首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phylogenetic relationships among 36 Recent and 42 extinct species of the Caninae (Canidae) were analysed, based on 360 morphological, developmental, ecological, behavioural and cytogenetic characters and 24 mitochondrial and nuclear markers. Primary phylogenetic analyses were accompanied by experimental analyses based on various combinations of data partitions and taxon samples. Leptocyon was recovered as a paraphyletic stem lineage of the Caninae; monophyly/paraphyly of the fox‐like canids (Vulpini) remains uncertain; Urocyon and Metalopex form a clade, possibly sister to all non‐Leptocyon canids; Otocyon, Nyctereutes and Nurocyon form a clade; dog‐like canids (Canini) are monophyletic (with South American Cerdocyonina and Afro‐Holarctic Canina); all South American hypercarnivores (Canis gezi, Protocyon, Speothos, Theriodictis) form a clade, close to Chrysocyon and Dusicyon; Canis arnensis, C. ferox, C. thooides, C. lepophagus and Eucyon spp. are basal to the Canina; Lycaon is an isolated African hypercarnivore; Cuon and its relatives (Xenocyon, possibly also Canis antonii, C. falconeri and Cynotherium) form a clade close to Canis s. str.; C. edwardii–C. etruscus–C. mosbachensis–C. palmidens–C. variabilis and hypercarnivorous Canis armbrusteri–C. dirus clades belong to Canis s. str. As the highly homoplastic morphological characters connected to dietary biology are the prominent characters available for the key fossil species, we conclude that macroevolutionary and palaeoecological analyses of the extinct and extant Caninae were to some extent compromised by the phylogenies used.  相似文献   

2.
3.
We have reconstructed the phylogenetic relationships of 23 species in the dog family, Canidae, using DNA sequence data from six nuclear loci. Individual gene trees were generated with maximum parsimony (MP) and maximum likelihood (ML) analysis. In general, these individual gene trees were not well resolved, but several identical groupings were supported by more than one locus. Phylogenetic analysis with a data set combining the six nuclear loci using MP, ML, and Bayesian approaches produced a more resolved tree that agreed with previously published mitochondrial trees in finding three well-defined clades, including the red fox-like canids, the South American foxes, and the wolf-like canids. In addition, the nuclear data set provides novel indel support for several previously inferred clades. Differences between trees derived from the nuclear data and those from the mitochondrial data include the grouping of the bush dog and maned wolf into a clade with the South American foxes, the grouping of the side-striped jackal (Canis adustus) and black-backed jackal (Canis mesomelas) and the grouping of the bat-eared fox (Otocyon megalotis) with the raccoon dog (Nycteruetes procyonoides). We also analyzed the combined nuclear + mitochondrial tree. Many nodes that were strongly supported in the nuclear tree or the mitochondrial tree remained strongly supported in the nuclear + mitochondrial tree. Relationships within the clades containing the red fox-like canids and South American canids are well resolved, whereas the relationships among the wolf-like canids remain largely undetermined. The lack of resolution within the wolf-like canids may be due to their recent divergence and insufficient time for the accumulation of phylogenetically informative signal.  相似文献   

4.

A canid dentary is described from the Pliocene Glenns Ferry Formation at Hagerman Fossil Beds National Monument, south-central Idaho, USA. The specimen possesses traits in alliance with and measurements falling within or exceeding those of Canis lepophagus. The dentary, along with a tarsal IV (cuboid) and an exploded canine come from the base of the fossiliferous Sahara complex within the monument. Improved geochronologic control provided by new tephrochronologic mapping by the U.S. Geological Survey-National Park Service Hagerman Paleontology, Environments, and Tephrochronology Project supports an interpolated age of approximately 3.9 Ma, placing it in the early Blancan North American Land Mammal Age. It is conservatively referred to herein as Canis aff. C. lepophagus with the caveat that it is an early and robust example of that species. A smaller canid, initially assigned to Canis lepophagus and then to Canis ferox, is also known from Hagerman. Most specimens of Canis ferox, including the holotype, were recently reassigned to Eucyon ferox, but specimens from the Hagerman and Rexroad faunas were left as Canis sp. and possibly attributed to C. lepophagus. We agree that these smaller canids belong in Canis and not Eucyon but reject placing them within C. lepophagus; we refer to them here as Hagerman-Rexroad Canis. This study confirms the presence of two approximately coyote-sized canids at Hagerman and adds to the growing list of carnivorans now known from these fossil beds.

  相似文献   

5.
There has been considerable discussion on the origin of the red wolf and eastern wolf and their evolution independent of the gray wolf. We analyzed mitochondrial DNA (mtDNA) and a Y‐chromosome intron sequence in combination with Y‐chromosome microsatellites from wolves and coyotes within the range of extensive wolf–coyote hybridization, that is, eastern North America. The detection of divergent Y‐chromosome haplotypes in the historic range of the eastern wolf is concordant with earlier mtDNA findings, and the absence of these haplotypes in western coyotes supports the existence of the North American evolved eastern wolf (Canis lycaon). Having haplotypes observed exclusively in eastern North America as a result of insufficient sampling in the historic range of the coyote or that these lineages subsequently went extinct in western geographies is unlikely given that eastern‐specific mtDNA and Y‐chromosome haplotypes represent lineages divergent from those observed in extant western coyotes. By combining Y‐chromosome and mtDNA distributional patterns, we identified hybrid genomes of eastern wolf, coyote, gray wolf, and potentially dog origin in Canis populations of central and eastern North America. The natural contemporary eastern Canis populations represent an important example of widespread introgression resulting in hybrid genomes across the original C. lycaon range that appears to be facilitated by the eastern wolf acting as a conduit for hybridization. Applying conventional taxonomic nomenclature and species‐based conservation initiatives, particularly in human‐modified landscapes, may be counterproductive to the effective management of these hybrids and fails to consider their evolutionary potential.  相似文献   

6.
Trophic downgrading is a major concern for conservation scientists. The largest consumers in many ecosystems have become either rare or extirpated, leading to worry over the loss of their ecosystem function. However, trophic downgrading is not a uniquely modern phenomenon. The extinction of 34 genera of megafauna from North America ~13 000 yr ago must have led to widespread changes in terrestrial ecosystem function. Studies that have examined the event address impacts on vegetative structure, small mammal communities, nutrient cycling, and fire regimes. Relatively little attention has been paid to community changes at the top of the food chain. Here, we examine the response of carnivores in North America to the Pleistocene extinction. We employ fossil data to model the climatic niche of endemic canids, including the extinct dire wolf Canis dirus, over the last 20 000 yr. Quantifying the abiotic niche allows us to account for expected changes due to climate fluctuations over the Late Quaternary; deviations from expected responses likely reveal influences of competition and/or resource availability. We quantify the degree of niche conservatism and interspecific overlap to assess species and community responses among canids. We also include in our analyses a novel introduced predator, the domestic dog Canis lupus familiaris, which accompanied humans into the New World. We find that endemic canid species display low fidelity to their climatic niche through time, We find that survivors increasingly partition their climatic niche throughout the Holocene and, surprisingly, do not expand into niche space presumably vacated by the extinction of very large carnivores. These results suggest that loss of megaherbivores and competition with humans likely outweighed advantages conferred from the loss of very large predators. We also find that wolves and dogs decrease their niche overlap throughout the Holocene, suggesting a distinctive relationship between dogs and man.  相似文献   

7.
Zrzavý, J. & ?i?ánková, V. (2004). Phylogeny of Recent Canidae (Mammalia, Carnivora): relative reliability and utility of morphological and molecular datasets. — Zoologica Scripta, 33, 311–333. Phylogenetic relationships within the Canidae are examined, based on three genes (cytb, COI, COII) and 188 morphological, developmental, behavioural and cytogenetic characters. Both separate and combined phylogenetic analyses were performed. To inspect the phylogenetic ‘behaviour’ of individual taxa, basic phylogenetic analysis was followed by experimental cladistic analyses based on different data‐partition combinations and taxon‐removal analyses. The following phylogeny of the Recent Canidae is preferred: (1) Urocyon is the most basal canid; (2) Vulpes is a monophyletic genus (including Fennecus and Alopex); (3) the doglike canids (DC) form a clade (=Dusicyon + Pseudalopex + Lycalopex + Cerdocyon + Atelocynus + Chrysocyon + Speothos + Lycaon + Cuon + Canis), split into two subclades, South American and Afro‐Holarctic, with uncertain position of the Chrysocyon + Speothos subclade; (4) Canis is paraphyletic due to the position of Lycaon and Cuon. Otocyon and Nyctereutes are the most problematic canid genera, causing an unresolved branching pattern of Otocyon, Vulpes, Nyctereutes and DC clades. Reclassification of the two basal species of ‘Canis’ into separate genera is proposed (Schaeffia for ‘C.’ adustus, Lupulella for ‘C.’ mesomelas). Although the morphological dataset ranked poorly in both separate and simultaneous analyses (measured by number of minimum‐length topologies, relative number of resolved nodes in the strict consensus of all minimum‐length topologies, consistency and retention indices, nodal dataset influence, and number of extra steps required by the data partition to reach the topology of the combined tree), the morphological synapomorphies represent nearly one quarter of all synapomorphies in the combined tree. Among the hidden morphological support of the combined tree the developmental and behavioural characters are conspicuously abundant.  相似文献   

8.
We present the first reported occurrence of canid coprolites from the late Pleistocene of central Mexico. The sample consists of five associated coprolites recovered from Quaternary deposits that crop out in southeastern Hidalgo, central Mexico. The material shows several of the typical features of canid feces, including elongated cylindrical shape, uncommon and nondistinct constrictions, and one tapered end. The coprolites are similar in size to feces of North American foxes, such as Vulpes macrotis, V. lagopus, V. vulpes, and Urocyon cinereoargenteus; likewise, their size might be comparable to those of the Pleistocene canid Canis cedazoensis. The content of the studied coprolites consists of numerous teeth and bone fragments referable to the pocket gophers Pappogeomys or Cratogeomys. The coprolite content is related to a mostly carnivorous diet comparable to that of C. cedazoensis, wolves (Canis lupus, C. rufus, and C. dirus), and some foxes (V. macrotis and V. velox). As a result, it is proposed that the potential trace maker of the coprolites could be a form similar to a carnivorous fox or a small dog. These trace fossils represent the first indirect evidence of canids in the late Pleistocene of Hidalgo and provide additional information regarding the geographic distribution of the Canidae in temperate areas of North America that now are part of central Mexico during the second half of the Pleistocene.  相似文献   

9.
Mangrove killifishes of the genus Kryptolebias have been historically classified as rare because of their small size and cryptic nature. Major gaps in distribution knowledge across mangrove areas, particularly in South America, challenge the understanding of the taxonomic status, biogeographical patterns and genetic structuring of the lineages composing the self-fertilizing “Kryptolebias marmoratus species complex.” In this study, the authors combined a literature survey, fieldwork and molecular data to fill major gaps of information about the distribution of mangrove killifishes across western Atlantic mangroves. They found that selfing mangrove killifishes are ubiquitously distributed across the Caribbean, Central and South American mangroves and report 14 new locations in South America, extending the range of both the “Central clade” and “Southern clade” lineages which overlap in the Amazon. Although substantial genetic differences were found between clades, the authors also found further genetic structuring within clades, with populations in Central America, north and northeast Brazil generally showing higher levels of genetic diversity compared to the clonal ones in southeast Brazil. The authors discuss the taxonomic status and update the geographical distribution of the Central and Southern clades, as well as potential dispersal routes and biogeographical barriers influencing the distribution of the selfing mangrove killifishes in the western Atlantic mangroves.  相似文献   

10.
11.
Aim Several recent studies have suggested that a substantial portion of today’s plant diversity in the Neotropics has resulted from the dispersal of taxa into that region rather than by vicariance. In general, three routes have been documented for the dispersal of taxa onto the South American continent: (1) via the North Atlantic Land Bridge, (2) via the Bering Land Bridge, or (3) from Africa directly onto the continent. Here a species‐rich genus of Neotropical lowland rain forest trees (Guatteria, Annonaceae) is used as a model to investigate these three hypotheses. Location The Neotropics. Methods The phylogenetic relationships within the long‐branch clade of Annonaceae were reconstructed (using maximum parsimony, maximum likelihood and Bayesian inference) in order to gain insight in the phylogenetic position of Guatteria. Furthermore, Bayesian molecular dating and Bayesian dispersal–vicariance (Bayes‐DIVA) analyses were undertaken. Results Most of the relationships within the long‐branch clade of Annonaceae were reconstructed and had high support. However, the relationship between the Duguetia clade, the XylopiaArtabotrys clade and Guatteria remained unclear. The stem node age estimate of Guatteria ranged between 49.2 and 51.3 Ma, whereas the crown node age estimate ranged between 11.4 and 17.8 Ma. For the ancestral area of Guatteria and its sister group, the area North America–Africa was reconstructed in 99% of 10,000 DIVA analyses, while South America–North America was found just 1% of the time. Main conclusions The estimated stem to crown node ages of Guatteria in combination with the Bayes‐DIVA analyses imply a scenario congruent with an African origin followed by dispersal across the North Atlantic Land Bridge in the early to middle Eocene and further dispersal into North and Central America (and ultimately South America) in the Miocene. The phylogenetically and morphologically isolated position of the genus is probably due to extinction of the North American and European stem lineages in the Tertiary.  相似文献   

12.
To investigate the molecular phylogeny and evolution of the family Canidae, nucleotide sequences of the zinc-finger-protein gene on the Y chromosome (ZFY, 924-1146 bp) and its homologous gene on the X chromosome (ZFX, 834-839 bp) for twelve canid species were determined. The phylogenetic relationships among species reconstructed by the paternal ZFY sequences closely agreed with those by mtDNA and autosomal DNA trees in previous reports, and strongly supported the phylogenetic affinity between the wolf-like canids clade and the South American canids clade. However, the branching order of some species differed between phylogenies of ZFY and ZFX genes: Cuon alpinus and Canis mesomelas were included in the wolf-like canid clades in the ZFY tree, whereas both species were clustered in a group of Chrysocyon brachyurus and Speothos venaticus in the ZFX tree. The topology difference between ZFY and ZFX trees may have resulted from the two-times higher substitution rate of the former than the latter, which was clarified in the present study. In addition, two types of transposable element sequence (SINE-I and SINE-II) were found to occur in the ZFY final intron of the twelve canid species examined. Because the SINE-I sequences were shared by all the species, they may have been inserted into the ZFY of the common ancestor before species radiation in Canidae. By contract, SINE-II found in only Canis aureus could have been inserted into ZFY independently after the speciation. The molecular diversity of SINE sequences of Canidae reflects evolutionary history of the species radiation.  相似文献   

13.
Dermaphis coccidiformis sp. nov. (Hormaphidinae: Nipponaphidini) is described from Japan. Apterous adults of the species were found between winter buds (or between a winter bud and a leaf petiole) of the evergreen oaks Quercus glauca, Q. myrsinifolia and Q. salicina. Their morphology is peculiar in that their tergites are heavily sclerotized only in the part that seems to have been exposed to sunlight. The new species is also peculiar in that nymphs to be alates (sexuparae) were found on the upper surfaces of leaves of the host oak only during winter, from December to March or early April, before the bud break of the oak. Our molecular phylogenetic analysis indicated that the new species is closely related to Dermaphis spp., therefore it was placed in the genus. The analysis incidentally indicated that “Dinipponaphis” autumna, a monoecious species forming galls on Distylium racemosum, was included in the clade of the genus Dermaphis, and therefore it was transferred to this genus.  相似文献   

14.
rb cL DNA sequences, nuclear ribosomal ITS DNA sequences, morphology, and combined evidence. All these matrices produced patterns that agree on the broader Phylogenetic relationship within the clade. Duckeella is sister to all Pogoniinae, South American species of Cleistes are monophyletic, Pogonia is monophyletic and part of a larger clade of temperate taxa (Isotria, Pogonia, and Cleistes divaricata) from North America and Asia. The structure of the cladograms and the high levels of bootstrap support strongly indicate that the genus Cleistes is paraphyletic. The disjunction between tropical South American and temperate North American taxa as well as the disjunction between Pogonia ophioglossoides in eastern North America with P. minor and P. Japonica in eastern Asia are best explained by speciation following a northward longdistance dispersal and subsequent northwestward migration via Bering land bridges in the Tertiary. This phylogenetic study adds an additional herbaceous example to the growing list of plants that demonstrate this classical biogeographic pattern. Received 5 February 1999/ Accepted in revised form 9 June 1999  相似文献   

15.
Artiodactyl prey species of Chile, especially guanacos (Lama guanicoe), are reported to be very susceptible to predation by pack‐hunting feral dogs. It has been previously suggested that guanacos and endemic South American deer may have evolved in the absence of pack‐hunting cursorial predators. However, the paleoecology of canid presence in southern South America and Chile is unclear. Here, we review the literature on South American and Chilean canids, their distributions, ecologies, and hunting behavior. We consider both wild and domestic canids, including Canis familiaris breeds. We establish two known antipredator defense behaviors of guanacos: predator inspection of ambush predators, for example, Puma concolor, and rushing at and kicking smaller cursorial predators, for example, Lycalopex culpaeus. We propose that since the late Pleistocene extinction of hypercarnivorous group‐hunting canids east of the Andes, there were no native species creating group‐hunting predation pressures on guanacos. Endemic deer of Chile may have never experienced group‐hunting selection pressure from native predators. Even hunting dogs (or other canids) used by indigenous groups in the far north and extreme south of Chile (and presumably the center as well) appear to have been used primarily within ambush hunting strategies. This may account for the susceptibility of guanacos and other prey species to feral dog attacks. We detail seven separate hypotheses that require further investigation in order to assess how best to respond to the threat posed by feral dogs to the conservation of native deer and camelids in Chile and other parts of South America.  相似文献   

16.
The origin of endemic South American canid fauna has been traditionally linked with the rise of the Isthmus of Panama, suggesting that diversification of the dog fauna on this continent occurred very rapidly. Nevertheless, despite its obvious biogeographic appeal, the tempo of Canid evolution in South America has never been studied thoroughly. This issue can be suitably tackled with the inference of a molecular timescale. In this study, using a relaxed molecular clock method, we estimated that the most recent common ancestor of South American canids lived around 4 Ma, whereas all other splits within the clade occurred after the rise of the Panamanian land bridge. We suggest that the early diversification of the ancestors of the two main lineages of South American canids may have occurred in North America, before the Great American Interchange. Moreover, a concatenated morphological and molecular analysis put some extinct canid species well within the South American radiation, and shows that the dental adaptations to hypercarnivory evolved only once in the South American clade.  相似文献   

17.
The Empis macrorrhyncha group (Diptera: Empididae) from cool to warm temperate areas of South America and Australia is diagnosed and cladistically analysed, and five new species, Empis animosa sp.n. , E. austera sp.n. , E. maculosa sp.n. , E. occidentalis sp.n. and E. pedivillosula sp.n. , are described. Cladistic analysis of 23 adult morphological characters for 14 species of the group generated a single tree of 28 steps (CI = 0.82; RI = 0.93). Monophyly was established on the basis of a single apomorphy, possession of a bilobed cercus of the male hypopygium. Three main clades were inferred: clade 1 included three Patagonian and a single southwestern Australian species; clade 2 included two species from southeastern Australia; clade 3 included a large Patagonian group of five species and a single southeastern Australian species. The E. fulvicollis complex (clade 1) is a sister‐group of the E. macrorrhyncha complex (clades 2 + 3). A provisional historical biogeographic hypothesis is advanced correlating the appearance of the South American and Australian sister lineages with the timing of the break‐up of Gondwana.  相似文献   

18.
19.
The phylogeny of Cyclops (~30 spp.), a predominantly Palearctic cold‐adapted genus, was reconstructed based on morphological and molecular characters. The morphological analysis used extensive taxon sampling from the entire Holarctic range of the genus and included 53 morphological characters. Polymorphic traits were coded by the “unordered,” “unscaled” and “scaled” methods; maximum parsimony criterion was applied in tree building. Molecular phylogenetic reconstructions utilized partial nuclear 18S and 28S ribosomal genes, mitochondrial cytochrome oxidase I and complete internal transcribed spacer regions I and II, albeit with limited taxon sampling. Bayesian inference and maximum likelihood were used in these tree reconstructions. The molecular characters were used both in combination with morphology and as an independent test of the basal relationships inferred from morphology. Monophyly of the genus received strong support in both the morphological and molecular phylogenies; the basal relationships remain unresolved. The morphology‐based phylogenies, along with the geographic distribution patterns and ecological traits, supported monophyly of the ankyrae?ladakanus clade, scutifer‐clade (C. scutifer, C. jashnovi, C. columbianus), kolensis‐clade (C. kolensis, C. kikuchii, C. vicinus, C. furcifer, C. insignis, C. alaskaensis), abyssorum‐clade (C. abyssorum s. str., C. abyssorum larianus, C. ricae, C. sevani) and divergens‐clade (South Carpathian “Cyclops sp. Y,” C. mauritaniae, C. divergens, C. bohater, C. lacustris). Relationships among European and North American populations of C. scutifer and C. columbianus based on partial sequences of the 12S mitochondrial gene show C. scutifer to be paraphyletic, suggesting two independent invasions into North America via the Bering Land Bridge from Siberia to Alaska.  相似文献   

20.
Until recently, Histoplasma capsulatum was believed to harbour three varieties, var. capsulatum (chiefly a New World human pathogen), var. duboisii (an African human pathogen) and var. farciminosum (an Old World horse pathogen), which varied in clinical manifestations and geographical distribution. We analysed the phylogenetic relationships of 137 individuals representing the three varieties from six continents using DNA sequence variation in four independent protein‐coding genes. At least eight clades were idengified: (i) North American class 1 clade; (ii) North American class 2 clade; (iii) Latin American group A clade; (iv) Latin American group B clade; (v) Australian clade; (vi) Netherlands (Indonesian?) clade; (vii) Eurasian clade and (viii) African clade. Seven of eight clades represented genetically isolated groups that may be recognized as phylogenetic species. The sole exception was the Eurasian clade which originated from within the Latin American group A clade. The phylogenetic relationships among the clades made a star phylogeny. Histoplasma capsulatum var. capsulatum individuals were found in all eight clades. The African clade included all of the H. capsulatum var. duboisii individuals as well as individuals of the other two varieties. The 13 individuals of var. farciminosum were distributed among three phylogenetic species. These findings suggest that the three varieties of Histoplasma are phylogenetically meaningless. Instead we have to recognize the existence of genetically distinct geographical populations or phylogenetic species. Combining DNA substitution rates of protein‐coding genes with the phylogeny suggests that the radiation of Histoplasma started between 3 and 13 million years ago in Latin America.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号