首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
All eukaryotes use similar proteins to licence replication origins but, paradoxically, origin DNA is much less conserved. Specific binding sites for these proteins have now been identified on fission yeast and Drosophila chromosomes, suggesting that the DNA-binding activity of the origin recognition complex has diverged to recruit conserved initiation factors on polymorphic replication origins. Once formed, competent origins are activated by cyclin- and Dbf4-dependent kinases. The latter have been shown to control S phase in several organisms but, in contrast to cyclin-dependent kinases, seem regulated at the level of individual origins. Global and local regulations generate specific patterns of DNA replication that help establish epigenetic chromosome states.  相似文献   

2.
Eukaryotic DNA replication is a highly conserved process; the proteins and sequence of events that replicate animal genomes are remarkably similar to those that replicate yeast genomes. Moreover, the assembly of prereplication complexes at DNA replication origins ('DNA licensing') is regulated in all eukaryotes so that no origin fires more than once in a single cell cycle. And yet there are significant differences between species both in the selection of replication origins and in the way in which these origins are licensed to operate. Moreover, these differences impart advantages to multicellular animals and plants that facilitate their development, such as better control over endoreduplication, flexibility in origin selection, and discrimination between quiescent and proliferative states.  相似文献   

3.
The process by which eukaryotic cells decide when and where to initiate DNA replication has been illuminated in yeast, where specific DNA sequences (replication origins) bind a unique group of proteins (origin recognition complex) next to an easily unwound DNA sequence at which replication can begin. The origin recognition complex provides a platform on which additional proteins assemble to form a pre-replication complex that can be activated at S-phase by specific protein kinases. Remarkably, multicellular eukaryotes, such as frogs, flies, and mammals (metazoa), have counterparts to these yeast proteins that are required for DNA replication. Therefore, one might expect metazoan chromosomes to contain specific replication origins as well, a hypothesis that has long been controversial. In fact, recent results strongly support the view that DNA replication origins in metazoan chromosomes consist of one or more high frequency initiation sites and perhaps several low frequency ones that together can appear as a nonspecific initiation zone. Specific replication origins are established during G1-phase of each cell cycle by multiple parameters that include nuclear structure, chromatin structure, DNA sequence, and perhaps DNA modification. Such complexity endows metazoa with the flexibility to change both the number and locations of replication origins in response to the demands of animal development.  相似文献   

4.
DNA postreplication repair (PRR) is defined as an activity to convert DNA damage-induced single-stranded gaps into large molecular weight DNA without actually removing the replication-blocking lesions. In bacteria such as Escherichia coli, this activity requires RecA and the RecA-mediated SOS response and is accomplished by recombination and mutagenic translesion DNA synthesis. Eukaryotic cells appear to share similar DNA damage tolerance pathways; however, some enzymes required for PRR in eukaryotes are rather different from those of prokaryotes. In the yeast Saccharomyces cerevisiae, PRR is centrally controlled by RAD6 and RAD18, whose products form a stable complex with single-stranded DNA-binding, ATPase and ubiquitin-conjugating activities. PRR can be further divided into translesion DNA synthesis and error-free modes, the exact molecular events of which are largely unknown. This error-free PRR is analogous to DNA damage-avoidance as defined in mammalian cells, which relies on recombination processes. Two possible mechanisms by which recombination participate in PRR to resolve the stalled replication folk are discussed. Recombination and PRR are also genetically regulated by a DNA helicase and are coupled to the cell-cycle. The PRR processes appear to be highly conserved within eukaryotes, from yeast to human.  相似文献   

5.
The mechanism for initiation of eukaryotic DNA replication is highly conserved: the proteins required to initiate replication, the sequence of events leading to initiation, and the regulation of initiation are remarkably similar throughout the eukaryotic kingdom. Nevertheless, there is a liberal attitude when it comes to selecting initiation sites. Differences appear to exist in the composition of replication origins and in the way proteins recognize these origins. In fact, some multicellular eukaryotes (the metazoans) can change the number and locations of initiation sites during animal development, revealing that selection of initiation sites depends on epigenetic as well as genetic parameters. Here we have attempted to summarize our understanding of this process, to identify the similarities and differences between single cell and multicellular eukaryotes, and to examine the extent to which origin recognition proteins and replication origins have been conserved among eukaryotes. Published 2000 Wiley-Liss, Inc.  相似文献   

6.
Origin recognition complex (ORC) proteins were first discovered as a six-subunit assemblage in budding yeast that promotes the initiation of DNA replication. Orc1-5 appear to be present in all eukaryotes, and include both AAA+ and winged-helix motifs. A sixth protein, Orc6, shows no structural similarity to the other ORC proteins, and is poorly conserved between budding yeast and most other eukaryotic species. The replication factor Cdc6 has extensive sequence similarity with Orc1 and phylogenetic analysis suggests the genes that encode them may be paralogs. ORC proteins have also been found in the archaea, and the bacterial DnaA replication protein has ORC-like functional domains. In budding yeast, Orc1-6 are bound to origins of DNA replication throughout the cell cycle. Following association with Cdc6 in G1 phase, the sequential hydrolysis of Cdc6 - then ORC-bound ATP loads the Mcm2-7 helicase complex onto DNA. Localization of ORC subunits to the kinetochore and centrosome during mitosis and to the cleavage furrow during cytokinesis has been observed in metazoan cells and, along with phenotypes observed following knockdown with short interfering RNAs, point to additional roles at these cell-cycle stages. In addition, ORC proteins function in epigenetic gene silencing through interactions with heterochromatin factors such as Sir1 in budding yeast and HP1 in higher eukaryotes. Current avenues of research have identified roles for ORC proteins in the development of neuronal and muscle tissue, and are probing their relationship to genome integrity.  相似文献   

7.
Budding yeast (Saccharomyces cerevisiae) origin recognition complex (ORC) requires ATP to bind specific DNA sequences, whereas fission yeast (Schizosaccharomyces pombe) ORC binds to specific, asymmetric A:T-rich sites within replication origins, independently of ATP, and frog (Xenopus laevis) ORC seems to bind DNA non-specifically. Here we show that despite these differences, ORCs are functionally conserved. Firstly, SpOrc1, SpOrc4 and SpOrc5, like those from other eukaryotes, bound ATP and exhibited ATPase activity, suggesting that ATP is required for pre-replication complex (pre-RC) assembly rather than origin specificity. Secondly, SpOrc4, which is solely responsible for binding SpORC to DNA, inhibited up to 70% of XlORC-dependent DNA replication in Xenopus egg extract by preventing XlORC from binding to chromatin and assembling pre-RCs. Chromatin-bound SpOrc4 was located at AT-rich sequences. XlORC in egg extract bound preferentially to asymmetric A:T-sequences in either bare DNA or in sperm chromatin, and it recruited XlCdc6 and XlMcm proteins to these sequences. These results reveal that XlORC initiates DNA replication preferentially at the same or similar sites to those targeted in S.pombe.  相似文献   

8.
Thirty-five years ago, the Replicon model was proposed by Jacob, Brenner and Cuzin to explain the regulation of the Escherichia coli DNA replication. In this model, a genetic element, the replicator, would function as a target for a positive-acting initiator protein to drive the initiation of replication. This simple idea has been extremely useful in providing a framework to explain how the initiation of DNA replication occurs in all organisms. The identification of autonomously replicating sequences (ARSs) in budding yeast was the first extension of the Replicon model to eukaryotic chromosomes. In the higher eukaryotes, many biochemically defined replication start sites have been identified; nevertheless there is little genetic data indicating that these sites contain DNA sequences that are essential for replication. Moreover, in early Xenopus or Drosophila embryos, specific DNA sequences are not required either for initiating DNA replication or for preventing rereplication within a single cell cycle. This apparently fundamental difference between replicators in yeast and metazoan embryos may be more superficial than initially thought. In fact, during the past several years, an eukaryotic initiator conserved from yeast to man and also present in embryonic cells, the origin recognition complex (ORC), has been characterized, suggesting that the initiation mechanism should be essentially the same in prokaryotes and eukaryotes. In addition, the efficient once-per-cell-cycle replication of DNA is ensured in eukaryotes by a simple two-step mechanism in which the assembly of stable prereplicative complexes (PreRCs) at origins precedes and is temporally separated from the firing of these origins. Regulation of this process by cyclin-dependent kinases ensures that when origins fire, the cell is no longer competent to form new PreRCs. Now, it is important to understand how these complexes are remodeled or disassembled during replication initiation to trigger the transition from a stable origin-bound complex to a mobile replication machine.  相似文献   

9.
Genomic propagation in both prokaryotes and eukaryotes is tightly regulated at the level of initiation, ensuring that the genome is accurately replicated and equally segregated to the daughter cells. Even though replication origins and the proteins that bind onto them (initiator proteins) have diverged throughout the course of evolution, the mechanism of initiation has been conserved, consisting of origin recognition, multi‐protein complex assembly, helicase activation and loading of the replicative machinery. Recruitment of the multiprotein initiation complexes onto the replication origins is constrained by the dense packing of the DNA within the nucleus and unusual structures such as knots and supercoils. In this review, we focus on the DNA topological barriers that the multi‐protein complexes have to overcome in order to access the replication origins and how the topological state of the origins changes during origin firing. Recent advances in the available methodologies to study DNA topology and their clinical significance are also discussed. J. Cell. Biochem. 110: 35–43, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
Mini-chromosome maintenance (MCM) proteins form heterohexameric complex (MCM2–7) to serve as licensing factor for DNA replication to make sure that genomic DNA is replicated completely and accurately once during S phase in a single cell cycle. MCMs were initially identified in yeast for their role in plasmid replication or cell cycle progression. Each of six MCM contains highly conserved sequence called “MCM box”, which contains two ATPase consensus Walker A and Walker B motifs. Studies on MCM proteins showed that (a) the replication origins are licensed by stable binding of MCM2–7 to form pre-RC (pre-replicative complex) during G1 phase of the cell cycle, (b) the activation of MCM proteins by CDKs (cyclin-dependent kinases) and DDKs (Dbf4-dependent kinases) and their helicase activity are important for pre-RC to initiate the DNA replication, and (c) the release of MCMs from chromatin renders the origins “unlicensed”. DNA replication licensing in plant is, in general, less characterized. The MCMs have been reported from Arabidopsis, maize, tobacco, pea and rice, where they are found to be highly expressed in dividing tissues such as shoot apex and root tips, localized in nucleus and cytosol and play important role in DNA replication, megagametophyte and embryo development. The identification of six MCM coding genes from pea and Arabidopsis suggest six distinct classes of MCM protein in higher plant, and the conserved function right across the eukaryotes. This overview of MCMs contains an emphasis on MCMs from plants and the novel role of MCM6 in abiotic stress tolerance.  相似文献   

11.
Initiation of DNA replication in eukaryotes requires the origin recognition complex (ORC) and other proteins that interact with DNA at origins of replication. In budding yeast, the temperature-sensitive orc2-1 mutation alters these interactions in parallel with defects in initiation of DNA replication and in checkpoints that depend on DNA replication forks. Here we show that DNA-damaging drugs modify protein-DNA interactions at budding yeast replication origins in association with lethal effects that are enhanced by the orc2-1 mutation or suppressed by a different mutation in ORC. A dosage suppressor screen identified the budding yeast co-chaperone protein Mge1p as a high copy suppressor of the orc2-1-specific lethal effects of adozelesin, a DNA-alkylating drug. Ectopic expression of Mge1p also suppressed the temperature sensitivity and initiation defect conferred by the orc2-1 mutation. In wild type cells, ectopic expression of Mge1p also suppressed the lethal effects of adozelesin in parallel with the suppression of adozelesin-induced alterations in protein-DNA interactions at origins, stimulation of initiation of DNA replication, and binding of the precursor form of Mge1p to nuclear chromatin. Mge1p is the budding yeast homologue of the Escherichia coli co-chaperone protein GrpE, which stimulates initiation at bacterial origins of replication by promoting interactions of initiator proteins with origin sequences. Our results reveal a novel, proliferation-dependent cytotoxic mechanism for DNA-damaging drugs that involves alterations in the function of initiation proteins and their interactions with DNA.  相似文献   

12.
Cyclin-dependent kinase (CDK) plays essential roles in the initiation of DNA replication in eukaryotes. Although interactions of CDK-phosphorylated Sld2/Drc1 and Sld3 with Dpb11 have been shown to be essential in budding yeast, it is not known whether the mechanism is conserved. In this study, we investigated how CDK promotes the assembly of replication proteins onto replication origins in fission yeast. Phosphorylation of Sld3 was found to be dependent on CDK in S phase. Alanine substitutions at CDK sites decreased the interaction with Cut5/Dpb11 at the N-terminal BRCT motifs and decreased the loading of Cut5 onto replication origins. This defect was suppressed by overexpression of drc1(+). Phosphorylation of a conserved CDK site, Thr-111, in Drc1 was critical for interaction with Cut5 at the C-terminal BRCT motifs and was required for loading of Cut5. In a yeast three-hybrid assay, Sld3, Cut5, and Drc1 were found to form a ternary complex dependent on the CDK sites of Sld3 and Drc1, and Drc1-Cut5 binding enhanced the Sld3-Cut5 interaction. These results show that the mechanism of CDK-dependent loading of Cut5 is conserved in fission yeast in a manner similar to that elucidated in budding yeast.  相似文献   

13.
Origins and complexes: the initiation of DNA replication   总被引:6,自引:0,他引:6  
Eukaryotic DNA is organized for replication as multiple replicons. DNA synthesis in each replicon is initiated at an origin of replication. In both budding yeast, Saccharomyces cerevisiae and fission yeast, Schizosaccharomyces pombe, origins contain specific sequences that are essential for initiation, although these differ significantly between the two yeasts with those of S. pombe being more complex then those of S. cerevisiae. However, it is not yet clear whether the replication origins of plants contain specific essential sequences or whether origin sites are determined by features of chromatin structure. In all eukaryotes there are several biochemical events that must take place before initiation can occur. These are the marking of the origins by the origin recognition complex (ORC), the loading onto the origins, in a series of steps, of origin activation factors including the MCM proteins, and the initial denaturation of the double helix to form a replication "bubble". Only then can the enzymes that actually initiate replication, primase and DNA polymerase-alpha, gain access to the template. In many cells this complex series of events occurs only once per cell cycle, ensuring that DNA is not re-replicated within one cycle. However, regulated re-replication of DNA within one cell cycle (DNA endoreduplication) is relatively common in plants, indicating that the "once-per-cycle" controls can be overridden.  相似文献   

14.
In eukaryotes DNA replication takes place in the S phase of the cell cycle. It initiates from hundreds to thousands of replication origins in a coordinated manner, in order to efficiently duplicate the genome. The sequence of events leading to the onset of DNA replication is conventionally divided in two interdependent processes: licensing-a process during which replication origins acquire replication competence but are kept inactive- and firing-a process during which licensed origins are activated but not re-licensed. In this review we investigate the evolutionary conservation of the molecular machinery orchestrating DNA replication initiation both in yeast and in mammalian cells, highlighting a remarkable conservation of the general architecture of this central biological mechanism. Many steps are conserved down to molecular details and are performed by orthologous proteins with high sequence conservation, while differences in molecular structure of the performing proteins and their interactions are apparent in other steps. Tight regulation of initiation of DNA replication is achieved through protein phosphorylation, exerted mostly by Cyclin-dependent kinases in order to ensure that each chromosome is fully replicated once, and only once, during each cycle, and to avoid the formation of aberrant DNA structures and incorrect chromosomal duplication, that in mammalian cells are a prerequisite for genome instability and tumorigenesis. We then consider a molecular mathematical model of DNA replication, recently proposed by our group in a collaborative project, as a frame of reference to discuss similarities and differences observed in the regulatory program controlling DNA replication initiation in yeast and in mammalian cells and discuss whether they may be dependent upon different functional constraints. We conclude that a systems biology approach, integrating molecular analysis with modeling and computational investigations, is the best choice to investigate the control of DNA replication in mammalian cells.  相似文献   

15.
16.
The RAD6 gene of Saccharomyces cerevisiae encodes a ubiquitin conjugating enzyme and is required for DNA repair, DNA-damage-induced mutagenesis and sporulation. Here, we show that RAD6 and the rhp6+ gene from the distantly related yeast Schizosaccharomyces pombe share a high degree of structural and functional homology. The predominantly acidic carboxyl-terminal 21 amino acids present in the RAD6 protein are absent in the rhp6(+)-encoded protein; otherwise, the two proteins are very similar, with 77% identical residues. Like rad6, null mutations of the rhp6+ gene confer a defect in DNA repair, UV mutagenesis and sporulation, and the RAD6 and rhp6+ genes can functionally substitute for one another. These observations suggest that functional interactions between RAD6 (rhp6+) protein and other components of the DNA repair complex have been conserved among eukaryotes.  相似文献   

17.
《Genomics》1999,55(2):219-228
TheSchizosaccharomyces pombe rad17+cell cycle checkpoint control gene is required for S-phase and G2/M arrest in response to both DNA damage and incomplete DNA replication. We isolated and characterized the putative human (RAD17Sp) and mouse (mRAD17Sp) homologs of theS. pombeRad17 (Rad17Sp) protein. The humanRAD17Spopen reading frame (ORF) encodes a protein of 681 amino acids; themRAD17SpORF codes for a protein of 688 amino acids. ThemRAD17Spmessenger is highly expressed in the testis as a single 3-kb mRNA species. The human RAD17Sp and mRAD17Sp proteins are 24% identical and 46% similar to theS.pombeRad17Sp protein. Sequence homology was also noted with theSaccharomyces cerevisiaeRad24Sc (which is the structural counterpart ofS.pombeRad17Sp) and structurally related polypeptides fromCaenorhabditis elegans, Arabidopsis thaliana, Pyrococcus horikoshii,andDrosophila melanogaster.The degree of conservation between the mammalian RAD17Sp proteins and those of the other species is consistent with the evolutionary distance between the species, indicating that these proteins are most likely true counterparts. In addition, homology was found between the Rad17Sp homologs and proteins identified as components of mammalian replication factor C (RF-C)/activator 1, especially in several highly conserved RF-C-like domains including a “Walker A” motif. Using FISH and analysis of a panel of rodent–human cell hybrids, the humanRAD17Spgene (HGMW-approved symbolRAD17could be localized on human chromosome 5q13–q14, a region implicated in the etiology of small cell lung carcinoma, non-small-cell lung carcinoma, duodenal adenocarcinoma, and head and neck squamous cell carcinoma. Our results suggest that the structure and function of the checkpoint “rad” genes in the G2/M checkpoint pathway are evolutionary conserved between yeast and higher eukaryotes.  相似文献   

18.
The function of the relatively well-studied DNA replication origins in the yeast Saccharomyces cerevisiae is dependent upon interactions between origin replication complex (ORC) proteins and several defined origin sequence elements, including the 11 bp ARS consensus sequence (ACS). Although the ORC proteins, as well as numerous other protein components required for DNA replication initiation, are largely conserved between yeast and mammals, DNA sequences within mammalian replication origins are highly variable and sequences homologous to the yeast ACS elements are generally not present. We have previously identified several replication initiation sites within the nontranscribed spacer region of the human ribosomal RNA gene, and found that two highly utilized sites each contain a homologue of the yeast ACS embedded within a DNA unwinding element and a matrix attachment region. Here we examine protein binding within these initiation sites, and demonstrate that these ACS homologues specifically bind the alternate splicing factor SF2/ASF as well as GAPDH in vitro, and present evidence that the SF2/ASF interaction also occurs within the nuclei of intact cells. As the moderate upregulation of SF2/ASF has been linked to oncogenesis through the promotion of alternatively spliced forms of several regulatory proteins, our results suggest an additional mechanism by which SF2/ASF may influence the transformed cell phenotype.  相似文献   

19.
Leon RP  Tecklenburg M  Sclafani RA 《Genetics》2008,179(4):1757-1768
Mcm proteins are an important family of evolutionarily conserved helicases required for DNA replication in eukaryotes. The eukaryotic Mcm complex consists of six paralogs that form a heterohexameric ring. Because the intact Mcm2-7 hexamer is inactive in vitro, it has been difficult to determine the precise function of the different subunits. The solved atomic structure of an archaeal minichromosome maintenance (MCM) homolog provides insight into the function of eukaryotic Mcm proteins. The N-terminal positively charged central channel in the archaeal molecule consists of beta-hairpin domains essential for DNA binding in vitro. Eukaryotic Mcm proteins also have beta-hairpin domains, but their function is unknown. With the archaeal atomic structure as a guide, yeast molecular genetics was used to query the function of the beta-hairpin domains in vivo. A yeast mcm5 mutant with beta-hairpin mutations displays defects in the G1/S transition of the cell cycle, the initiation phase of DNA replication, and in the binding of the entire Mcm2-7 complex to replication origins. A similar mcm4 mutation is synthetically lethal with the mcm5 mutation. Therefore, in addition to its known regulatory role, Mcm5 protein has a positive role in origin binding, which requires coordination by all six Mcm2-7 subunits in the hexamer.  相似文献   

20.
Similarly to metazoans, the budding yeast Saccharomyces cereviasiae replicates its genome with a defined timing. In this organism, well-defined, site-specific origins, are efficient and fire in almost every round of DNA replication. However, this strategy is neither conserved in the fission yeast Saccharomyces pombe, nor in Xenopus or Drosophila embryos, nor in higher eukaryotes, in which DNA replication initiates asynchronously throughout S phase at random sites. Temporal and spatial controls can contribute to the timing of replication such as Cdk activity, origin localization, epigenetic status or gene expression. However, a debate is going on to answer the question how individual origins are selected to fire in budding yeast. Two opposing theories were proposed: the “replicon paradigm” or “temporal program” vs. the “stochastic firing”. Recent data support the temporal regulation of origin activation, clustering origins into temporal blocks of early and late replication. Contrarily, strong evidences suggest that stochastic processes acting on origins can generate the observed kinetics of replication without requiring a temporal order. In mammalian cells, a spatiotemporal model that accounts for a partially deterministic and partially stochastic order of DNA replication has been proposed. Is this strategy the solution to reconcile the conundrum of having both organized replication timing and stochastic origin firing also for budding yeast? In this review we discuss this possibility in the light of our recent study on the origin activation, suggesting that there might be a stochastic component in the temporal activation of the replication origins, especially under perturbed conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号