首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
ATP, acting via P2 purinergic receptors, is a known mediator of inflammatory and neuropathic pain. There is increasing evidence that the ATP-gated P2X4 receptor (P2X4R) subtype is a locus through which activity of spinal microglia and peripheral macrophages instigate pain hypersensitivity caused by inflammation or by injury to a peripheral nerve. The present article highlights the recent advances in our understanding of microglia-neuron interactions in neuropathic pain by focusing on the signaling and regulation of the P2X4R. We will also develop a framework for understanding converging lines of evidence for involvement of P2X4Rs expressed on macrophages in peripheral inflammatory pain.  相似文献   

2.
Acute viral infection causes damages to the host due to uncontrolled viral replication but even replication deficient viral vectors can induce systemic inflammatory responses. Indeed, overactive host innate immune responses to viral vectors have led to devastating consequences. Macrophages are important innate immune cells that recognize viruses and induce inflammatory responses at the early stage of infection. However, tissue resident macrophages are not easily activated by the mere presence of virus suggesting that their activation requires additional signals from other cells in the tissue in order to trigger inflammatory responses. Previously, we have shown that the cross-talk between epithelial cells and macrophages generates synergistic inflammatory responses during adenoviral vector infection. Here, we investigated whether ATP is involved in the activation of macrophages to induce inflammatory responses during an acute adenoviral infection. Using a macrophage-epithelial cell co-culture system we demonstrated that ATP signaling through P2X(7) receptor (P2X(7)R) is required for induction of inflammatory mediators. We also showed that ATP-P2X(7)R signaling regulates inflammasome activation as inhibition or deficiency of P2X(7)R as well as caspase-1 significantly reduced IL-1β secretion. Furthermore, we found that intranasal administration of replication deficient adenoviral vectors in mice caused a high mortality in wild-type mice with symptoms of acute respiratory distress syndrome but the mice deficient in P2X(7)R or caspase-1 showed increased survival. In addition, wild-type mice treated with apyrase or inhibitors of P2X(7)R or caspase-1 showed higher rates of survival. The improved survival in the P2X(7)R deficient mice correlated with diminished levels of IL-1β and IL-6 and reduced neutrophil infiltration in the early phase of infection. These results indicate that ATP, released during viral infection, is an important inflammatory regulator that activates the inflammasome pathway and regulates inflammatory responses.  相似文献   

3.
P2X4 receptors (P2X4Rs), a subtype of the purinergic P2X family, play important roles in regulating neuronal and glial functions in the nervous system. We have previously shown that the expression of P2X4Rs is upregulated in activated microglia after peripheral nerve injury and that activation of the receptors by extracellular ATP is crucial for maintaining nerve injury-induced pain hypersensitivity. However, the regulation of P2X4R expression on the cell surface of microglia is poorly understood. Here, we identify the CC chemokine receptor CCR2 as a regulator of P2X4R trafficking to the cell surface of microglia. In a quantitative cell surface biotinylation assay, we found that applying CCL2 or CCL12, endogenous ligands for CCR2, to primary cultured microglial cells, increased the levels of P2X4R protein on the cell surface without changing total cellular expression. This effect of CCL2 was prevented by an antagonist of CCR2. Time-lapse imaging of green fluorescent protein (GFP)-tagged P2X4R in living microglial cells showed that CCL2 stimulation increased the movement of P2X4R-GFP particles. The subcellular localization of P2X4R immunofluorescence was restricted to lysosomes around the perinuclear region. Notably, CCL2 changed the distribution of lysosomes with P2X4R immunofluorescence within microglial cells and induced release of the lysosomal enzyme β-hexosaminidase, indicating lysosomal exocytosis. Moreover, CCL2-stimulated microglia enhanced Akt phosphorylation by ATP applied extracellularly, a P2X4R-mediated response. These results indicate that CCL2 promotes expression of P2X4R protein on the cell surface of microglia through exocytosis of P2X4R-containing lysosomes, which may be a possible mechanism for pain hypersensitivity after nerve injury.  相似文献   

4.
A growing body of evidence indicates that P2X receptors (P2XRs), a family of ligand-gated cation channels activated by extracellular ATP, play an important role in pain signaling. In contrast to the role of the P2X3R subtype that has been extensively studied, the precise roles of others among the seven P2XR subtypes (P2X1R-P2X7R) remain to be determined because of a lack of sufficiently powerful tools to specifically block P2XR signaling in vivo. In the present study, we investigated the behavioral phenotypes of a line of mice in which the p2rx4 gene was disrupted in a series of acute and chronic pain assays. While p2rx4 -/- mice showed no major defects in pain responses evoked by acute noxious stimuli and local tissue damage or in motor function as compared with wild-type mice, these mice displayed reduced pain responses in two models of chronic pain (inflammatory and neuropathic pain). In a model of chronic inflammatory pain developed by intraplantar injection of complete Freund's adjuvant (CFA), p2rx4 -/- mice exhibited attenuations of pain hypersensitivity to innocuous mechanical stimuli (tactile allodynia) and also of the CFA-induced swelling of the hindpaw. A most striking phenotype was observed in a test of neuropathic pain: tactile allodynia caused by an injury to spinal nerve was markedly blunted in p2rx4 -/- mice. By contrast, pain hypersensitivity to a cold stimulus (cold allodynia) after the injury was comparable in wild-type and p2rx4 -/- mice. Together, these findings reveal a predominant contribution of P2X4R to nerve injury-induced tactile allodynia and, to the lesser extent, peripheral inflammation. Loss of P2X4R produced no defects in acute physiological pain or tissue damaged-induced pain, highlighting the possibility of a therapeutic benefit of blocking P2X4R in the treatment of chronic pain, especially tactile allodynia after nerve injury.  相似文献   

5.
The ATP-gated P2X(7) receptor (P2X(7)R) was shown to be an important mediator of inflammation and inflammatory pain through its regulation of IL-1β processing and release. Trichinella spiralis-infected mice develop a postinflammatory visceral hypersensitivity that is reminiscent of the clinical features associated with postinfectious irritable bowel syndrome. In this study, we used P2X(7)R knockout mice (P2X(7)R(-/-)) to investigate the role of P2X(7)R activation in the in vivo production of IL-1β and the development of postinflammatory visceral hypersensitivity in the T. spiralis-infected mouse. During acute nematode infection, IL-1β-containing cells and P2X(7)R expression were increased in the jejunum of wild-type (WT) mice. Peritoneal and serum IL-1β levels were also increased, which was indicative of elevated IL-1β release. However, in the P2X(7)R(-/-) animals, we found that infection had no effect upon intracellular, plasma, or peritoneal IL-1β levels. Conversely, infection augmented peritoneal TNF-α levels in both WT and P2X(7)R(-/-) animals. Infection was also associated with a P2X(7)R-dependent increase in extracellular peritoneal lactate dehydrogenase, and it triggered immunological changes in both strains. Jejunal afferent fiber mechanosensitivity was assessed in uninfected and postinfected WT and P2X(7)R(-/-) animals. Postinfected WT animals developed an augmented afferent fiber response to mechanical stimuli; however, this did not develop in postinfected P2X(7)R(-/-) animals. Therefore, our results demonstrated that P2X(7)Rs play a pivotal role in intestinal inflammation and are a trigger for the development of visceral hypersensitivity.  相似文献   

6.
Adenosine triphosphate (ATP) is an ancient and fundamentally important biological molecule involved in both intracellular and extracellular activities. P2X ionotropic and P2Y metabotropic receptors have been cloned and characterised in mammals. ATP plays a central physiological role as a transmitter molecule in processes including the sensation of pain, taste, breathing and inflammation via the activation of P2X receptors. P2X receptors are structurally distinct from glutamate and Cys-loop/nicotinic receptors and form the third major class of ligand-gated ion channel. Yet, despite the importance of P2X receptors, both as physiological mediators and therapeutic targets, the evolutionary origins and phylogenicity of ATP signalling via P2X receptors remain unclear.  相似文献   

7.
P2X7 receptors (P2X7R) are extracellular ATP‐gated ion channels expressed in the immune effector cells that carry out critical protective responses during the early phases of microbial infection or acute tissue trauma. P2X7R‐positive cells include monocytes, macrophages, dendritic cells and T cells. Given its presence in all host and pathogen cell types, ATP can be readily released into extracellular compartments at local sites of tissue damage and microbial invasion. Thus, extracellular ATP and its target receptors on host effector cells can be considered as additional elements of the innate immune system. In this regard, stimulation of P2X7R rapidly triggers a key step of the inflammatory response: induction of NLRP3/caspase‐1 inflammasome signalling complexes that drive the proteolytic maturation and secretion of the proinflammatory cytokines interleukin‐1β (IL‐1β) and interleukin‐18 (IL‐18). IL‐1β (and IL‐18) lacks a signal sequence for compartmentation within the Golgi and classical secretory vesicles and the proIL‐1β precursor accumulates within the cytosol following translation on free ribosomes. Thus, ATP‐induced accumulation of the mature IL‐1β cytokine within extracellular compartments requires non‐classical mechanisms of export from the cytosolic compartment. Five proposed mechanisms include: (i) exocytosis of secretory lysosomes that accumulate cytosolic IL‐1β via undefined protein transporters; (ii) release of membrane‐delimited microvesicles derived from plasma membrane blebs formed by evaginationsof the surface membrane that entrap cytosolic IL‐β; (iii) release of membrane‐delimited exosomes secondary to the exocytosis of multivesicular bodies formed by invaginations of recycling endosomes that entrap cytosolic IL‐β; (iv) exocytosis of autophagosomes or autophagolysosomes that accumulate cytosolic IL‐1β via entrapment during formation of the initial autophagic isolation membrane or omegasome and (v) direct release of cytosolic IL‐1β secondary to regulated cell death by pyroptosis or necroptosis. These mechanisms are not mutually exclusive and may represent engagement of parallel or intersecting membrane trafficking responses to P2X7R activation.  相似文献   

8.
Silicosis is an occupational lung disease, characterized by irreversible and progressive fibrosis. Silica exposure leads to intense lung inflammation, reactive oxygen production, and extracellular ATP (eATP) release by macrophages. The P2X7 purinergic receptor is thought to be an important immunomodulator that responds to eATP in sites of inflammation and tissue damage. The present study investigates the role of P2X7 receptor in a murine model of silicosis. To that end wild-type (C57BL/6) and P2X7 receptor knockout mice received intratracheal injection of saline or silica particles. After 14 days, changes in lung mechanics were determined by the end-inflation occlusion method. Bronchoalveolar lavage and flow cytometry analyzes were performed. Lungs were harvested for histological and immunochemistry analysis of fibers content, inflammatory infiltration, apoptosis, as well as cytokine and oxidative stress expression. Silica particle effects on lung alveolar macrophages and fibroblasts were also evaluated in cell line cultures. Phagocytosis assay was performed in peritoneal macrophages. Silica exposure increased lung mechanical parameters in wild-type but not in P2X7 knockout mice. Inflammatory cell infiltration and collagen deposition in lung parenchyma, apoptosis, TGF-β and NF-κB activation, as well as nitric oxide, reactive oxygen species (ROS) and IL-1β secretion were higher in wild-type than knockout silica-exposed mice. In vitro studies suggested that P2X7 receptor participates in silica particle phagocytosis, IL-1β secretion, as well as reactive oxygen species and nitric oxide production. In conclusion, our data showed a significant role for P2X7 receptor in silica-induced lung changes, modulating lung inflammatory, fibrotic, and functional changes.  相似文献   

9.
Ligation of the purinergic receptor, P2X7R, with its agonist ATP has been previously shown to inhibit intracellular infection by chlamydiae and mycobacteria in macrophages. The effect of P2X7R on chlamydial infection had never been investigated in the preferred target cells of chlamydiae, cervical epithelial cells, nor in vaginally infected mice. In this study, we show that treatment of epithelial cells with P2X7R agonists inhibits partially Chlamydia infection in epithelial cells. Chelation of ATP with magnesium or pretreatment with a P2X7R antagonist blocks the inhibitory effects of ATP. Similarly to previous results obtained with macrophages, ATP-mediated inhibition of infection in epithelial cells requires activation of host-cell phospholipase D. Vaginal infection was also more efficient in P2X7R-deficient mice, which also displayed a higher level of acute inflammation in the endocervix, oviduct, and mesosalpingeal tissues than in infected wild-type mice. However, secretion of IL-1beta, which requires P2X7R ligation during infection by other pathogens, was decreased mildly and only at short times of infection. Taken together, these results suggest that P2X7R affects Chlamydia infection by directly inhibiting infection in epithelial cells, rather than through the ability of P2X7R to modulate IL-1beta secretion.  相似文献   

10.
The P2X7 nucleotide receptor (P2X7R) is an ATP-gated ion channel expressed in many cell types including osteoblasts and osteocytes. Mice with a null mutation of P2X7R have osteopenia in load bearing bones, suggesting that the P2X7R may be involved in the skeletal response to mechanical loading. We found the skeletal sensitivity to mechanical loading was reduced by up to 73% in P2X7R null (knock-out (KO)) mice. Release of ATP in the primary calvarial osteoblasts occurred within 1 min of onset of fluid shear stress (FSS). After 30 min of FSS, P2X7R-mediated pore formation was observed in wild type (WT) cells but not in KO cells. FSS increased prostaglandin (PG) E2 release in WT cells but did not alter PGE2 release in KO cells. Studies using MC3T3-E1 osteoblasts and MLO-Y4 osteocytes confirmed that PGE2 release was suppressed by P2X7R blockade, whereas the P2X7R agonist BzATP enhanced PGE2 release. We conclude that ATP signaling through P2X7R is necessary for mechanically induced release of prostaglandins by bone cells and subsequent osteogenesis.  相似文献   

11.
Neural progenitor cells (NPCs) are capable of self-renewal and differentiation into neurons, astrocytes and oligodendrocytes, and have been used to treat several animal models of CNS disorders. In the present study, we show that the P2X7 purinergic receptor (P2X7R) is present on NPCs. In NPCs, P2X7R activation by the agonists extracellular ATP or benzoyl ATP triggers opening of a non-selective cationic channel. Prolonged activation of P2X7R with these nucleotides leads to caspase independent death of NPCs. P2X7R ligation induces NPC lysis/necrosis demonstrated by cell membrane disruption accompanied with loss of mitochondrial membrane potential. In most cells that express P2X7R, sustained stimulation with ATP leads to the formation of a non-selective pore allowing the entry of solutes up to 900 Da, which are reportedly involved in P2X7R-mediated cell lysis. Surprisingly, activation of P2X7R in NPCs causes cell death in the absence of pore formation. Our data support the notion that high levels of extracellular ATP in inflammatory CNS lesions may delay the successful graft of NPCs used to replace cells and repair CNS damage.  相似文献   

12.
Microsomal prostaglandin E synthase (mPGES)-1, which is dramatically induced in macrophages by inflammatory stimuli such as lipopolysaccharide (LPS), catalyzes the conversion of cyclooxygenase-2 (COX-2) reaction product prostaglandin H(2) (PGH(2)) into prostaglandin E(2) (PGE(2)). The mPGES-1-derived PGE(2) is thought to help regulate inflammatory responses. On the other hand, excess PGE(2) derived from mPGES-1 contributes to the development of inflammatory diseases such as arthritis and inflammatory pain. Here, we examined the effects of liver X receptor (LXR) ligands on LPS-induced mPGES-1 expression in murine peritoneal macrophages. The LXR ligands 22(R)-hydroxycholesterol (22R-HC) and T0901317 reduced LPS-induced expression of mPGES-1 mRNA and mPGES-1 protein as well as that of COX-2 protein. However, LXR ligands did not influence the expression of microsomal PGES-2 (mPGES-2) or cytosolic PGES (cPGES) protein. Consequently, LXR ligands suppressed the production of PGE(2) in macrophages. These results suggest that LXR ligands diminish PGE(2) production by inhibiting the LPS-induced gene expression of the COX-2-mPGES-1 axis in LPS-activated macrophages.  相似文献   

13.
Altered cytokine production in mice lacking P2X(7) receptors   总被引:31,自引:0,他引:31  
The P2X(7) receptor (P2X(7)R) is an ATP-gated ion channel expressed by monocytes and macrophages. To directly address the role of this receptor in interleukin (IL)-1 beta post-translational processing, we have generated a P2X(7)R-deficient mouse line. P2X(7)R(-/-) macrophages respond to lipopolysaccharide and produce levels of cyclooxygenase-2 and pro-IL-1 beta comparable with those generated by wild-type cells. In response to ATP, however, pro-IL-1 beta produced by the P2X(7)R(-/-) cells is not externalized or activated by caspase-1. Nigericin, an alternate secretion stimulus, promotes release of 17-kDa IL-1 beta from P2X(7)R(-/-) macrophages. In response to in vivo lipopolysaccharide injection, both wild-type and P2X(7)R(-/-) animals display increases in peritoneal lavage IL-6 levels but no detectable IL-1. Subsequent ATP injection to wild-type animals promotes an increase in IL-1, which in turn leads to additional IL-6 production; similar increases did not occur in ATP-treated, LPS-primed P2X(7)R(-/-) animals. Absence of the P2X(7)R thus leads to an inability of peritoneal macrophages to release IL-1 in response to ATP. As a result of the IL-1 deficiency, in vivo cytokine signaling cascades are impaired in P2X(7)R-deficient animals. Together these results demonstrate that P2X(7)R activation can provide a signal that leads to maturation and release of IL-1 beta and initiation of a cytokine cascade.  相似文献   

14.
The proinflammatory cytokines IL-1beta and IL-18 are inactive until cleaved by the enzyme caspase-1. Stimulation of the P2X7 receptor (P2X7R), an ATP-gated ion channel, triggers rapid activation of caspase-1. In this study we demonstrate that pretreatment of primary and Bac1 murine macrophages with TLR agonists is required for caspase-1 activation by P2X7R but it is not required for activation of the receptor itself. Caspase-1 activation by nigericin, a K+/H+ ionophore, similarly requires LPS priming. This priming by LPS is dependent on protein synthesis, given that cyclohexamide blocks the ability of LPS to prime macrophages for activation of caspase-1 by the P2X7R. This protein synthesis is likely mediated by NF-kappaB, as pretreatment of cells with the proteasome inhibitor MG132, or the IkappaB kinase inhibitor Bay 11-7085 before LPS stimulation blocks the ability of LPS to potentiate the activation of caspase-1 by the P2X7R. Thus, caspase-1 regulation in macrophages requires inflammatory stimuli that signal through the TLRs to up-regulate gene products required for activation of the caspase-1 processing machinery in response to K+-releasing stimuli such as ATP.  相似文献   

15.
Increased systemic level of inflammatory cytokines leads to numerous age-related diseases. In senescent macrophages, elevated prostaglandin E2 (PGE2) production contributes to the suppression of T cell function with aging, which increases the susceptibility to infections. However, the regulation of these inflammatory cytokines and PGE2 with aging still remains unclear. We have verified that cyclooxygenase (COX)-2 expression and PGE2 production are higher in LPS-stimulated macrophages from old mice than that from young mice. Downregulation of RXRα, a nuclear receptor that can suppress NF-κB activity, mediates the elevation of COX2 expression and PGE2 production in senescent macrophages. We also have found less induction of ABCA1 and ABCG1 by RXRα agonist in senescent macrophages, which partially accounts for high risk of atherosclerosis in aged population. Systemic treatment with RXRα antagonist HX531 in young mice increases COX2, TNF-α, and IL-6 expression in splenocytes. Our study not only has outlined a mechanism of elevated NF-κB activity and PGE2 production in senescent macrophages, but also provides RXRα as a potential therapeutic target for treating the age-related diseases.  相似文献   

16.
Alveolar macrophages play a crucial role in the pathogenesis of inflammatory airway diseases. By the generation and release of different inflammatory mediators they contribute to both recruitment of different leukocytes into the lung and to airway remodeling. A potent stimulus for the release of inflammatory cytokines is ATP, which mediates its cellular effects through the interaction with different membrane receptors, belonging to the P2X and P2Y families. The aim of this study was to characterize the biological properties of purinoceptors in human alveolar macrophages obtained from bronchoalveolar lavages in the context of inflammatory airway diseases. The present study is the first showing that human alveolar macrophages express mRNA for different P2 subtypes, namely P2X(1), P2X(4), P2X(5), P2X(7), P2Y(1), P2Y(2), P2Y(4), P2Y(6), P2Y(11), P2Y(13), and P2Y(14). We also showed that extracellular ATP induced Ca(2+) transients and increased IL-1beta secretion via P2X receptors. Furthermore, extracellular nucleotides inhibited production of IL-12p40 and TNF-alpha, whereas IL-6 secretion was up-regulated. In summary, our data further support the hypothesis that purinoceptors are involved in the pathogenesis of inflammatory lung diseases.  相似文献   

17.
Under normal and pathological conditions, brain cells release nucleotides that regulate a wide range of cellular responses due to activation of P2 nucleotide receptors. In this study, the effect of extracellular nucleotides on IFN gamma-induced NO release in murine BV-2 microglial cells was investigated. BV-2 cells expressed mRNA for metabotropic P2Y and ionotropic P2X receptors. Among the P2 receptor agonists tested, ATP, ADP, 2',3'-O-(4-benzoylbenzoyl)-ATP (BzATP), and 2-methylthio-ATP (2-MeSATP), but not UTP, enhanced IFN gamma-induced iNOS expression and NO production, suggesting that the uridine nucleotide receptors P2Y2 and P2Y6 are not involved in this response. U0126, an antagonist for MEK1/2, a kinase that phosphorylates the extracellular signal-regulated kinases ERK1/2, decreased IFN gamma-induced NO production. BzATP, a potent P2X7 receptor agonist, was more effective than ATP, ADP, or 2-MeSATP at enhancing IFN gamma-induced ERK1/2 phosphorylation. Consistent with activation of the P2X7 receptor, periodate-oxidized ATP, a P2X7 receptor antagonist, and suramin, a non-specific P2 receptor antagonist, inhibited the effect of ATP or BzATP on IFN gamma-induced NO production, whereas pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), an antagonist of several P2X receptor subtypes, was ineffective. These results suggest that activation of P2X7 receptors may contribute to inflammatory responses in microglial cells seen in neurodegenerative diseases.  相似文献   

18.
The purinergic P2X7 receptor (P2X7R) is an adenosine triphosphate (ATP) ligand-gated cationic channel receptor. P2X7R is closely associated with various inflammatory, immune, cancer, neurological, musculoskeletal and cardiovascular disorders. P2X7R is an interesting therapeutic target as well as molecular imaging target. This brief digest highlights the radioligands targeting P2X7R recently developed in drug discovery and molecular imaging agent development.  相似文献   

19.
In response to ATP binding, the P2X7R facilitates cation channel activation, nonspecific pore formation, rapid changes in plasma membrane morphology, and secretion of IL-1 beta from LPS-primed macrophages. To investigate the relationship between the P2X7R-dependent changes in plasma membrane organization and the release of IL-1 beta, we generated time-lapse movies of ATP-stimulated BAC1 murine macrophages in conjunction with biochemical analyses of IL-1 beta release. Similar image analyses in human embryonic kidney 293 cells expressing recombinant P2X7R (HEK-P2X7) permitted comparison of P2X7R-dependent effects in macrophage vs nonmacrophage backgrounds. Whereas HEK-P2X7 cells exhibit zeiotic blebbing within 5 min of ATP treatment, BAC1 macrophages initiated a distinct "tethered" blebbing 10 min after ATP addition. This blebbing was comparably induced by the P2X7R-selective agonist BzATP and was blocked by P2X7R inhibitors KN-62 and oxidized ATP. Blebbing was initiated at ATP concentrations > or = 3 mM, but optimal IL-1 beta release occurred at 1 mM ATP. P2X7R-dependent blebbing was abrogated in the presence of Rho-effector kinase inhibitors Fasudil and Y-27632, but ATP-induced IL-1 beta release was unaffected. ATP-induced activation of RhoA could be detected in both HEK-P2X7 cells and BAC1 murine macrophages. Thus, P2X7R activation signals distinct, novel membrane blebbing events (dependent on RhoA activation and Rho-effector kinase activity) and simultaneously initiates release of IL-1 beta. Our observations that blebbing and IL-1 beta release are dissociable suggest these events occur via parallel rather than convergent signaling pathways.  相似文献   

20.
Activation of the P2X7 receptor of macrophages plays an important role in inflammation. We recently reported that co-expression of P2X4 receptor with P2X7 receptor facilitates P2X7 receptor-mediated cell death via Ca(2+) influx. However, it remained unclear whether P2X4 receptor is involved in P2X7 receptor-mediated inflammatory responses, such as cytokine production. Here, we present evidence that P2X4 receptor modulates P2X7 receptor-dependent inflammatory functions. Treatment of mouse macrophage RAW264.7 cells with 1mM ATP induced high mobility group box 1 (HMGB1) release and IL-1β production via activation of P2X7 receptor. Knockdown of P2X4 receptor or removal of extracellular Ca(2+) suppressed ATP-induced release of both HMGB1 and IL-1β. On the other hand, knockdown of P2X4 receptor or removal of extracellular Ca(2+) enhanced P2X7-dependent LC3-II expression (an index of autophagy), suggesting that P2X4 receptor suppresses P2X7-mediated autophagy. Since LC3-II expression was inhibited by pretreatment with antioxidant and NADPH oxidase inhibitor, we examined P2X7-mediated production of reactive oxygen species (ROS). We found that activation of P2X7 receptor-mediated production of ROS was significantly facilitated in P2X4-knockdown cells, suggesting that co-expression of P2X4 receptor with P2X7 receptor may suppress anti-inflammatory function-related autophagy via suppression of ROS production. We conclude that co-expression of P2X4 receptor with P2X7 receptor enhances P2X7-mediated inflammation through both facilitation of release of cytokines and suppression of autophagy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号