首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
HIV infection and the progression to AIDS are characterized by the depletion of CD4(+) T cells through apoptosis of the uninfected bystander cells and the direct killing of HIV-infected cells. This is mediated in part by the human immunodeficiency virus, type 1 Tat protein, which is secreted by virally infected cells and taken up by uninfected cells and CD178 gene expression, which is critically involved in T cell apoptosis. The differing ability of HIV strains to induce death of infected and uninfected cells may play a role in the clinical and biological differences displayed by HIV strains. We chemically synthesized the 86-residue truncated short variant of Tat and its full-length form. We show that the trans-activation ability of Tat at the long terminal repeat does not correlate with T cell apoptosis but that the ability of Tat to up-regulate CD178 mRNA expression and induce apoptosis in T cells is critically dependent on the C terminus of Tat. Moreover, the greater 86-residue Tat-induced apoptosis is via the extrinsic pathway of CD95-CD178.  相似文献   

2.
3.
4.
Chen D  Wang M  Zhou S  Zhou Q 《The EMBO journal》2002,21(24):6801-6810
Depletion of CD4(+) T cells is the hallmark of HIV infection and AIDS progression. In addition to the direct killing of the viral-infected cells, HIV infection also leads to increased apoptosis of predominantly uninfected bystander cells. This is mediated in part through the HIV-1 Tat protein, which is secreted by the infected cells and taken up by uninfected cells. Using an affinity-purification approach, a specific and direct interaction of Tat with tubulin and polymerized microtubules has been detected. This interaction does not affect the secretion and uptake of Tat, but is critical for Tat to induce apoptosis. Tat binds tubulin/microtubules through a four-amino-acid subdomain of its conserved core region, leading to the alteration of microtubule dynamics and activation of a mitochondria-dependent apoptotic pathway. Bim, a pro-apoptotic Bcl-2 relative and a transducer of death signals initiated by perturbation of microtubule dynamics, facilitates the Tat-induced apoptosis. Our findings reveal a strategy by which Tat induces apoptosis by targeting the microtubule network. Thus HIV-1 Tat joins a growing list of pathogen-derived proteins that target the cytoskeleton of host cells.  相似文献   

5.
6.
The HIV-1 Tat protein is secreted by infected cells. Extracellular Tat can affect bystander uninfected T cells and induce numerous biological responses such as apoptosis and cytokine secretion. Tat is likely involved in several immune disorders during AIDS. Nevertheless, it is not known whether Tat triggers cell responses directly upon binding to signaling receptors at the plasma membrane or after delivery to the cytosol. The pathway that enables Tat to reach the cytosol is also unclear. Here we visualized Tat within T-cell-coated pits and endosomes. Moreover, inhibitors of clathrin/AP-2-mediated uptake such as chlorpromazine, activated RhoA, or dominant-negative mutants of Eps15, intersectin, dynamin, or rab5 impaired Tat delivery to the cytosol by preventing its endocytosis. Molecules neutralizing low endosomal pH or Hsp90 inhibitors abolished Tat entry at a later stage by blocking its endosomal translocation, as directly shown using a cell-free translocation assay. Finally, endosomal pH neutralization prevented Tat from inducing T-cell responses such as NF-kappaB activation, apoptosis, and interleukin secretion, indicating that cytosolic delivery is required for Tat signaling. Hence, Tat enters T cells essentially like diphtheria toxin, using clathrin-mediated endocytosis before low-pH-induced and Hsp90-assisted endosomal translocation. Cell responses are then induced from the cytosol.  相似文献   

7.
8.
To maintain bone mass turnover and bone mineral density (BMD), bone marrow (BM) mesenchymal stem cells (MSCs) are constantly recruited and subsequently differentiated into osteoblasts. HIV‐infected patients present lower BMD than non‐HIV infected individuals and a higher prevalence of osteopenia/osteoporosis. In antiretroviral treatment (ART)‐naive patients, encoded HIV proteins represent pathogenic candidates. They are released by infected cells within BM and can impact on neighbouring cells. In this study, we tested whether HIV proteins Tat and/or Nef could induce senescence of human BM‐MSCs and reduce their capacity to differentiate into osteoblasts. When compared to nontreated cells, MSCs chronically treated with Tat and/or Nef up to 30 days reduced their proliferative activity and underwent early senescence, associated with increased oxidative stress and mitochondrial dysfunction. The antioxidant molecule N‐acetyl‐ cysteine had no or minimal effects on Tat‐ or Nef‐induced senescence. Tat but not Nef induced an early increase in NF‐κB activity and cytokine/chemokine secretion. Tat‐induced effects were prevented by the NF‐κB inhibitor parthenolide, indicating that Tat triggered senescence via NF‐κB activation leading to oxidative stress. Otherwise, Nef‐ but not Tat‐treated cells displayed early inhibition of autophagy. Rapamycin, an autophagy inducer, reversed Nef‐induced senescence and oxidative stress. Moreover, Tat+Nef had cumulative effects. Finally, Tat and/or Nef decreased the MSC potential of osteoblastic differentiation. In conclusion, our in vitro data show that Tat and Nef could reduce the number of available precursors by inducing MSC senescence, through either enhanced inflammation or reduced autophagy. These results offer new insights into the pathophysiological mechanisms of decreased BMD in HIV‐infected patients.  相似文献   

9.
Soluble proteins of the human immunodeficiency virus (HIV) might play a significant role in the pathogenesis of HIV infection. The addition of synthetic Tat peptides, but not that of the recombinant Nef or Vif protein, inhibited proliferative responses of CD4+ tetanus antigen-specific, exogenous interleukin-2 (IL-2)-independent T-cell clones in a dose-dependent manner. In addition, Tat peptides inhibited the anti-CD3 monoclonal antibody-induced proliferative responses of both purified CD4+ and CD8+ T cells. Tat did not affect proliferative responses induced by phorbol myristate acetate plus ionomycin. The Tat peptides at the concentrations used (0.1 to 3 micrograms/ml) did not affect the viability of the cells as determined by trypan blue exclusion. Treatment of Tat peptides with polyclonal Tat antibodies abrogated the inhibitory effect of Tat. Soluble Tat proteins secreted by HeLa cells transfected with the tat gene also inhibited antigen-induced proliferation of the T-cell clones. Tat inhibited the anti-CD3 monoclonal antibody-induced IL-2 mRNA expression and IL-2 secretion but did not affect IL-2 receptor alpha-chain mRNA or protein expression on peripheral blood T cells. Finally, treatment of T-cell clones with the Tat peptide did not affect the antigen-induced increase in intracellular calcium, hydrolysis of phosphatidyl inositol to inositol trisphosphate, or translocation of protein kinase C from the cytosol to the membrane. These studies demonstrate that the mechanism of the Tat-mediated inhibition of T-cell functions involves a phospholipase C gamma 1-independent pathway.  相似文献   

10.
11.
Most mouse inbred strains carry two renin genes, Ren-1 and Ren-2, Renin-2, the product of the Ren-2 gene, is highly expressed in the submaxillary gland. It is a renin isoenzyme 96% similar to kidney renin-1, but unglycosylated. In order to investigate if glycosylation of prorenin affects its processing and/or secretion we have introduced two potential N-linked glycosylation sites into preprorenin-2 cDNA using site-directed mutagenesis. Expression plasmids were derived from wild-type and mutant renin-2 cDNA and were transfected into AtT20 cells. Both transfected cells, expressing glycosylated or unglycosylated forms, secreted prorenin and renin by the constitutive and regulated pathways, respectively. Prorenin was correctly processed to active renin but the second maturation site was not cleaved in AtT20 cells. The comparison of glycosylated and unglycosylated renin expression showed a diminished secretion of glycosylated active renin. Prevention of glycosylation with tunicamycin resulted in an improved secretion of active renin. Moreover, the efficiency of the trypsin activation in vitro was reduced for glycosylated prorenin and it was restored when the activation was performed on mutant renin secreted from tunicamycin-treated cells. It is proposed that the bulky carbohydrates attached to prorenin constitute a steric hindrance to proteolysis by maturation enzymes.  相似文献   

12.
The hallmark of infection with HIV-1 is progressive depletion and qualitative dysfunction of the CD4+ Th cell population in infected individuals. Clinical trials of antiretroviral agents have shown that, despite suppression of virus replication, regeneration of the T cell pool does not occur. One proposed explanation for the defective regenerative capacity of the CD4+ T cell pool is infection of early T lymphocyte progenitors or stem cells. An additional explanation could be failure of cells of the intrathymic microenvironment (thymic epithelial (TE) cells) to carry out critical nurturing functions for developing thymocytes, i.e., secretion of thymocyte-trophic cytokines and expression of adhesion molecules. This study examines the effect of HIV on cultured TE cells and determines the role of TE cells in the regulation of viral expression in chronically HIV-infected cells. We found no evidence of infection of TE cells after exposure to HIV-1. However, normal human serum induced secretion of IL-6 by TE cells; induction of TE IL-6 was partially blocked by anti-IFN-gamma antibodies. Moreover, supernatants from TE cells maintained in normal human serum up-regulated HIV replication in chronically HIV-1-infected cells. Because intrathymic T cell precursors can be infected with HIV and T cell precursors come into close contact with TE cells in the thymus, IL-6 secreted by TE cells during normal intrathymic development may induce HIV expression in infected thymocytes in vivo and promote the intrathymic spread of HIV.  相似文献   

13.
Endocytosis and targeting of exogenous HIV-1 Tat protein.   总被引:32,自引:1,他引:31       下载免费PDF全文
The human immunodeficiency virus-1 (HIV-1) Tat protein has previously been shown to transactivate the HIV-1-LTR when added exogenously to HeLa, H9 lymphocytic and U937 promonocytic cells growing in culture. Here we show that Tat enters these cells by adsorptive endocytosis. Tat appears to bind non-specifically to the cell surface, with greater than 10(7) sites per cell. A specific receptor was not detected by protein crosslinking experiments, and uptake was not affected by treating cells with trypsin, heparinase or neuraminidase. Uptake and transactivation could be inhibited by incubation with heparin, dextran sulfate, an anti-Tat monoclonal antibody, or by incubation at 4 degrees C. In contrast, transactivation by Tat was markedly stimulated by the addition of basic peptides, such as Tat 38-58 or protamine. Fluorescence experiments with rhodamine-conjugated Tat show punctate staining on the cell surface and then localization to the cytoplasm and nucleus. The lack of a specific receptor makes it unclear whether Tat uptake is biologically important in HIV infection, however, the efficiency of uptake raises the possibility that Tat may be useful for delivery of protein molecules into cells.  相似文献   

14.
HIV-1 transactivating protein Tat is essential for virus replication and progression of HIV disease. HIV-1 Tat stimulates transactivation by binding to HIV-1 transactivator responsive element (TAR) RNA, and while secreted extracellularly, it acts as an immunosuppressor, an activator of quiescent T-cells for productive HIV-1 infection, and by binding to CXC chemokine receptor type 4 (CXCR4) as a chemokine analogue. Here we present a novel HIV-1 Tat antagonist, a neomycin B-hexaarginine conjugate (NeoR), which inhibits Tat transactivation and antagonizes Tat extracellular activities, such as increased viral production, induction of CXCR4 expression, suppression of CD3-activated proliferation of lymphocytes, and upregulation of the CD8 receptor. Moreover, Tat inhibits binding of fluoresceine isothiocyanate (FITC)-labeled NeoR to human peripheral blood mononuclear cells (PBMC), indicating that Tat and NeoR bind to the same cellular target. This is further substantiated by the finding that NeoR competes with the binding of monoclonal Abs to CXCR4. Furthermore, NeoR suppresses HIV-1 binding to cells. Importantly, NeoR accumulates in the cell nuclei and inhibits the replication of M- and T-tropic HIV-1 laboratory isolates (EC(50) = 0.8-5.3 microM). A putative model structure for the TAR-NeoR complex, which complies with available experimental data, is presented. We conclude that NeoR is a multitarget HIV-1 inhibitor; the structure, and molecular modeling and dynamics, suggest its binding to TAR RNA. NeoR inhibits HIV-1 binding to cells, partially by blocking the CXCR4 HIV-1 coreceptor, and it antagonizes Tat functions. NeoR is therefore an attractive lead compound, capable of interfering with different stages of HIV infection and AIDS pathogenesis.  相似文献   

15.
16.
Tat is a multifunctional transactivator encoded by human immunodeficiency virus type 1 (HIV‐1). Tat transactivating activity is controlled by nicotinamide adenine nucleotide+ (NAD+)‐dependent deacetylase sirtuin 1 (SIRT1). Nicotinamide phosphoribosyltransferase (Nampt) is a rate‐limiting enzyme in the conversion of nicotinamide into NAD+, which is crucial for SIRT1 activation. Thus, the effect of Nampt on Tat‐regulated SIRT activity was studied in Hela‐CD4‐β‐gal (MAGI) cells. We demonstrated that Tat caused NAD+ depletion and inhibited Nampt mRNA and protein expression in MAGI cells. Resveratrol reversed Tat‐induced NAD+ depletion and inhibition of Nampt mRNA and protein expression. Further investigation revealed that Tat‐induced inhibition of SIRT1 activity was potentiated in Nampt‐knockdown by Nampt siRNA compared to treatment with Tat alone. Nampt siRNA potentiated Tat‐induced HIV‐1 transactivation in MAGI cells. Altogether, these results indicate that Nampt is critical in the regulation of Tat‐induced inhibition of SIRT1 activity and long terminal repeat (LTR) transactivation. Nampt/SIRT1 pathway could be a novel therapeutic tool for the treatment of HIV‐1 infection. J. Cell. Biochem. 110: 1464–1470, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
18.
The human immunodeficiency virus (HIV)-Tat protein has been implicated in the neuropathogenesis of HIV infection. However, its role in modulating astroglial-neuronal relationships is poorly understood. Astrocyte infection with HIV has been associated with rapid progression of dementia. We thus initially transfected astrocytes with HIV proviral DNA and confirmed Tat production in these cells. Subsequently, using stably Tat-producing asytocyte cell lines, we observed that Tat promoted astrocyte survival by causing a prominent antioxidant effect and resistance to cell injury in these cells. Tat was released extracellularly where it could be taken up by other cells. Tat remained functionally active following uptake and caused long terminal repeat (LTR) transactivation in lymphocytic and astrocytic cell lines. Tat released from astrocytes caused mitochondrial dysfunction, trimming of neurites, and cell death in neurons. Tat neurotoxicity was attenuated by anti-Tat antibodies, kynurenate or heparan sulfate. The neurotoxic effects of Tat were caused at concentrations lower than that needed to cause LTR transactivation. When Tat-expressing cells were injected into the rat dentate gyrus, Tat was taken up by granule cells and transported along neuronal pathways to the CA3 region where it caused glial cell activation and neurotoxicity. The arginine-rich domain of Tat was essential for both the LTR transactivation and the neurotoxic properties of Tat. Thus HIV-Tat is a potent neurotoxin that may act at distant sites while at the same time it assures its production by preventing cell death in astrocytes where it is produced.  相似文献   

19.
Recombinant human interferon-gamma (Hu-IFN-gamma) produced by Chinese-hamster ovary (CHO) cells was analysed by immunoprecipitation and SDS/PAGE. Up to twelve molecular-mass variants were secreted by this cell line. Three variants were recovered after enzymic removal of all N-linked oligosaccharides or when glycosylation was inhibited by tunicamycin. The presence of three polypeptide forms rather than a single form suggested that proteolytic cleavage had occurred at two sites in both the glycosylated and non-glycosylated forms. Proteolytically cleaved IFN-gamma was more prevalent in cell lysates than in the secreted glycoprotein. In common with naturally produced IFN-gamma, both fully glycosylated IFN-gamma (asparagine residues 28 and 100 occupied) and partially glycosylated product (thought to be substituted at position Asn28) were secreted. This was deduced from the Mr of the glycosylated products and the relative amounts of sialic acid expressed by each variant. In contrast with naturally produced IFN-gamma, non-glycosylated IFN-gamma was also secreted by the transfected CHO cells. When the cells were grown in batch culture in serum-free medium under pH and dissolved-oxygen control, the proportion of non-glycosylated IFN-gamma increased from 3 to 5% after 3 h, to 30% of the total IFN-gamma present after 195 h. This change in the proportion of glycosylated protein produced was not seen when metabolically labelled IFN-gamma was incubated for 96 h with cell-free supernatant from actively growing CHO cells. This implied that an alteration in intracellular glycosylation was occurring rather than a degradation of oligosaccharide side chains after secretion. The decrease in IFN-gamma glycosylation was independent of the glucose concentration in the culture medium, but could be related to specific growth and IFN-gamma production rates, as these declined steadily after 50 h of culture, in line with the increased production of non-glycosylated IFN-gamma.  相似文献   

20.
Epithelin/granulin growth factor is synthesized as a 593 amino acid precursor protein that contains 7.5 imperfectly conserved repeats of approximately 57 amino acids. Processed epithelin/granulin peptides have been isolated from vertebrate/invertebrate species and are growth factors implicated in epithelial and haemic cell function. Here they are identified as Human Immunodeficiency Virus (HIV) Tat binding proteins using the yeast two-hybrid assay. Intracellularly in yeast, mutation of selected cysteines in an epithelin/granulin dimeric repeat caused loss of binding to Tat exon 1. In vitro binding of HIV-1 and HIV-2 Tat to epithelin/granulin dimeric and monomeric repeats was also observed by GST-glutathione bead "pulldown" assays. Because Tat is actively secreted from HIV-infected cells and has been shown to serve as a mitogenic factor for angiogenesis and for Kaposi-like cells, our observations suggest that epithelin/granulin growth factors may function as biologically important extracellular Tat co-factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号