首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract: Reliable assessments of large mammal population sizes are crucial for the management of protected areas. We tested feasibility of foot surveys for population assessments of large mammals in western Tanzanian woodland, comparing estimates of herbivore densities from line-transect data from a National Park with those from an adjacent Game Reserve (GR). We used a Geographic Information System (GIS) and Global Positioning System—supported field design, consisting of systematically distributed closed-circuit transects, and recorded sighting distances and angles. Total survey effort was 1,032 km, conducted within the dry season. We fitted detection functions to distance data with the help of DISTANCE 4.1, using the 3 habitat categories woodland, grassland, and swamp as covariates for detection probability. We found estimates of density and abundance to be reliable for 19 out of 20 larger mammalian herbivores and found significant differences in density between the Park and the GR for 5 species, of which 4 had a higher density in the Park and one had a higher density in the GR. Our results show that, using GIS support and modern navigation methods, foot-transect surveys can be effective in providing accurate data on woodland herbivore populations even in large study areas. (JOURNAL OF WILDLIFE MANAGEMENT 72(3):603–610; 2008)  相似文献   

2.
Population size and distribution data for wildlife species play an important role in conservation and management, especially for endangered species. However, scientists seriously lack data on the population status of many species. The northern yellow-cheeked gibbon (Nomascus annamensis) is found in southern Lao PDR, central Vietnam, and northeastern Cambodia. The population of the species has significantly declined due to hunting, habitat loss, and the wildlife trade. To examine the population size and distribution of N. annamensis, we conducted a field survey in Song Thanh Nature Reserve, Quang Nam Province, central Vietnam from February to April 2019 using the audio point count method. We combined Distance Sampling and Ecological Niche Modeling to estimate the population of the gibbons. Results showed that the total suitable area for the gibbons was about 302.32 km2, with the two most important variables of the habitat model being the distance-to-villages and forest type. We detected 36 gibbon groups through field surveys and estimated 443 (95% CI, 278–707) gibbon groups in Song Thanh Nature Reserve. Our results indicate that the gibbon population in Song Thanh Nature Reserve is the largest known population of N. annamensis in Vietnam. In addition, our study was the first to combine species distribution modeling with distance sampling to estimate gibbon density and population size. This approach might be useful in surveying and monitoring gibbon populations because it takes imperfect detection probability into account in estimating gibbon population density while estimating the area of potential habitat using environmental variables.  相似文献   

3.
We examined the relative importance of ecological parameters—habitat productivity and seasonality—and group history—episodic predation, disease, and sudden habitat deterioration—to explain variation in the density and group structure of howlers (Alouatta spp.). We use data from a census of Guanacaste National Park, Costa Rica, and a literature review characterizing 80 howler populations. In Guanacaste National Park both habitat type and degree of protection affect howler density and group structure. Howlers were found at the highest density and in the largest groups in areas of semievergreen forest, which ecological sampling indicates have the most consistent level of food production. Differences in density between the sector of the park that first received protected status and more recently protected areas may be due partially to the degree of protection the areas received. We test the prediction that howler density and group structure would be influenced by habitat productivity as indexed by rainfall. Average group size and sex ratios differ among species, but female-to-immature ratios do not. Considering all censuses at one site to be independent, there are significant interspecific differences in density, with Alouatta pigra occurring at lower densities than the other species. In spite of such variability, there is no relationship between annual rainfall and howler density, and rainfall had a variable effect on group size depending on the level of independence that was considered. While such ecological comparisons are unrefined, e.g., rainfall must be used as a surrogate for habitat production, the fact that so few relationships were documented suggests that factors other than the ecological factors considered here are responsible for the observed differences in population characteristics. We suggest that much of the variability in howler population characteristics is related to events occurring in the recent history of the groups, such as habitat alteration, hunting, food tree crop failure, and disease.  相似文献   

4.
Recent advances in noninvasive genetic sampling and spatial capture-recapture (SCR) techniques are particularly useful for monitoring cryptic wildlife species such as carnivores. In southern Arizona, USA, coyotes (Canis latrans) are thought to negatively affect endangered Sonoran pronghorn (Antilocapra americana sonoriensis), although no estimates of coyote abundance or monitoring programs exist. Sonoran pronghorn are provided supplemental feed and water in this region, resulting in areas where pronghorn and other species are congregated. Because of the higher density of artificial water sources for Sonoran pronghorn on the Cabeza Prieta National Wildlife Refuge (CPNWR), we predicted that coyote density would be higher relative to the Barry M. Goldwater Range (BMGR), where artificial water sources are less dense. We used discrete Bayesian SCR models in a local evaluation approach to provide baseline estimates of coyote abundance and understand how coyote density varied between 2 contrasting areas of land use. We identified 106 individuals from scat samples across 3 sessions in 2013 and 2014 and achieved high genotyping and individual identification success rates (~78%). Encounter rates at water catchments were nearly 11 times higher compared to road and trail transects. As predicted, we found that coyote density was on average 2 times higher on the CPNWR (11.2 coyotes/100 km2) compared to the BMGR (5.3 coyotes/100 km2). The local evaluation approach significantly reduced computational time, making the discrete Bayesian approach more practical to implement across a large study area. Our study represents an important contribution towards developing a robust monitoring program for coyotes. We hope that our novel implementation of the local evaluation approach increases the ability of wildlife managers to understand the effects of land use and other ecological influences on large carnivore populations. © 2020 The Wildlife Society.  相似文献   

5.
Monitoring programmes are essential for management of large mammal populations because they can detect population change. It is vital that we have the means to evaluate the effectiveness of protected areas. Kibale National Park is a stronghold for large mammal conservation in Uganda. Past wildlife surveys in Kibale focused on specific taxa or areas, but our large mammal survey covered the entire protected area and we evaluated the intensity of sampling required to determine population change. Using line transect sampling, we found that the distribution of large mammals was nonrandom and related to habitat‐type. However, confidence intervals of population estimates revealed that much more intensive sampling was required to detect changes in population density at a time scale reasonable for management. For many species, populations would have to decline by 40–60% for this method to detect population change. Post‐stratification decreased confidence intervals of density estimates slightly, increasing our ability to detect change. However, confidence intervals of estimates were still too large to detect a meaningful population change on a time scale that would allow management to take action. Most incidences of illegal activity were about 5 km from the park boundary; however, animal densities were not lower in this area.  相似文献   

6.
Human population growth rates on the borders of protected areas in Africa are nearly double the average rural growth, suggesting that protected areas attract human settlement. Increasing human populations could be a threat to biodiversity through increases in illegal hunting. In the Serengeti ecosystem, Tanzania, there have been marked declines in black rhino (Diceros bicornis), elephant (Loxodonta africana) and African buffalo (Syncerus caffer) inside the protected area during a period when there was a reduction of protection through anti-poaching effort (1976–1996). Subsequently, protection effort has increased and has remained stable. During both periods there were major differences in population decline and recovery in different areas. The purpose of this paper is to analyse the possible causes of the spatial differences. We used a spatially structured population model to analyze the impacts of three factors—(i) hunting, (ii) food shortage and (iii) natural predation. Population changes were best explained by illegal hunting but model fit improved with the addition of predation mortality and the effect of food supply in areas where hunting was least. We used a GIS analysis to determine variation in human settlement rates and related those rates to intrinsic population changes in buffalo. Buffalo populations in close proximity to areas with higher rates of human settlement had low or negative rates of increase and were slowest to recover or failed to recover at all. The increase in human populations along the western boundary of the Serengeti ecosystem has led to negative consequences for wildlife populations, pointing to the need for enforcement of wildlife laws to mitigate these effects.  相似文献   

7.
Wildlife habitats in pastoral lands adjoining protected areas in east African savannas are getting progressively degraded, fragmented and compressed by expanding human populations and intensification of land use. To understand the consequences of these influences on wildlife populations, we contrasted the density and demography of 13 wild and three domestic large herbivores between the Masai Mara National Reserve and the adjoining pastoral ranches using aerial surveys conducted in the wet and dry seasons during 1977–2010. Species of different body sizes and feeding styles had different densities between landscapes and seasons. Small-sized herbivores, requiring short, nutritious grasses, and browsers were more abundant in the ranches than the reserve in both seasons. Medium-sized herbivores moved seasonally between landscapes. Larger-bodied herbivores, requiring bulk forage but less susceptible to predation, were more abundant in the reserve than the ranches. The proportions of newborn warthog (Phacochoerus africanus) and juvenile topi (Damaliscus korrigum) were higher in the ranches, with shorter grasses and lower predation risk than in the reserve. These results suggest that pastoral lands adjoining protected areas in African savannas are important as seasonal dispersal and breeding grounds for wild herbivores. However, human population growth and dramatic land use changes are progressively degrading wildlife habitats in pastoral areas, thus restricting the seasonal wildlife dispersal movements between the protected areas and adjoining pastoral lands. Conservation efforts should focus on (1) creating and maintaining functional heterogeneity in protected areas that mimic moderate pastoral grazing conditions to attract small and medium-bodied grazers and (2) securing dispersal areas, including corridors, to ensure continued seasonal large herbivore movements between protected and pastoral systems.  相似文献   

8.
There is a realization that managed forests and other natural areas in the landscape matrix can and must make significant contributions to biodiversity conservation. Often, however, there are no consistent baseline vegetation or wildlife data for assessing the status of biodiversity elements across protected and managed areas for conservation planning, nor is there a rapid and efficient means to acquire those data. We used a unified vegetation classification and simple animal sampling design to describe the patterns of abundance of selected mammals as indicator, or characteristic, species in different vegetation types and protected areas vs. managed forest units in the Terai Conservation Area (TCA) in northern Uttar Pradesh state, India. We quantified the relative abundance of 15 mammals of conservation concern from dung counts in vegetation sampling plots within 122 sample patches in 13 vegetation types and 4 management units. Assemblages of species differed both among vegetation types and among management units. Species assemblages in the two protected areas differed strongly from those in two managed forests. Grasslands in protected areas were the most species diverse among vegetation types and had several indicator species. Protected forests were dominated by chital (Axis axis) and nilgai (Boselaphus tragocamelus) in a second species group. A third species group in open grasslands and savannas in managed forests was characterized by cattle (Bos taurus) and Indian hare (Lepus nigricollis). Protected areas clearly are the core conservation area of the TCA for their relatively high habitat value and species diversity, and their protected status minimizes human disturbance. Impacts of human use are high in managed forests, indicating their compromised value for biodiversity conservation. Our simple assessment methodology gives managers a simple way to assess the status of important mammals across landscape conservation units.  相似文献   

9.
Population density data on depleted and endangered wildlife species are essential to assure their effective management and, ultimately, conservation. The European wildcat is an elusive and threatened species inhabiting the Iberian Peninsula, with fragmented populations and living in low densities. We fitted spatial capture–recapture models on camera-trap data, to provide the first estimate of wildcat density for Portugal and assess the most influential drivers determining it. The study was implemented in Montesinho Natural Park (NE Portugal), where we identified nine individuals, over a total effort of 3,477 trap-nights. The mean density estimate was 0.032 ± 0.012 wildcat/km2, and density tended to increase with distance to humanized areas, often linked to lower human disturbance and domestic cat presence, with forest and herbaceous vegetation cover and with European rabbit abundance. Although, this density estimate is within the range of values estimated for protected areas elsewhere in the Iberian Peninsula, our estimates are low at the European level. When put in context, our results highlight that European wildcats may be living in low population densities across the Iberian Mediterranean biogeographic region. No phenotypic domestic or hybrid cats were detected, suggesting potentially low admixture rates between the two species, although genetic sampling would be required to corroborate this assertion. We provide evidence that Montesinho Natural Park may be a suitable area to host a healthy wildcat population, and thus be an important protected area in this species' conservation context.  相似文献   

10.
Abstract Disease surveillance in wildlife populations involves detecting the presence of a disease, characterizing its prevalence and spread, and subsequent monitoring. A probability sample of animals selected from the population and corresponding estimators of disease prevalence and detection provide estimates with quantifiable statistical properties, but this approach is rarely used. Although wildlife scientists often assume probability sampling and random disease distributions to calculate sample sizes, convenience samples (i.e., samples of readily available animals) are typically used, and disease distributions are rarely random. We demonstrate how landscape-based simulation can be used to explore properties of estimators from convenience samples in relation to probability samples. We used simulation methods to model what is known about the habitat preferences of the wildlife population, the disease distribution, and the potential biases of the convenience-sample approach. Using chronic wasting disease in free-ranging deer (Odocoileus virginianus) as a simple illustration, we show that using probability sample designs with appropriate estimators provides unbiased surveillance parameter estimates but that the selection bias and coverage errors associated with convenience samples can lead to biased and misleading results. We also suggest practical alternatives to convenience samples that mix probability and convenience sampling. For example, a sample of land areas can be selected using a probability design that oversamples areas with larger animal populations, followed by harvesting of individual animals within sampled areas using a convenience sampling method.  相似文献   

11.
Long-distance migration allows many bird species to overcome the severe climatic changes that occur in seasonal environments. Migration is highly demanding, and given its cyclical nature, we currently know that it has substantial effects on the population parameters of migratory birds during both breeding and wintering seasons. However, the potential effects of the presence of migratory birds in their wintering grounds on populations of resident birds have remain largely unexplored. Here, we propose the hypothesis that migratory birds negatively affect the habitat occupancy and population abundance of resident birds because of the arrival of numerous individuals during the most limiting months of the year. Here, we studied different species of migratory and resident birds that coexist during winter in an urban ecological reserve located within Mexico City. We used single-species multiseason occupancy models, two-species occupancy models, and distance sampling techniques to evaluate changes in occupancy and population density of resident bird species during three consecutive winters. We found an aggregation pattern between two resident species (Psaltriparus minimus and Thryomanes bewickii) with three migratory warblers (Cardellina pusilla, Setophaga coronata and Setophaga townsendi). Thus, our results provide evidence of the formation of mixed-species flocks in our study area. We also conclude that resident birds experience different demographic and behavioral processes during winter that not necessarily result from interspecific interactions with migratory birds.  相似文献   

12.
Regional monitoring strategies frequently employ a nested sampling design where a finite set of study areas from throughout a region are selected and intensive sampling occurs within a subset of sites within the individual study areas. This sampling protocol naturally lends itself to a hierarchical analysis to account for dependence among subsamples. Implementing such an analysis using a classic likelihood framework is computationally challenging when accounting for detection errors in species occurrence models. Bayesian methods offer an alternative approach for fitting models that readily allows for spatial structure to be incorporated. We demonstrate a general approach for estimating occupancy when data come from a nested sampling design. We analyzed data from a regional monitoring program of wood frogs (Lithobates sylvaticus) and spotted salamanders (Ambystoma maculatum) in vernal pools using static and dynamic occupancy models. We analyzed observations from 2004 to 2013 that were collected within 14 protected areas located throughout the northeast United States. We use the data set to estimate trends in occupancy at both the regional and individual protected area levels. We show that occupancy at the regional level was relatively stable for both species. However, substantial variation occurred among study areas, with some populations declining and some increasing for both species. In addition, When the hierarchical study design is not accounted for, one would conclude stronger support for latitudinal gradient in trends than when using our approach that accounts for the nested design. In contrast to the model that does not account for nesting, the nested model did not include an effect of latitude in the 95% credible interval. These results shed light on the range‐level population status of these pond‐breeding amphibians, and our approach provides a framework that can be used to examine drivers of local and regional occurrence dynamics.  相似文献   

13.
In northcentral Namibia, Waterberg Plateau Park (WPP) is a protected area that acts as a refuge for rare and endangered species, while the farmlands surrounding the Park are managed for livestock production, but support populations of wildlife for game farming, trophy hunting, and conservation. During June–October 2006, camera-traps were set within and surrounding WPP to assess leopard (Panthera pardus) density (n = 19 camera stations and 946 camera-trap-nights). Fortuitously, photographic results (2,265 photos of identifiable mammal (n = 37) and bird (n = 25) species) allowed us to assess aspects of species diversity and differences among the Park, the farmland areas along the Waterberg Plateau escarpment, and the flatlands surrounding the escarpment. Species composition among the three areas was markedly different, and made sense with respect to differences in habitat and management features. Camera-trapping efforts, although intended for a narrow purpose, may also provide a rather robust record of differences in mammal and bird diversity in adjacent habitats and can be incorporated into long-term monitoring programs.  相似文献   

14.
Widespread bushmeat hunting represents one of the major threats to many mammals and birds in Africa. We studied the influence of illegal bushmeat hunting on large grassland birds in the Serengeti National Park (SNP) and adjoining protected areas, by using the ostrich (Struthio camelus) as a case study. First, we documented illegal hunting of both small and large birds by using a questionnaire in the villages on the western and eastern side of the SNP. Second, we studied the effect of illegal hunting on density by driving 4,659 km of transects inside SNP and on the adjacent protected areas, where the data were analysed by DISTANCE sampling. Last, we used flight initiation distance (FID, i.e. the distance between an approaching predator (human) and prey when flight is started), to assess possible impacts on behaviour from illegal hunting. We found that people from the western side of the SNP admitted to hunting both small and large grassland birds, and collect ostrich feathers and eggs. Although the Maasai also hunted small birds, only ostrich feathers and eggs of the large grassland birds were used. Surprisingly, we found no significant differences in densities between the SNP and adjoining partially protected areas, but ostriches had longer FID to an approaching human outside the SNP. Currently illegal hunting does not appear to affect the ostrich population, but given the extensive use of birds for consumption more awareness educational programs accompanied by provision of agricultural incentives within the protected areas are needed.  相似文献   

15.
Finding practical ways to robustly estimate abundance or density trends in threatened species is a key facet for effective conservation management. Further identifying less expensive monitoring methods that provide adequate data for robust population density estimates can facilitate increased investment into other conservation initiatives needed for species recovery. Here we evaluated and compared inference-and cost-effectiveness criteria for three field monitoring-density estimation protocols to improve conservation activities for the threatened Komodo dragon (Varanus komodoensis). We undertook line-transect counts, cage trapping and camera monitoring surveys for Komodo dragons at 11 sites within protected areas in Eastern Indonesia to collect data to estimate density using distance sampling methods or the Royle–Nichols abundance induced heterogeneity model. Distance sampling estimates were considered poor due to large confidence intervals, a high coefficient of variation and that false absences were obtained in 45 % of sites where other monitoring methods detected lizards present. The Royle–Nichols model using presence/absence data obtained from cage trapping and camera monitoring produced highly correlated density estimates, obtained similar measures of precision and recorded no false absences in data collation. However because costs associated with camera monitoring were considerably less than cage trapping methods, albeit marginally more expensive than distance sampling, better inference from this method is advocated for ongoing population monitoring of Komodo dragons. Further the cost-savings achieved by adopting this field monitoring method could facilitate increased expenditure on alternative management strategies that could help address current declines in two Komodo dragon populations.  相似文献   

16.
Accurate assessments of the status of threatened species and their conservation planning require reliable estimation of their global populations and robust monitoring of local population trends. We assessed the adequacy and suitability of studies in reliably estimating the global snow leopard (Panthera uncia) population. We compiled a dataset of all the peer-reviewed published literature on snow leopard population estimation. Metadata analysis showed estimates of snow leopard density to be a negative exponential function of area, suggesting that study areas have generally been too small for accurate density estimation, and sampling has often been biased towards the best habitats. Published studies are restricted to six of the 12 range countries, covering only 0.3–0.9% of the presumed global range of the species. Re-sampling of camera trap data from a relatively large study site (c.1684 km2) showed that small-sized study areas together with a bias towards good quality habitats in existing studies may have overestimated densities by up to five times. We conclude that current information is biased and inadequate for generating a reliable global population estimate of snow leopards. To develop a rigorous and useful baseline and to avoid pitfalls, there is an urgent need for (a) refinement of sampling and analytical protocols for population estimation of snow leopards (b) agreement and coordinated use of standardized sampling protocols amongst researchers and governments across the range, and (c) sampling larger and under-represented areas of the snow leopard's global range.  相似文献   

17.
As human populations in Africa expand, humans encroach and modify wildlife habitats for farming, fishing, tourism, or settlement. Anthropogenic activities in shared environments may promote transmission of zoonotic pathogens between humans, domestic animals, and wildlife. Between July 2012 and February 2014, we evaluated Salmonella prevalence, serovars, genotypes, and antibiotic resistant phenotypes in resident and migratory birds utilizing human-impacted habitats in northwestern Lake Victoria and protected habitats in Queen Elisabeth National Park. Salmonella occurrence in the urban environment was assessed by sampling storm-water and wastewater from a channel that drains Kampala City into Lake Victoria. Salmonella was detected in 4.3% pooled bird fecal samples, and 57.1% of environmental samples. While birds in impacted and protected areas shared serovars, the genotypes were distinct. We found distinct strains in birds and the environment suggesting some strains in birds are host adapted, and strains circulating in the environment may not necessarily disseminate to birds. Conversely, birds in both impacted and protected areas shared strains with the urban environment, suggesting Salmonella disseminates between impacted environments and birds across sites. Overall, more strains were observed in the urban environment compared to birds, and poses risk of Salmonella reemergence in birds and transmission across species and space.  相似文献   

18.
Unlike other migratory hummingbirds in North America, the broad‐tailed hummingbird (Selasphorus platycercus) exhibits both long‐distance migratory behaviour in the USA and sedentary behaviour in Mexico and Guatemala. We examined the evolution of migration linked to its northward expansion using a multiperspective approach. We analysed variation in morphology, mitochondrial and nuclear DNA, estimated migration rates between migratory and sedentary populations, compared divergence times with the occurrence of Quaternary climate events and constructed species distribution models to predict where migratory and sedentary populations resided during the Last Glacial Maximum (LGM) and Last Interglacial (LIG) events. Our results are consistent with a recent northward population expansion driven by migration from southern sedentary populations. Phylogeographical analyses and population genetics methods revealed that migratory populations in the USA and sedentary populations in Mexico of the platycercus subspecies form one admixed population, and that sedentary populations from southern Mexico and Guatemala (guatemalae) undertook independent evolutionary trajectories. Species distribution modelling revealed that the species is a niche tracker and that the climate conditions associated with modern obligate migrants in the USA were not present during the LIG, which provides indirect evidence for recent migratory behaviour in broad‐tailed hummingbirds on the temporal scale of glacial cycles. The finding that platycercus hummingbirds form one genetic population and that suitable habitat for migratory populations was observed in eastern Mexico during the LIG also suggests that the conservation of overwintering sites is crucial for obligate migratory populations currently facing climate change effects.  相似文献   

19.
Facilitating coexistence between people and wildlife is a major conservation challenge in East Africa. Some conservation models aim to balance the needs of people and wildlife, but the effectiveness of these models is rarely assessed. Using a case‐study approach, we assessed the ecological performance of a pastoral area in northern Tanzania (Manyara Ranch) and established a long‐term wildlife population monitoring program (carried out intermittently from 2003 to 2008 and regularly from 2011 to 2019) embedded in a distance sampling framework. By comparing density estimates of the road transect‐based long‐term monitoring to estimates derived from systematically distributed transects, we found that the bias associated with nonrandom placement of transects was nonsignificant. Overall, cattle and sheep and goat reached the greatest densities and several wildlife species occurred at densities similar (zebra, wildebeest, waterbuck, Kirk's dik‐dik) or possibly even greater (giraffe, eland, lesser kudu, Grant's gazelle, Thomson's gazelle) than in adjacent national parks in the same ecosystem. Generalized linear mixed models suggested that most wildlife species (8 out of 14) reached greatest densities during the dry season, that wildlife population densities either remained constant or increased over the 17‐year period, and that herbivorous livestock species remained constant, while domestic dog population decreased over time. Cross‐species correlations did not provide evidence for interference competition between grazing or mixed livestock species and wildlife species but indicate possible negative relationships between domestic dog and warthog populations. Overall, wildlife and livestock populations in Manyara Ranch appear to coexist over the 17‐year span. Most likely, this is facilitated by existing connectivity to adjacent protected areas, effective anti‐poaching efforts, spatio‐temporal grazing restrictions, favorable environmental conditions of the ranch, and spatial heterogeneity of surface water and habitats. This long‐term case study illustrates the potential of rangelands to simultaneously support wildlife conservation and human livelihood goals if livestock grazing is restricted in space, time, and numbers.  相似文献   

20.
Estimates of density and population size are fundamental in assessing population trends and ultimately in informing conservation management. Although the abundance of raptors is often expressed as indices of relative abundance, these can be poor correlates of absolute density. In 2008–2009, I calculated the absolute density and population size of Gray‐backed Hawks (Pseudastur occidentalis), an endangered species and Tumbesian endemic, using line transect counts in four different habitat types in a protected area in northwestern Peru. The absolute density of Gray‐backed Hawks in northwest Peru was estimated to be 0.65 individuals km?2, and the most suitable habitat for the species was located in the provinces of Manabí, Guayas, and Santa Elena in Ecuador, and Tumbes and Piura departments in Peru. The population of Gray‐backed Hawks in my study areas in Tumbes was estimated to be 136, with 94% occurring in dry deciduous and deciduous forest. Because ~60% of all detections in my study were made outside strictly protected areas, including the recently created Angostura‐Faical Regional Conservation Area, conservation of the remaining, non‐protected forests patches in Peru and Ecuador should be a high priority. The current global population of Gray‐backed Hawks has been estimated to be between 250 and 999 birds and declining due to ongoing habitat destruction and fragmentation. Small populations in small habitat fragments, like those in my study area, have high conservation potential, provided that populations are not isolated, and hence should be the focus of constant monitoring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号