizobium strains. Some of the studied Rhizobium isolates were placed in the nodC phylogenetic tree together with reference Rhizobium species, while the others were closely related to Bradyrhizobium bacteria. The results provided evidence for horizontal transfer of nodulation genes between Bradyrhizobium and Rhizobium. However, the horizontal transfer of nod genes was not sufficient for Rhizobium strains to form nodules on G. germanica roots, suggesting that symbiotic genes have to be adapted to the bacterial genome.  相似文献   

16.
Indigenous soybean rhizobial strains were isolated from root nodules sampled from farmers’ fields in Mozambique to determine their identity, distribution and symbiotic relationships. Plant infection assays revealed variable nodulation and symbiotic effectiveness among the 43 bacterial isolates tested. Strains from Ruace generally promoted greater whole-plant growth than the others. 16S rRNA-RFLP analysis of genomic DNA extracted from the rhizobial isolates produced different banding patterns, a clear indication of high bacterial diversity. However, the multilocus sequence analysis (MLSA) data showed alignment of the isolates with B. elkanii species. The 16S rRNA sequences of representative soybean isolates selected from each 16S rRNA-RFLP cluster showed their relatedness to B. elkanii, as well as to other Bradyrhizobium species. But a concatenated phylogeny of two housekeeping genes (glnII and gyrB) identified the soybean nodulating isolates as Bradyrhizobium, with very close relatedness to B. elkanii. The nifH and nodC sequences also showed that the majority of the test soybean isolates were closely related to B. elkanii, albeit the inconsistency with some isolates. Taken together, these findings suggest that the B. elkanii group are the preferred dominant microsymbiont of soybean grown in Mozambican soils. Furthermore, the distribution of soybean rhizobia in the agricultural soils of Mozambique was found to be markedly influenced by soil pH, followed by the concentrations of plant-available P and Mn. This study suggested that the identified isolates TUTMJM5, TUTMIITA5A and TUTLBC2B can be used as inoculants for increased soybean production in Mozambique.  相似文献   

17.
Groundnut is an economically important N?2-fixing legume that can contribute about 100–190 kg N ha?1 to cropping systems. In this study, groundnut-nodulating native rhizobia in South African soils were isolated from root nodules. Genetic analysis of isolates was done using restriction fragment length polymorphism (RFLP)-PCR of the intergenic spacer (IGS) region of 16S-23S rDNA. A total of 26 IGS types were detected with band sizes ranging from 471 to 1415 bp. The rhizobial isolates were grouped into five main clusters with Jaccard's similarity coefficient of 0.00–1.00, and 35 restriction types in a UPGMA dendrogram. Partial sequence analysis of the 16S rDNA, IGS of 16S rDNA-23S rDNA, atpD, gyrB, gltA, glnII and symbiotic nifH and nodC genes obtained for representative isolates of each RFLP-cluster showed that these native groundnut-nodulating rhizobia were phylogenetically diverse, thus confirming the extent of promiscuity of this legume. Concatenated gene sequence analysis showed that most isolates did not align with known type strains, and may represent new species from South Africa. This underscored the high genetic variability associated with groundnut Rhizobium and Bradyrhizobium in South African soils, and the possible presence of a reservoir of novel groundnut-nodulating Bradyrhizobium and Rhizobium in the country.  相似文献   

18.

Backgroud and aims

This study was conducted to reveal the genetic diversity of soybean-nodulating rhizobia in Nepal in relation to climate and soil properties.

Method

A total of 102 bradyrhizobial strains were isolated from the root nodules of soybeans cultivated in 12 locations in Nepal varying in climate and soil properties, and their genetic diversity was examined based on 16S rDNA, ITS regions of 16S–23S rDNA, nodC and nifH. In vitro growth properties of some representative strains were examined to elucidate their characteristic distribution in Nepal.

Results

Four species of the genus Bradyrhizobium were isolated, and B. japonicum dominated at temperate locations, while in subtropical locations, B. elkanii, B. yuanmingense, and B. liaoningense dominated at acidic, moderately acidic, and slightly alkaline soils, respectively. The relative nodule occupancies could not be fully explained by their in vitro growth properties. Similar nodC and nifH genes among the strains suggested co-evolution of these genes also in Nepal, probably through horizontal gene transfer.

Conclusions

The influence of climate and soil pH on diversity at the sub-species level was revealed. It is concluded that the highly diverse climate and soils in Nepal might be conducive for the existence of diverse soybean rhizobial strains.  相似文献   

19.
Cowpea (Vigna unguiculata) is a promiscuous grain legume, capable of establishing efficient symbiosis with diverse symbiotic bacteria, mainly slow-growing rhizobial species belonging to the genus Bradyrhizobium. Although much research has been done on cowpea-nodulating bacteria in various countries around the world, little is known about the genetic and symbiotic diversity of indigenous cowpea rhizobia in European soils. In the present study, the genetic and symbiotic diversity of indigenous rhizobia isolated from field-grown cowpea nodules in three geographically different Greek regions were studied. Forty-five authenticated strains were subjected to a polyphasic approach. ERIC-PCR based fingerprinting analysis grouped the isolates into seven groups and representative strains of each group were further analyzed. The analysis of the rrs gene showed that the strains belong to different species of the genus Bradyrhizobium. The analysis of the 16S-23S IGS region showed that the strains from each geographic region were characterized by distinct IGS types which may represent novel phylogenetic lineages, closely related to the type species of Bradyrhizobium pachyrhizi, Bradyrhizobium ferriligni and Bradyrhizobium liaoningense. MLSA analysis of three housekeeping genes (recA, glnII, and gyrB) showed the close relatedness of our strains with B. pachyrhizi PAC48T and B. liaoningense USDA 3622T and confirmed that the B. liaoningense-related isolate VUEP21 may constitute a novel species within Bradyrhizobium. Moreover, symbiotic gene phylogenies, based on nodC and nifH genes, showed that the B. pachyrhizi-related isolates belonged to symbiovar vignae, whereas the B. liaoningense-related isolates may represent a novel symbiovar.  相似文献   

20.
A collection of 160 isolates of rhizobia nodulating Phaseolus vulgaris in three geographical regions in Tunisia was characterized by restriction fragment length polymorphism analysis of polymerase chain reaction (PCR)-amplified 16S rDNA, nifH and nodC genes. Nine groups of rhizobia were delineated: Rhizobium gallicum biovar (bv.) gallicum, Rhizobium leguminosarum bv. phaseoli and bv. viciae, Rhizobium etli bv. phaseoli, Rhizobium giardinii bv. giardinii, and four groups related to species of the genus Sinorhizobium, Sinorhizobium meliloti, Sinorhizobium medicae and Sinorhizobium fredii. The most abundant rhizobial species were R. gallicum, R. etli, and R. leguminosarum encompassing 29–20% of the isolates each. Among the isolates assigned to R. leguminosarum, two-thirds were ineffective in nitrogen fixation with P. vulgaris and harbored a symbiotic gene typical of the biovar viciae. The S. fredii-like isolates did not nodulate soybean plants but formed numerous effective nodules on P. vulgaris. Comparison of nodC gene sequences showed that their symbiotic genotype was not related to that of S. fredii, but to that of the S. fredii-like reference strain GR-06, which was isolated from a bean plant grown in a Spanish soil. An additional genotype including 16% of isolates was found to be closely related to species of the genus Agrobacterium. However, when re-examined, these isolates did not nodulate their original host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号