首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Intraspecific variability in foraging behavior has been documented across a range of taxonomic groups, yet the energetic consequences of this variation are not well understood for many species. Understanding the effect of behavioral variation on energy expenditure and acquisition is particularly crucial for mammalian carnivores because they have high energy requirements that place considerable pressure on prey populations. To determine the influence of behavior on energy expenditure and balance, we combined simultaneous measurements of at‐sea field metabolic rate (FMR) and foraging behavior in a marine carnivore that exhibits intraspecific behavioral variation, the California sea lion (Zalophus californianus). Sea lions exhibited variability in at‐sea FMR, with some individuals expending energy at a maximum of twice the rate of others. This variation was in part attributable to differences in diving behavior that may have been reflective of diet; however, this was only true for sea lions using a foraging strategy consisting of epipelagic (<200 m within the water column) and benthic dives. In contrast, sea lions that used a deep‐diving foraging strategy all had similar values of at‐sea FMR that were unrelated to diving behavior. Energy intake did not differ between foraging strategies and was unrelated to energy expenditure. Our findings suggest that energy expenditure in California sea lions may be influenced by interactions between diet and oxygen conservation strategies. There were no apparent energetic trade‐offs between foraging strategies, although there was preliminary evidence that foraging strategies may differ in their variability in energy balance. The energetic consequences of behavioral variation may influence the reproductive success of female sea lions and result in differential impacts of individuals on prey populations. These findings highlight the importance of quantifying the relationships between energy expenditure and foraging behavior in other carnivores for studies addressing fundamental and applied physiological and ecological questions.  相似文献   

2.
Natural and anthropogenic boundaries have been shown to affect population dynamics and population structure for many species with movement patterns at the landscape level. Understanding population boundaries and movement rates in the field for species that are cryptic and occur at low densities is often extremely difficult and logistically prohibitive; however genetic techniques may offer insights that have previously been unattainable. We analysed thirteen microsatellite loci for 739 mountain lions (Puma concolor) using muscle tissue samples from individuals in the Great Basin throughout Nevada and the Sierra Nevada mountain range to test the hypothesis that heterogeneous hunting pressure results in source‐sink dynamics at the landscape scale. We used a combination of non‐spatial and spatial model‐based Bayesian clustering methods to identify genetic populations. We then used a recently developed Bayesian multilocus genotyping method to estimate asymmetrical rates of contemporary movement between those subpopulations and to identify source and sink populations. We identified two populations at the highest level of genetic structuring with a total of five subpopulations in the Great Basin of Nevada and the Sierra Nevada range. Our results suggest that source‐sink dynamics occur at landscape scales for wide‐ranging species, such as mountain lions, and that source populations may be those that are under relatively less hunting pressure and that occupy refugia.  相似文献   

3.
Lion fecal DNA extracts from four individuals each from Yankari Game Reserve and Kainji‐Lake National Park (central northeast and west Nigeria, respectively) were Sanger‐sequenced for the mitochondrial cytochrome b gene. The sequences were aligned against 61 lion reference sequences from other parts of Africa and India. The sequence data were analyzed further for the construction of phylogenetic trees using the maximum‐likelihood approach to depict phylogenetic patterns of distribution among sequences. Our results show that Nigerian lions grouped together with lions from West and Central Africa. At the smaller geographical scale, lions from Kainji‐Lake National Park in western Nigeria grouped with lions from Benin (located west of Nigeria), whereas lions from Yankari Game Reserve in central northeastern Nigeria grouped with the lion populations in Cameroon (located east of Nigeria). The finding that the two remaining lion populations in Nigeria have different phylogenetic origins is an important aspect to consider in future decisions regarding management and conservation of rapidly shrinking lion populations in West Africa.  相似文献   

4.
The adaptive value of close social bonds and social networks has been demonstrated in a variety of vertebrate taxa. While the effect of predators on populations is well established, disturbance by humans is increasingly being identified as affecting the behaviour and reproductive success of animals and can have significant impacts on their survival. We used a concurrent analysis of two adjacent giraffe Giraffa camelopardalis populations in Kenya to determine whether human activities and high predation affected their social networks. One study site was a premier tourist destination with a high volume of human activity in the form of tourist traffic and lodge infrastructure, alongside a high density of lions which preferentially prey on giraffe calves; the other was a private wildlife conservancy with minimal human activity and no lion population. Giraffes in both networks showed preferred associations and avoidances of other individuals, which were independent of space use. Bond strength was lower in the population exposed to high levels of human activity and lions, and the network had lower density and clustering, and shorter path lengths, suggesting that it was more fragmented. We suggest that human activity and predator density may influence the patterns of social interactions in giraffes and highlight the importance of understanding the impact of tourism and management on the survival and success of wild animal populations.  相似文献   

5.
The agricultural scene has changed over the past decades, resulting in a declining population trend in many species. It is therefore important to determine the factors that the individual species depend on in order to understand their decline. The landscape changes have also resulted in habitat fragmentation, turning once continuous populations into metapopulations. It is thus increasingly important to estimate both the number of individuals it takes to create a genetically viable population and the population trend. Here, population viability analysis and habitat suitability modeling were used to estimate population viability and future prospects across Europe of the Little Owl Athene noctua, a widespread species associated with agricultural landscapes. The results show a high risk of population declines over the coming 100 years, especially toward the north of Europe, whereas populations toward the southeastern part of Europe have a greater probability of persistence. In order to be considered genetically viable, individual populations must count 1,000–30,000 individuals. As Little Owl populations of several countries count <30,000, and many isolated populations in northern Europe count <1,000 individuals, management actions resulting in exchange of individuals between populations or even countries are probably necessary to prevent losing <1% genetic diversity over a 100‐year period. At a continental scale, a habitat suitability analysis suggested Little Owl to be affected positively by increasing temperatures and urban areas, whereas an increased tree cover, an increasing annual rainfall, grassland, and sparsely vegetated areas affect the presence of the owl negatively. However, the low predictive power of the habitat suitability model suggests that habitat suitability might be better explained at a smaller scale.  相似文献   

6.
To be successful, marine predators must alter their foraging behavior in response to changes in their environment. To understand the impact and severity of environmental change on a population it is necessary to first describe typical foraging patterns and identify the underlying variability that exists in foraging behavior. Therefore, we characterized the at‐sea behavior of adult female California sea lions (n = 32) over three years (2003, 2004, and 2005) using satellite transmitters and time‐depth recorders and examined how foraging behavior varied among years. In all years, sea lions traveled on average 84.7 ± 11.1 km from the rookery during foraging trips that were 3.2 ± 0.3 d. Sea lions spent 42.7% ± 1.9% of their time at sea diving and displayed short (2.2 ± 0.2 min), shallow dives (58.5 ± 8.5 m). Among individuals, there was significant variation in both dive behavior and movement patterns, which was found in all years. Among years, differences were found in trip durations, distances traveled, and some dive variables (e.g., dive duration and bottom time) as sea lions faced moderate variability in their foraging habitat (increased sea‐surface temperatures, decreased upwelling, and potential decreased prey abundance). The flexibility we found in the foraging behavior of California sea lions may be a mechanism to cope with environmental variability among years and could be linked to the continuing growth of sea lion populations.  相似文献   

7.
Efforts to determine whether bottom-up or top-down processes regulate populations have been hampered by difficulties in accurately estimating the population's carrying capacity and in directly measuring food intake rate, the impacts of interspecific competition and exposure to natural enemies. We report on 40 years of data on the lion population in Ngorongoro Crater, Tanzania, which showed strong evidence of density-dependent regulation at 100-120 individuals but has remained below 60 individuals for the past decade despite consistently high prey abundance. The lions enjoy a higher per capita food-intake rate and higher cub recruitment at low population density, and interspecific competition has not increased in recent years. These animals have suffered from a number of severe disease outbreaks over the past 40 years, but, whereas the population recovered exponentially from a severe epizootic in 1963, three outbreaks between 1994 and 2001 have occurred in such rapid succession that the population has been unable to return to the carrying capacity. The Crater population may have become unusually vulnerable to infectious disease in recent years owing to its close proximity to a growing human population and a history of close inbreeding. The Crater lions may therefore provide important insights into the future of many endangered populations.  相似文献   

8.
Aim In recent decades there has been a marked decline in the numbers of African lions (Panthera leo), especially in West Africa where the species is regionally endangered. Based on the climatological history of western Africa, we hypothesize that West and Central African lions have a unique evolutionary history, which is reflected by their genetic makeup. Location Sub‐Saharan Africa and India, with special focus on West and Central Africa. Method In this study 126 samples, throughout the lion’s complete geographic range, were subjected to phylogenetic analyses. DNA sequences of a mitochondrial region, containing cytochrome b, tRNAPro, tRNAThr and the left part of the control region, were analysed. Results Bayesian, maximum likelihood and maximum parsimony analyses consistently showed a distinction between lions from West and Central Africa and lions from southern and East Africa. West and Central African lions are more closely related to Asiatic lions than to the southern and East African lions. This can be explained by a Pleistocene extinction and subsequent recolonization of West Africa from refugia in the Middle East. This is further supported by the fact that the West and Central African clade shows relatively little genetic diversity and is therefore thought to be an evolutionarily young clade. Main conclusions The taxonomic division between an African and an Asian subspecies does not fully reflect the overall genetic diversity within lions. In order to conserve genetic diversity within the species, genetically distinct lineages should be prioritized. Understanding the geographic pattern of genetic diversity is key to developing conservation strategies, both for in situ management and for breeding of captive stocks.  相似文献   

9.
Competition among mammalian carnivores can be particularly intense and can influence population dynamics at lower trophic levels. One strategy employed by carnivores to minimize potentially costly interspecific competition is avoidance of dominant species. Recent research has highlighted the importance of consistent individual differences in behavior (i.e. temperament traits) in understanding behavioral variation during predator–prey interactions and intraspecific interactions. However, the importance of such individual differences to interspecific competition has received little attention. Here, we examined the responses of spotted hyenas (Crocuta crocuta) to their primary competitors, African lions (Panthera leo), to (1) determine whether hyenas avoid lions and (2) evaluate the potential importance of individual differences in behavior during interspecific competition. Spotted hyenas and lions co‐occur throughout much of Africa and are vigorous competitors. Whereas lions sometimes kill hyenas and steal their food, lions also represent a source of food for hyenas via scavenging. Using audio playback experiments, we found that hyenas do not uniformly avoid potential encounters with lions. Indeed, we noted considerable variation among individuals in their responses to lion roars, and this variation reflected consistent individual differences in risk‐taking and vigilance tendencies. Individual differences in vigilance behavior were specific to interactions with lions. We conclude that individual differences in behavior have the potential to play an important role in determining the nature and outcome of interspecific competition.  相似文献   

10.
Bighorn sheep (Ovis canadensis) evolved for thousands of years in the presence of numerous predators, including mountain lions (Puma concolor). Bighorn sheep have presumably developed predator avoidance strategies; however, the effectiveness of these strategies in reducing risk of mountain lion predation is not well understood. These strategies are of increasing interest because mountain lion predation on bighorn sheep has been identified as a leading cause of mortality in some sheep populations. Therefore, we investigated how mountain lions affect both bighorn sheep habitat selection and risk of mortality in Arizona, USA. We used 2 approaches to investigate the predator-prey relationship between mountain lions and bighorn sheep. We fit 103 bighorn sheep (81 females and 22 males) with global positioning system radio-collars in 2 Arizona populations from 2013 to 2017, and used a negative binomial resource selection probability function to evaluate whether bighorn sheep selected for habitat features in accordance with presumed predator avoidance strategies, including terrain ruggedness, slope, topographic position, and horizontal obstruction, in 2 seasons (winter and summer). We then estimated how habitat features such as terrain ruggedness, slope, horizontal obstruction, and group size, influence the risk of mortality due to mountain lion predation using an Andersen-Gill proportional hazards model. Generally, both sexes selected areas with lower horizontal obstruction and intermediate ruggedness and slope, but selection patterns differed between seasons and sexes. The use of more rugged areas and steeper slopes decreased the risk of mortality due to mountain lion predation, consistent with presumed predator avoidance strategies. Increased group size decreased risk of bighorn sheep mortality due to mountain lion predation but this effect became marginal at approximately 10 individuals/group. We did not identify a relationship between horizontal obstruction and bighorn sheep mortality risk. Our findings can be used in habitat and population management decisions such as the prioritization of habitat restoration sites or selection of translocation sites. In addition, we suggest that augmentation of low-density bighorn sheep populations may reduce mountain lion predation risk by increasing group size, and that releasing large groups of bighorn sheep in population augmentation and reintroduction efforts may help to reduce mountain lion predation.  相似文献   

11.
The resurrection of Asiatic lions (Panthera leo persica) from the brink of extinction is a remarkable conservation success story. Yet, occurrence of lions as a single population makes them vulnerable to extinction from genetic and environmental factors. Asiatic lions exist as a single free ranging population of 360 individuals in Gir Protected Area (PA; about 290 lions) and surrounding satellite areas (68 lions), namely Girnar Wildlife Sanctuary (WLS), coastal areas, hill ranges extending from Mitiyala-Savarkundla-Palitana-Shihor spreading across Junagadh, Amreli and Bhavnagar districts of Gujarat State, India. This paper traces the conservation history, current conservation pressures, and critically evaluates current conservation planning based on lion ecology and existing anthropogenic pressures. Conservation proposals for translocation of lions to alternate habitats in Kuno WLS and Barda WLS are awaiting final implementation. An alternate initiative is aimed at developing satellite lion habitats, improving corridor connectivity, and facilitating natural dispersal and expansion of lion habitats. The paper evaluates human population living within 2 km boundary of lion habitats and between Gir PA and satellite habitats to show that dispersing lions have to cross heavily populated habitations taking refuge in agriculture fields and scattered forest patches. Satellite habitats vary in size from 18 km2 (Mitiyala WLS) to 250 km2 (scattered forests Hipavadli-Savarkundla-Palitana zone along Shetrunji river) and are inadequate to maintain natural ranging and movement requirements of territorial lions. These habitats are varied in vegetation, terrain, human pressure, and distance to source population. Though satellite lion habitats are important suboptimal habitats for dispersing lions, long-term conservation planning require planned restoration of mosaic habitats for growing populations.  相似文献   

12.
Mountain lions (Puma concolor) are often difficult to monitor because of their low capture probabilities, extensive movements, and large territories. Methods for estimating the abundance of this species are needed to assess population status, determine harvest levels, evaluate the impacts of management actions on populations, and derive conservation and management strategies. Traditional mark–recapture methods do not explicitly account for differences in individual capture probabilities due to the spatial distribution of individuals in relation to survey effort (or trap locations). However, recent advances in the analysis of capture–recapture data have produced methods estimating abundance and density of animals from spatially explicit capture–recapture data that account for heterogeneity in capture probabilities due to the spatial organization of individuals and traps. We adapt recently developed spatial capture–recapture models to estimate density and abundance of mountain lions in western Montana. Volunteers and state agency personnel collected mountain lion DNA samples in portions of the Blackfoot drainage (7,908 km2) in west-central Montana using 2 methods: snow back-tracking mountain lion tracks to collect hair samples and biopsy darting treed mountain lions to obtain tissue samples. Overall, we recorded 72 individual capture events, including captures both with and without tissue sample collection and hair samples resulting in the identification of 50 individual mountain lions (30 females, 19 males, and 1 unknown sex individual). We estimated lion densities from 8 models containing effects of distance, sex, and survey effort on detection probability. Our population density estimates ranged from a minimum of 3.7 mountain lions/100 km2 (95% CI 2.3–5.7) under the distance only model (including only an effect of distance on detection probability) to 6.7 (95% CI 3.1–11.0) under the full model (including effects of distance, sex, survey effort, and distance × sex on detection probability). These numbers translate to a total estimate of 293 mountain lions (95% CI 182–451) to 529 (95% CI 245–870) within the Blackfoot drainage. Results from the distance model are similar to previous estimates of 3.6 mountain lions/100 km2 for the study area; however, results from all other models indicated greater numbers of mountain lions. Our results indicate that unstructured spatial sampling combined with spatial capture–recapture analysis can be an effective method for estimating large carnivore densities. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

13.
Auditory evoked potential (AEP) measurements are useful for describing the variability of hearing among individuals in marine mammal populations, an important consideration in terms of basic biology and the design of noise mitigation criteria. In this study, hearing thresholds were measured for 16 male California sea lions at frequencies ranging from 0.5 to 32 kHz using the auditory steady state‐response (ASSR), a frequency‐specific AEP. Audiograms for most sea lions were grossly similar to previously reported psychophysical data in that hearing sensitivity increased with increasing frequency up to a steep reduction in sensitivity between 16 and 32 kHz. Average thresholds were not different from AEP thresholds previously reported for male and female California sea lions. Two sea lions from the current study exhibited abnormal audiograms: a 26‐yr‐old sea lion had impaired hearing with a high‐frequency hearing limit (HFHL) between 8 and 16 kHz, and an 8‐yr‐old sea lion displayed elevated thresholds across most tested frequencies. The auditory brainstem responses (ABRs) for these two individuals and an additional 26‐yr‐old sea lion were aberrant compared to those of other sea lions. Hearing loss may have fitness implications for sea lions that rely on sound during foraging and reproductive activities.  相似文献   

14.
The African lion has declined to <35,000 individuals occupying 25% of its historic range. The situation is most critical for the geographically isolated populations in West Africa, where the species is considered regionally endangered. Elevating their conservation significance, recent molecular studies establish the genetic distinctiveness of West and Central African lions from other extant African populations. Interventions to save West African lions are urgently required. However formulating effective conservation strategies has been hampered by a lack of data on the species'' current distribution, status, and potential management deficiencies of protected areas (PAs) harboring lions. Our study synthesized available expert opinion and field data to close this knowledge gap, and formulate recommendations for the conservation of West African lions. We undertook lion surveys in 13 large (>500 km2) PAs and compiled evidence of lion presence/absence for a further eight PAs. All PAs were situated within Lion Conservation Units, geographical units designated as priority lion areas by wildlife experts at a regional lion conservation workshop in 2005. Lions were confirmed in only 4 PAs, and our results suggest that only 406 (273–605) lions remain in West Africa, representing <250 mature individuals. Confirmed lion range is estimated at 49,000 km2, or 1.1% of historical range in West Africa. PAs retaining lions were larger than PAs without lions and had significantly higher management budgets. We encourage revision of lion taxonomy, to recognize the genetic distinctiveness of West African lions and highlight their potentially unique conservation value. Further, we call for listing of the lion as critically endangered in West Africa, under criterion C2a(ii) for populations with <250 mature individuals. Finally, considering the relative poverty of lion range states in West Africa, we call for urgent mobilization of investment from the international community to assist range states to increase management effectiveness of PAs retaining lions.  相似文献   

15.
Steller sea lions (Eumetopias jubatus) are listed as an endangered species in western Alaska and have exhibited a significant population decline throughout their range. Eight microsatellite loci were isolated from genomic DNA libraries. In addition, all these markers were found to be variable in nine individuals of the California sea lion (Zalophus californicus). This panel of markers was developed to analyse population structure in Steller sea lions throughout their range.  相似文献   

16.
When individuals disperse from one local group to another, they often do so in the company of relatives. This is known as “kin-structured migration,” and its effect on genetic population structure is investigated here. It is shown that when migration is kin-structured, the ratio of between- to within-group variance is increased by a quantity that can be estimated either from behavioral or genetic data. Theoretical results indicate that kin-structured migration should be most important in populations with high mobility, and analysis of data for humans and lions suggests the kin-structured migration may have a substantial effect on genetic population structure in both species. Its effect seems to be small in a population of pine voles.  相似文献   

17.
African ungulate populations appear to be limited principally by their food resources. Within ungulate communities, plains zebras coexist with grazing bovids of similar body size, but rarely are the dominant species. Given the highly effective nutritional strategy of the equids and the resistance of zebras to drought, this is unexpected and suggests that zebra populations may commonly be limited by other mechanisms. Long-term research in the Serengeti ecosystem and in the Kruger National Park suggests that zebra could be less sensitive to food shortage, and more sensitive to predation, than grazing bovids: if this is a general principle, then, at a larger scale, resource availability should have a weaker effect on the abundance of zebra than on grazing ruminants of similar body size (wildebeest and buffalo), and zebras should be relatively more abundant in ecosystems where predators are rare or absent. We test these expectations using data on 23 near-natural ecosystems in east and southern Africa. The abundance of wildebeest is more closely related to resources than is that of zebra; buffalo are intermediate. We show that hyena densities are closely correlated with those of lions, and use the abundance of lions as an index of predation by large predators. The numerical response of lions to increases in the abundance of their prey was linear for mesoherbivores, and apparently so for the three species alone. Finally, the abundance of zebra relative to grazing bovids is lower in ecosystems with high biomasses of lions. These results indicate that zebras may commonly be more sensitive to top-down processes than grazing bovids: the mechanism(s) have not been demonstrated, but predation could play a role. If it is true, then when numbers of the large mammalian predators decline, zebra populations should increase faster than buffalo and wildebeest.  相似文献   

18.
Elk (Cervus canadensis) are high-profile game animals for many states in the western United States, yet over the past several decades some populations have experienced a persistent and broad-scale decline in recruitment. Over this same period, gray wolves (Canis lupus) have become an integral component of many western landscapes and agencies are increasingly challenged to maximize hunting opportunities of ungulates via predator management while simultaneously ensuring wolf conservation. To better understand the implications of predator management on elk populations, we monitored survival of 1,244 adult female elk and 806 6-month-old calves from 29 populations distributed throughout Idaho, USA, from 2004 to 2016. We developed predictive models of mortality that related mortality risk to wolf pack size, winter conditions, and individual-level characteristics. Annual mortality rates (excluding harvest) for adult females and calves were 0.09 and 0.40, respectively. Calf mortality was predicted best with a model that included additive effects of chest girth at time of capture, mean size of surrounding wolf packs, and snow depth. Adult female mortality was predicted best with a model that included female age, mean size of surrounding wolf packs, and snow depth. Based on a sensitivity analysis, chest girth had the largest effect on risk of mortality for calves followed by pack size and snow depth. Other than the effect of senescence in the oldest (>15 yr) individuals, pack size and snow depth had the largest effect on risk of mortality for adult females. We estimated cause-specific mortality and predation was the dominant cause of known-fate mortalities for adult females (35% mountain lion [Puma concolor] and 32% wolf) and calves (45% mountain lion and 28% wolf), whereas malnutrition accounted for 9% and 10% of adult female and calf mortalities, respectively. Wolves preferentially selected smaller calves and older adult females, whereas mountain lions showed little preference for calf size or age class of adult females. Our study indicates managers can increase elk survival by reducing wolf pack sizes on surrounding winter ranges, especially in areas where, or during years when, snow is deep. Additionally, managers interested in improving over-winter calf survival can implement actions to increase the size of calves entering winter by increasing the nutritional quality of summer and early fall forage resources. Although our study was prompted by management questions related to wolves, mountain lions killed more elk than wolves and differences in selection of individual elk indicate mountain lions may have comparably more of an effect on elk population dynamics. Although we were unable to relate changes in mountain lion populations to elk survival in our study, future research should seek a better understanding of multi-predator systems, including how management of one predator affect others and ultimately how these interactions affect elk survival. © 2019 The Wildlife Society  相似文献   

19.
Lions were the most widespread carnivores in the late Pleistocene, ranging from southern Africa to the southern USA, but little is known about the evolutionary relationships among these Pleistocene populations or the dynamics that led to their extinction. Using ancient DNA techniques, we obtained mitochondrial sequences from 52 individuals sampled across the present and former range of lions. Phylogenetic analysis revealed three distinct clusters: (i) modern lions, Panthera leo ; (ii) extinct Pleistocene cave lions, which formed a homogeneous population extending from Europe across Beringia (Siberia, Alaska and western Canada); and (iii) extinct American lions, which formed a separate population south of the Pleistocene ice sheets. The American lion appears to have become genetically isolated around 340 000 years ago, despite the apparent lack of significant barriers to gene flow with Beringian populations through much of the late Pleistocene. We found potential evidence of a severe population bottleneck in the cave lion during the previous interstadial, sometime after 48 000 years, adding to evidence from bison, mammoths, horses and brown bears that megafaunal populations underwent major genetic alterations throughout the last interstadial, potentially presaging the processes involved in the subsequent end-Pleistocene mass extinctions.  相似文献   

20.
The Asiatic lion (Panthera leo persica) exists in the wild as a single relict population of approximately 250 individuals in the protected Gir Forest Sanctuary in western India. In 1981, a species survival plan (SSP) for the Asiatic lion was established by the American Association of Zoological Parks and Aquariums to manage the 200 + descendants of Asiatic lions in captivity in western zoological facilities. This captive population was derived from seven founders. In order to compare the genetic structure of the Gir Forest population with that of the captive SSP population, a genetic survey of 46 electrophoretic allozyme systems resolved from extracts of lion blood was undertaken by using 29 SSP Asiatic lions and 28 wild-caught or captive-bred lions maintained at the Sakkarbaug Zoo in India but originally derived from the Gir Forest. The Gir lion population was found to be genetically monomorphic at each of 46 allozyme loci. This was in contrast to several African lion (Panthera leo leo) populations, which show moderate levels of allozyme variation at the same loci. The SSP lion population was polymorphic at three allozyme loci (IDHI, TF, and PTI) for alleles that were previously found only in African lion populations. Pedigree analysis of the genetic transmission of these three biochemical loci demonstrated that two of the five primary founder animals of the SSP Asiatic lion population (a breeding pair originally imported from the Trivandrum Zoo in southern India) were descendants of the African subspecies. Three other founder animals were pure Asian. A retrospective SSP pedigree analysis of two morphologic characters (prominent abdominal fold and pairing of infraorbital foramen) that are partially diagnostic for persica vs leo was consistent with this conclusion as well. The implications for the management of small captive populations of threatened species and of the Asiatic lion SSP population are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号