首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Local adaptation is a key process in the evolution of biological diversity but relatively few studies have identified the selective forces that drive trait divergence at low taxonomic levels, particularly amongst mammals. Variation in body size across taxa is fundamental as shown by allometric relationships with numerous physiological, morphological and life-history traits. Differences in adult size across cohorts within populations of temperate ungulates are determined by variation in trophic resource availability during growth, suggesting that natural selection might promote the evolution of size divergence across sister taxa through local adaptation to variation in habitat productivity. We tested this hypothesis in the hartebeest ( Alcelaphu s sp.), an antelope lineage including eight extant (or recently extinct) allopatric subspecies that evolved within the last million years and colonized all the African savannahs. We predicted that body size across the subspecies should correlate positively with habitat productivity across taxon ranges. Mean body size of all the hartebeest taxa was quantified using skull length from museum specimens, and climatic variables were used as surrogates of habitat productivity. Body size across subspecies was positively correlated with rainfall, suggesting that variation in habitat primary production may drive morphological evolution between taxa. Focusing at a low taxonomic level has allowed us to identify a critical selective force that may shape divergence in body size, without the confounding effect of variation in trophic niche. © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 92 , 431–440.  相似文献   

2.
Species with larger geographic distributions are more likely to encounter a greater variety of environmental conditions and barriers to gene flow than geographically‐restricted species. Thus, even closely‐related species with similar life‐history strategies might vary in degree and geographic structure of variation if they differ in geographic range size. In the present study, we investigated this using samples collected across the geographic ranges of eight species of fiddler crabs (Crustacea: Uca) from the Atlantic and Gulf coasts of North America. Morphological variation in the carapace was assessed using geometric morphometric analysis of 945 specimens. Although the eight Uca species exhibit different degrees of intraspecific variation, widespread species do not necessarily exhibit more intraspecific or geographic variation in carapace morphology. Instead, species with more intraspecific variation show stronger morphological divergence among populations. This morphological divergence is partly a result of allometric growth coupled with differences in maximum body size among populations. On average, 10% of total within‐species variation is attributable to allometry. Possible drivers of the remaining morphological differences among populations include gene flow mediated by ocean currents and plastic responses to various environmental stimuli, with isolation‐by‐distance playing a less important role. The results obtained indicate that morphological divergence among populations can occur over shorter distances than expected based on dispersal potential. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 248–270.  相似文献   

3.
We compared the proportion of morphological variation accounted for by subspecies categories with the proportion encompassed by ecologically based categories in cutthroat trout ( Oncorhynchus clarkii ssp.), as a means of assessing the relative importance of each approach in identifying intraspecific diversity. We used linear and geometric morphometrics to compare measures of body shape, fin length, and head features between and within subspecies of cutthroat trout. Both categories accounted for a significant proportion of the variation between and within the subspecies; however, the larger proportion was explained by subspecific differences, with the greatest morphological divergence between coastal cutthroat trout ( Oncorhynchus clarkii clarkii ) and interior subspecies. Ecotypic categories within each subspecies also explained significant morphological differences: stream populations had longer fins and deeper, more robust bodies than lake populations. The largest ecotypic differences occurred between stream and lake populations of Yellowstone cutthroat trout ( Oncorhynchus clarkii bouvieri ). Given that many cutthroat trout subspecies are of conservation concern, our study offers a better understanding of intraspecific variation existing within the species, providing precautionary evidence of incipient speciation, and a framework of describing phenotypic diversity that is correlated with ecological conditions.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 266–281.  相似文献   

4.
Scaphinotus petersi Roeschke, 1907 (Carabidae) is a ground beetle endemic to Sky Islands in south‐eastern Arizona. Previous taxonomic studies described several subspecies with morphological differences inhabiting geographically isolated mountain ranges. We combined molecular sequence data and morphometric data, especially head and pronotum shape analyses, to examine the variation and divergence in subspecies and isolated montane populations. In this study, we employ a combination of distance morphometrics as well as geometric morphometrics to quantify the level of morphological variation, and to test the hypothesis that geographically distinct populations of S. petersi are phenotypically distinct. Results suggest that these isolated populations have diverged morphologically and genetically. Phylogenetic analyses identified two monophyletic lineages within the species that correspond generally to pronotum shape. We observed significant morphological variation among most montane populations in of S. petersi, with the pronotum shape as the clearest delimiting trait. © 2015 The Linnean Society of London  相似文献   

5.
6.
Patterns of intraspecific geographic variation in morphology and behaviour, when examined in a phylogenetic context, can provide insight into the microevolutionary processes driving population divergence and ultimately speciation. In the present study, we quantified behavioural and phenotypic variation among populations from genetically divergent regions in the Central American treefrog, Dendropsophus ebraccatus . Our fine-scale population comparisons demonstrated regional divergence in body size, colour pattern frequencies, and male advertisement call. None of the characters covaried with phylogenetic history or geographic proximity among sampled populations, indicating the importance of highly localized selection pressures and genetic drift in shaping character divergence among isolated regions. The study underscores how multiple phenotypic characters can evolve independently across relatively small spatial scales.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 298–313.  相似文献   

7.
8.
9.
Both extinct and extant crocodilians have repeatedly diversified in skull shape along a continuum, from narrow‐snouted to broad‐snouted phenotypes. These patterns occur with striking regularity, although it is currently unknown whether these trends also apply to microevolutionary divergence during population differentiation or the early stages of speciation. Assessing patterns of intraspecific variation within a single taxon can potentially provide insight into the processes of macroevolutionary differentiation. For example, high levels of intraspecific variation along a narrow‐broad axis would be consistent with the view that cranial shapes can show predictable patterns of differentiation on relatively short timescales, and potentially scale up to explain broader macroevolutionary patterns. In the present study, we use geometric morphometric methods to characterize intraspecific cranial shape variation among groups within a single, widely distributed clade, Caiman crocodilus. We show that C. crocodilus skulls vary along a narrow/broad‐snouted continuum, with different subspecies strongly clustered at distinct ends of the continuum. We quantitatively compare these microevolutionary trends with patterns of diversity at macroevolutionary scales (among all extant crocodilians). We find that morphological differences among the subspecies of C. crocodilus parallel the patterns of morphological differentiation across extant crocodilians, with the primary axes of morphological diversity being highly correlated across the two scales. We find intraspecific cranial shape variation within C. crocodilus to span variation characterized by more than half of living species. We show the main axis of intraspecific phenotypic variation to align with the principal direction of macroevolutionary diversification in crocodilian cranial shape, suggesting that mechanisms of microevolutionary divergence within species may also explain broader patterns of diversification at higher taxonomic levels.  相似文献   

10.
The taxonomy of the Old World bat genus Otomops (Chiroptera: Molossidae) has been the subject of considerable debate. The failure of classical morphological studies to provide consistent patterns regarding interspecific relationships within Otomops has limited any understanding of the evolutionary history of the genus. We used traditional and geometric morphometric approaches to establish the species limits of taxa from sub‐Saharan Africa, the Arabian Peninsula, and Madagascar. Morphometric data supported the recent recognition of three distinct Afrotropical taxa: Otomops madagascariensis from Madagascar; Otomops martiensseni s.s. from southern, eastern, central, and western Africa; and an undescribed taxon from north‐east Africa and the Arabian Peninsula. Analyses of craniodental measurements and landmark‐based data showed significant cranial size and shape divergence between the three taxa. Cranial size and shape variation within Afro‐Arabian Otomops were strongly influenced by altitude, seasonality of precipitation, and precipitation in the driest month. Based on morphometric patterns and molecular divergence estimates, we suggest that morphological evolution within Afro‐Arabian Otomops occurred in response to the fluctuating climate during the Pleistocene on the one hand, and the increasing aridity and seasonality over north‐eastern Africa on the other. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, •• , ••–••.  相似文献   

11.
Intraspecific encephalization of the lion and the tiger is investigated for the first time using a very large sample. Using cranial volume as a measure of brain size, the tiger has a larger brain relative to greatest length of skull than the lion, the leopard and the jaguar. The Asian lion has a relatively much smaller brain compared with those of sub-Saharan lions, between which there are few differences. The Balinese and Javan tigers had relatively larger brains compared with those of Malayan and Sumatran tigers, even although these four putative subspecies occupy adjacent ranges in south-eastern Asia. Differences in brain size do not appear to correlate with any known differences in behaviour and ecology and, therefore, may reflect only chance differences in intrageneric and intraspecific phylogeny. However, captive-bred big cats generally have a reduced brain size compared with that of wild animals, so that an animal's life history and living conditions may affect brain size and, hence, functional or environmental explanations should be considered when linking brain size differences to intraspecific phylogenies.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 98 , 85–93.  相似文献   

12.
13.
Speciation processes initiated by divergent selection often fail to complete; yet, how sexual selection is involved in the progress of ecological speciation is rarely understood. Intraspecific body‐size variation affects mate preference and male–male competition, which can consequently lead to assortative mating based on body size. In the present study, we tested the importance of body size difference in the potential of assortative mating between the two eastern newt subspecies, larger Notophthalmus viridescens viridescens and smaller Notophthalmus viridescens dorsalis. Through differential expression of life‐cycle polyphenism, these two subspecies are adapted to contrasting environments, which has likely led to the subspecific body‐size difference. We found that males of both subspecies preferred larger females of N. v. viridescens as mates presumably because of the fecundity advantage of larger females. On the other hand, no evidence of female choice was found. Larger males of N. v. viridescens exhibited greater competitive ability and gained primary access to larger females of their own kind. However, smaller males were able to overcome their inferior competitive ability by interfering with larger males' spermatophore transfer and sneakily mating with larger females. Thus, the subspecific body‐size difference importantly affected sexual selection processes, resulting in nonrandom but not completely assortative mating patterns between the larger and smaller subspecies. Although life‐cycle polyphenism facilitates the intraspecific ecological divergence within N. v. viridescens sexual selection processes, namely smaller males' mate preference for larger females and sexual interference during spermatophore transfer, may be halting completion of the ecological speciation. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 884–897.  相似文献   

14.
The bearded manakins in the genus Manacus are lekking, neotropical passerines. Male plumage colour varies with geographical location and classification is based solely on these plumage patterns. It has recently been suggested that in this group of birds, plumage patterns may be a misleading taxonomic character. In this study we used microsatellite variation in a collection of museum samples to establish the amount of genetic divergence between the previously described bearded manakin species/subspecies. We found substantial genetic substructuring between species/subspecies and that plumage patterns indeed may be a misleading taxonomic character because the presence of yellow in male nuptial plumage is found in most divergent forms. We did not detect a significant isolation by distance relationship although the P -value was close to significance. Physical barriers such as rivers and mountains may affect gene flow and play a role in shaping genetic structure of the genus Manacus . Accordingly, boundaries between species/subspecies often coincide with large rivers, mountains and seas.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 81 , 439–447.  相似文献   

15.
Evolutionary divergence in behavioural traits related to mating may represent the initial stage of speciation. Direct selective forces are usually invoked to explain divergence in mate‐recognition traits, often neglecting a role for neutral processes or concomitant differentiation in ecological traits. We adopted a multi‐trait approach to obtain a deeper understanding of the mechanisms behind allopatric divergence in the Amazonian frog, Allobates femoralis. We tested the null hypothesis that geographic distance between populations correlates with genetic and phenotypic divergence, and compared divergence between mate‐recognition (acoustic) and ecological (coloration, body‐shape) traits. We quantified geographic variation in 39 phenotypic traits and a mitochondrial DNA marker among 125 individuals representing eight populations. Geographic variation in acoustic traits was pronounced and tracked the spatial genetic variation, which appeared to be neutral. Thus, the evolution of acoustic traits tracked the shared history of the populations, which is unexpected for pan‐Amazonian taxa or for mate‐recognition traits. Divergence in coloration appeared uncorrelated with genetic distance, and might be partly attributed to local selective pressures, and perhaps to Batesian mimicry. Divergence in body‐shape traits was low. The results obtained depict a complex evolutionary scenario and emphasize the importance of considering multiple traits when disentangling the forces behind allopatric divergence. ©2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 98 , 826–838.  相似文献   

16.
Great Bear Lake is the most northerly lake of its size and provides unique opportunities for intraspecific diversification. Despite increasing attention to intraspecific polymorphism, several knowledge gaps remain (e.g. determining the extent of intraspecific diversification in large relatively pristine lakes and at which spatial scale it can occur). We focused on geographical patterns of morphological differentiation within lake trout (Salvelinus namaycush) to describe two levels of intralake diversification in Great Bear Lake. We used a combination of geometric and traditional linear measurements to quantify differences in body shape, head shape, and fin and body lengths among 910 adult lake trout from the five distinct arms of Great Bear Lake. Although head and fin linear measurements discriminated the three common morphotypes at the whole‐lake level, inter‐arm variation in body shape was observed within each morphotype. A comparison of genetic and morphological distance matrices revealed the lack of an association between the two sets of data, although both comparisons revealed an association in the inter‐arm variation patterns among morphotypes, suggesting a phenotypically plastic response to distinct environments. The whole‐lake and inter‐arm morphological variation observed within lake trout demonstrates the importance of considering scale, especially across large lakes that exhibit marked complexity and a variety of freshwater habitats. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 114 , 109–125.  相似文献   

17.
Vicariant geographic isolation and resource partitioning have long been independently identified as processes contributing to the morphological divergence of closely-related species. However, little is known about the extent to which vicariant history influences the adaptive ecological divergence associated with resource partitioning and trophic specialization within species. The present study thus quantified the contribution of vicariant historical genetic divergence to the adaptive contemporary morphological divergence of intraspecific feeding specialists in the Rainbow smelt (Pisces: Osmerus mordax ). This species is characterized by the polyphyletic origin of two lacustrine feeding specialists originating in two intraspecific lineages associated with independent glacial refuges. The historical genetic segregation was initiated approximately 350 000 years ago, whereas the lacustrine trophic segregation arose within the past 10 000 years. Wild caught lacustrine smelt populations were grouped a priori based on known historical genetic identities (Acadian and Atlantic mitochondrial DNA clades) and contemporary feeding specializations (microphageous and macrophageous morphotypes). The present study demonstrated that independent suites of correlated morphological traits are associated with either vicariant history or contemporary feeding specializations. Second, functionally-similar feeding specialists exhibit distinct morphologies resulting largely from vicariant historical processes. Although, the evolutionary processes producing historical phenotypes remains unknown, the results obtained demonstrate how adaptive radiation associated with ecological resource partitioning and feeding specializations can be strongly influenced by intraspecific phenotypic diversification resulting from relatively recent vicariant histories.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 140–151.  相似文献   

18.
Sexual traits vary tremendously in static allometry. This variation may be explained in part by body size‐related differences in the strength of selection. We tested this hypothesis in two populations of vervet monkeys, using estimates of the level of condition dependence for different morphological traits as a proxy for body size‐related variation in the strength of selection. In support of the hypothesis, we found that the steepness of allometric slopes increased with the level of condition dependence. One trait of particular interest, the penis, had shallow allometric slopes and low levels of condition dependence, in agreement with one of the most consistent patterns yet detected in the study of allometry, namely that of genitalia exhibiting shallow allometries. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 527–537.  相似文献   

19.
Fossil mandibles of the Bornean shrew Crocidura foetida recovered from excavations at the west mouth of Niah cave, Sarawak, Malaysia, show that the late Pleistocene population at this lowland location was comparable in size with the large subspecies Crocidura foetida doriae , presently occurring at inland, upland locations. Two Holocene specimens fall in the size range of the smaller lowland subspecies C. f. foetida . Comparable post-Pleistocene size-reduction is known among other mammals of Borneo, but this is the first instance of dated examples. The evolutionary trend conforms with Bergmann's 'rule' but, other than climate change, no selective agent is apparent.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 94 , 413–419.  相似文献   

20.
Sexual dimorphism of phenotypic traits associated with resource use is common in animals, and may result from niche divergence between sexes. Snakes have become widely used in studies of the ecological basis of sexual dimorphism because they are gape‐limited predators and their head morphology is likely to be a direct indicator of the size and shape of prey consumed. We examined sexual dimorphism of body size and head morphology, as well as sexual differences in diet, in a population of Mexican lance‐headed rattlesnakes, Crotalus polystictus, from the State of México, Mexico. The maximum snout–vent length of males was greater than that of females by 21%. Males had relatively larger heads, and differed from females in head shape after removing the effects of head size. In addition, male rattlesnakes showed positive allometry in head shape: head width was amplified, whereas snout length was truncated with increased head size. By contrast, our data did not provide clear evidence of allometry in head shape of females. Adults of both males and females ate predominately mice and voles; however, males also consumed a greater proportion of larger mammalian species, and fewer small prey species. The differences in diet correspond with dimorphism in head morphology, and provide evidence of intersexual niche divergence in the study population. However, because the sexes overlapped greatly in diet, we hypothesize that diet and head dimorphisms in C. polystictus are likely related to different selection pressures in each sex arising from pre‐existing body size differences rather than from character displacement for reducing intersexual competition. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 633–640.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号