首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lately there has been a shift in Sweden from grazing species‐rich semi‐natural grasslands towards grazing ex‐arable fields in the modern agricultural landscape. Grazing ex‐arable fields contain a fraction of the plant species richness confined to semi‐natural grasslands. Still, they have been suggested as potential target sites for re‐creation of semi‐natural grasslands. We asked to what extent does fine‐scale variation in soil conditions, management history and site location effect local plant diversity in grazed ex‐arable fields. We examined local soil conditions such as texture, pH, organic carbon, nitrogen (N) and extractable phosphate (P) and effects on plant richness in ten pairs of grazed ex‐fields and neighbouring semi‐natural grasslands in different rural landscapes. Each grassland pair where in the same paddock. A multivariate test showed that site location and land use history explained more of differences in species richness than local soil property variables. Plant species richness was positively associated to grazed ex‐fields with low pH, low N and P levels. Sites with high plant richness in semi‐natural grasslands also had more species in the adjacent grazed ex‐fields, compared to sites neighbouring less species‐rich semi‐natural grasslands. Although both soil properties and species richness were different in grazed ex‐fields compared to semi‐natural grassland, the site location within a landscape, and vicinity to species‐rich grasslands, can override effects of soil properties. In conclusion, if properly located, ex‐arable fields may be an important habitat to maintain plant diversity at larger spatio‐temporal scales and should considered as potential sites for grassland restoration.  相似文献   

2.
Clutches of ground‐nesting farmland birds are often destroyed by farming operations, resulting in insufficient reproductive success and subsequently declining populations. The aim of this study was to investigate whether volunteer nest protection can enhance nest success of ground‐nesting birds. The study compared nest success of protected and unprotected Northern Lapwing Vanellus vanellus nests over 2 years on arable farms in the Netherlands. Because of different crop management, nest success of ground‐breeding birds might differ between organic and conventional arable farms. The effectiveness of volunteer nest protection was therefore investigated on both farm types. Although nest protection significantly reduced nest loss due to farming operations, there were no significant differences in total clutch survival of protected and unprotected nests. However, sample sizes of unprotected nests, and protected nests on organic farms, were relatively small, which may have reduced statistical power. There were indications that protected nests were predated or deserted more often. We recommend exploring different ways to improve the effectiveness of volunteer nest protection through a further reduction of nest loss due to farming operations and predation.  相似文献   

3.
Populations of farmland birds are under pressure as a result of agricultural intensification. It has been proposed that less intensive approaches to farming, such as organic farming methods, may halt these population declines. In addition, organic farmers may have a more positive attitude towards nature and the environment which can possibly also have positive effects on the populations of breeding birds. We have compared the attitude of conventional and organic farmers towards the presence of Barn Swallows Hirundo rustica and the abundance of breeding Barn Swallows on organic and conventional arable farms in the Netherlands. We found that the abundance of breeding Barn Swallows did not differ between these two types of farms an that both organic and conventional farmers had a positive attitude towards the presence of Barn Swallows on their farms. Our results show that organic farming does not attract more Barn Swallows. However, agricultural intensification could have resulted in lower breeding success and, consequently, population declines, although there may be other contributory factors as well.  相似文献   

4.
In human‐dominated landscapes (semi)natural habitats are typically embedded in tracts of unsuitable habitat. Under such conditions, habitat characteristics and grain size of the surrounding landscape may affect how much food, and at what cost, is available for sedentary species with low home‐range plasticity. Here we combine behavioural radio‐tracking, feather ptilochronology, and landscape analysis to test how nutritional condition varies with home range size in 13 house sparrow [Passer domesticus (Linnaeus, 1758)] populations along an urban gradient. Urban individuals occupied smaller home ranges than conspecifics from rural areas, most distinctly if key cover was highly scattered. In urban plots, patch connectivity, home range sizes, and activity areas were positively correlated, indicating that individual ranging behaviour was related to the spatial distribution of suitable habitat. Urban House sparrows also showed the smallest feather growth bars, which were positively related to home range size at plot level. In contrast, growth bar widths and home range sizes were negatively related in rural populations, whereas in suburban populations, both variables varied independently. We conclude that individuals from progressively more built‐up areas show a restricted ability to adjust their daily ranging behaviour to the scattered distribution of critical resources. This may complement other putative causes of the widespread population decline of urban house sparrows. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 41–50.  相似文献   

5.
Wild arable plants can be an economic burden but they also support diverse arable food webs and contribute to valuable ecosystem functions. These benefits may have been compromised over recent decades by declining weed diversity. The decline in wild arable plant diversity has been viewed predominantly in terms of species shifts a view that ignores the genetic and functional variation existing within species and the impact on ecological and evolutionary processes which this may have. To examine within‐species diversity, ISSR markers were used in parallel with environmental and phenotypic characterisation, to investigate the population structure and diversity of Capsella bursa‐pastoris (shepherd's purse) from arable fields in the UK. Analysis of 338 ISSR products for 109 individuals from 51 accessions obtained from the seed banks of 33 arable fields showed that in‐field populations of shepherd's purse were genetically differentiated between individuals, and among accessions and fields. In addition, cluster analysis identified three genetically distinct regional‐scale populations. Phenotypic variation was present at all scales of genetic differentiation, including the regional scale where populations differed in their key life‐history traits: flowering time, fecundity and dormancy. Genetic drift is proposed as a contributor to differentiation among genetically isolated but locally co‐occurring accessions. In addition, the genetic and phenotypic variation in shepherd's purse exhibited large scale, spatial trends and showed statistically significant associations with cropping intensity and soil‐pH. These results suggest that adaptation as a result of selection by cropping practise and soil‐pH has played a role in the ability of shepherd's purse to colonise and persist in arable fields.  相似文献   

6.
Environmental variation drives ecological and phenotypic change. How predictable is differentiation in response to environmental change? Answering this question requires the development and testing of multifarious a priori predictions in natural systems. We employ this approach using Gobiomorus dormitor populations that have colonized inland blue holes differing in the availability of fish prey. We evaluated predictions of differences in demographics, habitat use, diet, locomotor and trophic morphology, and feeding kinematics and performance between G. dormitor populations inhabiting blue holes with and without fish prey. Populations of G. dormitor independently diverged between prey regimes, with broad agreement between observed differences and a priori predictions. For example, in populations lacking fish prey, we observed male‐biased sex ratios, a greater use of shallow‐water habitat, and larger population diet breadths as a result of greater individual diet specialization. Furthermore, we found predictable differences in body shape, mouth morphology, suction generation capacity, strike kinematics, and feeding performance on different prey types, consistent with the adaptation of G. dormitor to piscivory when coexisting with fish prey and to feeding on small invertebrates in their absence. The results of the present study suggest great potential in our ability to predict population responses to changing environments, which is an increasingly important capability in a human‐dominated, ever‐changing world. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 588–607.  相似文献   

7.
The Hawaiian endemic Metrosideros polymorpha is known for its high levels of morphological diversity and localized adaptation to a range of habitats. At the ecotone between bogs and forests, individuals exhibiting morphological extremes can be found within a few metres of each other. The objective of this study was to examine the genetic diversity and structure of morphologically distinct neighbouring populations of M. polymorpha, growing in bogs and adjacent forests across multiple islands. We explored these relationships using the molecular technique of inter‐simple sequence repeats (ISSRs). The majority (90.79%) of genetic variation was found within populations, 8.53% of the differentiation among populations can be attributed to differences between microhabitat types within islands and very little of the genetic differentiation is explained by the differences among islands (0.68%). These high levels of genetic homogeneity across populations could be the result of extensive gene flow and/or recent isolation of populations. We introduce a nearest genetic neighbour (NGN) analysis to examine detailed relationships of dispersal within and among populations by habitat and island. Using this approach, we provide evidence for habitat fidelity within bog populations and a positive correlation between island age and the proportion of same‐island NGNs. © 2010 The Linnean Society of London, Botanical Journal of the Linnean Society, 2010, 162 , 558–571.  相似文献   

8.
Both the conversion of natural habitats to farmland and efforts at increasing the yield of existing crops contribute to a decline in biodiversity. As a consequence of land conversion, specialised species are restricted to remnants of original habitat patches, which are frequently isolated. This may lead to a genetic differentiation of the subpopulations. We used seven microsatellite markers to examine the genetic population structure of the grass snake, Natrix natrix (Linnaeus, 1758), sampled in remnants of pristine habitat embedded in an intensively used agricultural landscape in north‐western Switzerland. The study area, a former wetland, has been drained and gradually converted into an agricultural plain in the last century, reducing the pristine habitat to approximately 1% of the entire area. The grass snake feeds almost entirely on amphibians, and is therefore associated with wetlands. In Central Europe, the species shows severe decline, most probably as a result of wetland drainage and decrease of amphibian populations. We found no genetically distinct grass snake populations in the study area covering 90 km2. This implies that there is an exchange of individuals between small remnants of original habitat. Thus, gene flow may prevent any genetic differentiation of subpopulations distributed over a relatively large area. Our results show that a specialized snake species can persist in an intensively used agricultural landscape, provided that suitable habitat patches are interconnected. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 51–58.  相似文献   

9.
10.
Habitat size, quality and isolation determine the genetic structure and diversity of populations and may influence their evolutionary potential and vulnerability to stochastic events. Small and isolated populations are subject to strong genetic drift and can lose much of their genetic diversity due to stochastic fixation and loss of alleles. The mountain white‐eye Zosterops poliogaster, a cloud forest bird species, is exclusively found in the high mountains of East Africa. We analysed 13 polymorphic microsatellites for 213 individuals of this species that were sampled at different points in time in three mountain massifs differing in habitat size, isolation and habitat degradation. We analysed the genetic differentiation among mountain populations and estimated the effective population sizes. Our results indicate three mountain‐specific genetic clusters. Time cohorts did not show genetic divergences, suggesting that populations are large enough to prevent strong drift effects. Effective population sizes were higher in larger and geographically interconnected habitat patches. Our findings underline the relevance of ecological barriers even for mobile species and show the importance of investigating different estimators of population size, including both approaches based on single and multiple time‐points of sampling, for the inference of the demographic status of a population. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 828–836.  相似文献   

11.
Questions: Which factors influence the persistence of vascular grassland plants in long‐abandoned (at least 50 yr) arable fields and meadows? What might be the implications of current levels of species richness on abandoned arable fields and meadows for future restoration? Location: Forested highlands of Kilsbergen, south central Sweden. Methods: The abundance of all vascular plant species was investigated in three habitat types: former arable fields, hay meadows and outlands (pastures) at 27 farms, abandoned for either approximately 50 yr or 90 yr. Time since abandonment, tree cover, soil depth, degree of soil podsol development, size of the infield area and two measures of connectivity were used as predictors for species richness and species composition. Results: Former outland had denser tree cover, fewer species and fewer grassland species than former arable fields and hay meadows, irrespective of time since abandonment. Former hay meadows and arable fields with a longer time since abandonment were less rich in species, more wooded and had greater podsolization than meadows and fields abandoned at a later stage. Species richness was higher in hay meadows and arable fields at farms with larger infield area and deeper soils compared with farms with smaller infield area and shallower soils. The greatest richness of species and most open habitat were former arable fields at larger farms abandoned 50 yr before the study. Former arable fields had the highest number of grassland species. Conclusion: After 50 yr of abandonment, former arable fields were the most important remnant habitats for grassland species and may be a more promising target for restoration than formerly managed grasslands.  相似文献   

12.
Christina M. Kennedy  Eric Lonsdorf  Maile C. Neel  Neal M. Williams  Taylor H. Ricketts  Rachael Winfree  Riccardo Bommarco  Claire Brittain  Alana L. Burley  Daniel Cariveau  Luísa G. Carvalheiro  Natacha P. Chacoff  Saul A. Cunningham  Bryan N. Danforth  Jan‐Hendrik Dudenhffer  Elizabeth Elle  Hannah R. Gaines  Lucas A. Garibaldi  Claudio Gratton  Andrea Holzschuh  Rufus Isaacs  Steven K. Javorek  Shalene Jha  Alexandra M. Klein  Kristin Krewenka  Yael Mandelik  Margaret M. Mayfield  Lora Morandin  Lisa A. Neame  Mark Otieno  Mia Park  Simon G. Potts  Maj Rundlf  Agustin Saez  Ingolf Steffan‐Dewenter  Hisatomo Taki  Blandina Felipe Viana  Catrin Westphal  Julianna K. Wilson  Sarah S. Greenleaf  Claire Kremen 《Ecology letters》2013,16(5):584-599
Bees provide essential pollination services that are potentially affected both by local farm management and the surrounding landscape. To better understand these different factors, we modelled the relative effects of landscape composition (nesting and floral resources within foraging distances), landscape configuration (patch shape, interpatch connectivity and habitat aggregation) and farm management (organic vs. conventional and local‐scale field diversity), and their interactions, on wild bee abundance and richness for 39 crop systems globally. Bee abundance and richness were higher in diversified and organic fields and in landscapes comprising more high‐quality habitats; bee richness on conventional fields with low diversity benefited most from high‐quality surrounding land cover. Landscape configuration effects were weak. Bee responses varied slightly by biome. Our synthesis reveals that pollinator persistence will depend on both the maintenance of high‐quality habitats around farms and on local management practices that may offset impacts of intensive monoculture agriculture.  相似文献   

13.
Pollination success and pollen dispersal in natural populations depend on the spatial‐temporal variation of flower abundance. For plants that lack rewards for pollinators, pollination success is predicted to be negatively related to flower density and flowering synchrony. We investigated the relationships between pollination success and flower abundance and flowering synchrony, and estimated pollinia dispersal distance in a rewardless species, Changnienia amoena (Orchidaceae). The results obtained in the present study revealed that male pollination success was negatively influenced by population size but was positively affected by population density, whereas female pollination success was independent of both population size and density. Phenotypic analysis suggested that highly synchronous flowering was advantageous through total pollination success, which is in contrast to previous studies. These results indicate that pollination facilitation rather than competition for pollinator visits occurs in this rewardless plant. The median distance of pollinia dispersal was 11.5 m (mean distance = 17.5 m), which is comparable to that of other rewardless plants but longer than for rewarding plants. However, pollen transfer occured mainly within populations; pollen import was a rare event. Restricted gene flow by pollinia and seeds probably explains the previous population genetic reporting a high degree of genetic differentiation between populations. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 477–488.  相似文献   

14.
Defoliation has frequently been proposed as a means of controlling Cirsium arvense (L.) Scop. (Californian thistle, Canada thistle, creeping thistle, perennial thistle), an economically damaging pastoral weed in temperate regions of the world, but its optimization has remained obscure. We developed a matrix model for the population dynamics of C. arvense in sheep‐grazed pasture in New Zealand that accounts for the effects of aerial shoot defoliation on a population's photosynthetic opportunity and consequential overwintered root biomass, enabling mowing regimes varying in the seasonal timing and frequency of defoliation to be compared. The model showed that the long‐term population dynamics of the weed is influenced by both the timing and frequency of mowing; a single‐yearly mowing, regardless of time of year, resulted in stasis or population growth, while in contrast, 14 of 21 possible twice‐yearly monthly mowing regimes, mainly those with mowing in late spring, summer, and early autumn, resulted in population decline. Population decline was greatest (with population density halving each year) with twice‐yearly mowing either in late spring and late summer, early summer and late summer, or early summer and early autumn. Our results indicate that mowing can be effective in reducing populations of C. arvense in pasture in the long term if conducted twice each year when the initial mowing is conducted in mid spring followed by a subsequent mowing from mid summer to early autumn. These mowing regimes reduce the photosynthetic opportunity of the C. arvense population and hence its ability to form the overwintering creeping roots upon which population growth depends.  相似文献   

15.
Carabid beetles are common predators of pest insects and weed seeds in agricultural systems. Understanding their dispersal across farmland is important for designing farms and landscapes that support pest and weed biological control. Little is known, however, about the effect of farmland habitat discontinuities on dispersal behaviour and the resulting redistribution of these beetles. We released 1,985 well‐fed and 1,680 food‐deprived individuals of the predatory carabid beetle Pterostichus melanarius (Illiger) (Coleoptera: Carabidae) on a farm in Wageningen, The Netherlands. We recaptured 23.6% of those beetles over a period of 23 days in 2010. The farmland comprised agricultural fields with various crop species and tillage, separated by strips of perennial vegetation. We developed discrete Fokker‐Planck diffusion models to describe dispersal based on motility (m2 day?1) and preferential behaviour at habitat interfaces. We used model selection and Akaike’s information criterion to determine whether movement patterns were driven by variation in motility between habitats, preferential behaviour at habitat interfaces, or both. Model selection revealed differences in motility among habitats and gave strong support for preferential behaviour at habitat interfaces. Behaviour at interfaces between crop and perennial vegetation was asymmetric, with beetles preferentially moving towards the crop. Furthermore, beetles had lower motility in perennial strips than in arable fields. Also between arable habitats movement was asymmetric, with beetles preferentially moving towards the habitat in which motility was lowest. Neither crop type nor tillage explained differences in motility between crop habitats. Recapture data representing dispersal patterns of beetles were best described by a model that accounted for differences in motility between farmland habitats and preferential behaviour at habitat interfaces. Motility in farmland and behaviour at interfaces can also be estimated for other organisms and farmland habitats to support design of farmland conducive to natural pest suppression. Landscape design for early recruitment of carabids into arable fields should take into account the quantity and quality of resource habitats in the landscape, their proximity to crop fields, movement rates, and the possibility of movement responses at interfaces between landscape elements.  相似文献   

16.
H. A. Mooney 《Oecologia》1980,45(3):372-376
Summary Plants of the widely distributed species Heliotropium curassavicum L. have a large photosynthetic acclimation potential to temperature. There are, however, some differences among the acclimation potentials of populations occupying dissimilar thermal regimes. Plants of populations originating from a cool maritime climate have a greater acclimation potential than plants of populations originating from a desert habitat, which is characterized by large seasonal changes in temperature.  相似文献   

17.
On the basis of extensive field studies throughout Greece and of about 19 500 field and literature records extracted from the Flora Hellenica Database, we provide the first survey of wild plant species of traditional agriculture in Greece (hereafter TA species). For each of the 138 taxa, life form, rareness (on national scale), local abundance (habitat occupancy) and regional restrictedness are given. We infer population trends from the record chronology of the taxa in the Flora Hellenica Database, and we assess the Red List status of the arable plants using IUCN criteria. According to current knowledge, two TA species are presumed Extinct in Greece and seven Critically Endangered. Almost half of the species are threatened, including 46 Vulnerable and 15 Endangered taxa. There is a high proportion of locally distributed taxa among Greek TA species. Distribution patterns show a pronounced south–north gradient, and the unique character of the East Aegean arable flora is revealed. Most arable species are annuals (83%). Perennial herbs, mostly bulbous or tuberous plants (geophytes), account for 17%, and a major proportion of the latter must be considered as threatened at different levels. The chronology of decline of certain TA species is reflected by processes of agricultural intensification and regional urbanization. We suggest conservation measures for the unique arable flora of Greece. To reflect the geographical and ecoregional variation, in situ measures should focus on areas with species‐rich arable fields in all phytogeographical regions of Greece. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 175 , 607–623.  相似文献   

18.
The impact of elevated carbon dioxide on plants is a growing concern in evolutionary ecology and global change biology. Characterizing patterns of phenotypic integration and multivariate plasticity to elevated carbon dioxide can provide insights into ecological and evolutionary dynamics in future human‐altered environments. Here, we examined univariate and multivariate responses to carbon enrichment in six functional traits among six European accessions of Arabidopsis thaliana. We detected phenotypic plasticity in both univariate and multivariate phenotypes, but did not find significant variation in plasticity (genotype by environment interactions) within or among accessions. Eigenvector, eigenvalue variance, and common principal components analyses showed that elevated carbon dioxide altered patterns of trait covariance, reduced the strength of phenotypic integration, and decreased population‐level differentiation in the multivariate phenotype. Our data suggest that future carbon dioxide conditions may influence evolutionary dynamics in natural populations of A. thaliana.  相似文献   

19.
Subterranean rodents of the genus Ctenomys are an interesting system to assess the effects of habitat instability on the genetic structure of populations. The perrensi group is a complex of three species (C. roigi, C. perrensi and C. dorbignyi) and several forms of uncertain taxonomic status, distributed in the vicinity of the Iberá wetland in Argentina. Because of limited availability of suitable dry habitat, Ctenomys populations are distributed patchily around a vast mosaic of marshes, swamps and lagoons and become connected or isolated over time, depending particularly on the precipitation regime. Genetic variation at 16 microsatellite loci in 169 individuals collected in the area revealed eight clusters of populations which are thought to be evolutionary units, but which do not fit previous species limits. We interpret this lack of congruence between taxonomy and genetic structure as the result of a dynamic population structure. Where populations become connected, hybridization is possible. Where populations become isolated, rapid genetic divergence may occur. In the perrensi group, it appears that both of these factors disrupt the association between different genetic and morphological characters. The study of multiple characters is crucial to the understanding of the recent evolutionary history for dynamic systems such as this. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 368–383.  相似文献   

20.
Question: How do local and landscape management contribute to weed diversity in Hungarian winter cereal fields? Location: Central Hungary. Methods: Vascular plants were sampled in 18 winter cereal fields along an intensification gradient according to nitrogen fertilization, in the first cereal rows (edge) and in the interior part of the fields. Weed species were divided into groups according to their residence time in Central Europe (native species, archaeophytes, neophytes) and nitrogen preference (low to medium, LMNP, and high, HNP species). The percentage of semi‐natural habitats was calculated in the 500 m radius circle. Effects of fertilizer use, transect position and semi‐natural habitats were estimated by general linear mixed models. Results: We recorded 149 weed species. Fertilizer had a negative impact on the species richness of archaeophytes and LMNP species, and on the cover of native weeds. There was greater species richness and weed cover at the edge of the fields than in the centre. A higher percentage of seminatural habitats around the arable fields resulted in greater total species richness, especially of archaeophytes and LMNP species. We found an interaction between the percentage of semi‐natural habitats and transect position for species richness of archaeophytes and LMNP species. Conclusions: Reduced use of fertilizers and a high percentage of semi‐natural habitats would support native and archaeophyte weed diversity even in winter cereal fields, while large amounts of fertilizer may promote invasion of neophytes. However, the beneficial effect of the semi‐natural habitats and greater species pool on the arable flora may prevail only in the crop edges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号