首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The changes in the fish assemblage of the Capivara Reservoir, Brazil, were assessed over a 20 year period. Of 50 native fishes present in the initial samples, 27 were no longer present in the final samples, but there had been an addition of 11 invasive fishes, suggesting the occurrence of substantial shifts in fish diversity and abundance.  相似文献   

4.
5.
6.
1. Quantifying the relative importance of environmental filtering versus regional spatial structuring has become an intensively studied area in the context of metacommunity ecology. However, most studies have evaluated the role of environmental and spatial processes using taxonomic data sets of single snapshot surveys. 2. Here, we examined temporal changes in patterns and possible processes behind the functional metacommunity organization of stream fishes in a human‐modified landscape. Specifically, we (i) studied general changes in the functional composition of fish assemblages among 40 wadeable stream sites during a 3‐year study period in the catchment area of Lake Balaton, Hungary, (ii) quantified the relative importance of spatial and environmental factors as determinants of metacommunity structure and (iii) examined temporal variability in the relative role of spatial and environmental processes for this metacommunity. 3. Partial triadic analysis showed that assemblages could be effectively ordered along a functional gradient from invertebrate consuming species dominated by the opportunistic life‐history strategy, to assemblages with a diverse array of functional attributes. The analysis also revealed that functional fish assemblage structure was moderately stable among the sites between the sampling periods. 4. Despite moderate stability, variance partitioning using redundancy analyses (RDA) showed considerable temporal variability in the contribution of environmental and spatial factors to this pattern. The analyses also showed that environmental variables were, in general, more important than spatial ones in determining metacommunity structure. Of these, natural environmental variables (e.g. altitude, velocity) proved to be more influential than human‐related effects (e.g. pond area, % inhabited area above the site, nutrient enrichment), even in this landscape with relatively low variation in altitude and stream size. 5. Pond area was, however, the most important human stressor variable that was positively associated with the abundance of non‐native species with diverse functional attributes. The temporal variability in the relative importance of environmental and spatial factors was probably shaped by the release of non‐native fish from fish ponds to the stream system during flood events. 6. To conclude, both spatial processes and environmental control shape the functional metacommunity organization of stream fish assemblages in human‐modified landscapes, but their importance can vary in time. We argue, therefore, that metacommunity studies should better consider temporal variability in the ecological mechanisms (e.g. dispersal limitation, species sorting) that determine the dynamics of landscape‐level community organization.  相似文献   

7.
Climate change may shift interactions of invasive plants, herbivorous insects and native plants, potentially affecting biological control efficacy and non‐target effects on native species. Here, we show how climate warming affects impacts of a multivoltine introduced biocontrol beetle on the non‐target native plant Alternanthera sessilis in China. In field surveys across a latitudinal gradient covering their full distributions, we found beetle damage on A. sessilis increased with rising temperature and plant life history changed from perennial to annual. Experiments showed that elevated temperature changed plant life history and increased insect overwintering, damage and impacts on seedling recruitment. These results suggest that warming can shift phenologies, increase non‐target effect magnitude and increase non‐target effect occurrence by beetle range expansion to additional areas where A. sessilis occurs. This study highlights the importance of understanding how climate change affects species interactions for future biological control of invasive species and conservation of native species.  相似文献   

8.
1. North‐eastern Spain is a hot spot for the introduction of alien fish species, and its native fish fauna is one of the most endangered worldwide. We used an extensive data set from 2002 to 2003 and historical information from the area to characterize fish diversity and establish conservation priorities in river catchments. 2. Diversity indices were used to characterize fish diversity at the basin scale. An index of conservation status was applied for each species, which considers the occurrence, abundance and endemicity of each taxon. We used indirect ordination methods to test the relationship among basin features and to identify those variables most correlated with each other. To identify physical, biotic and environmental characteristics that seem to make a basin particularly susceptible to invasion, we performed a step‐wise multiple regression to examine the relationship between the number of native, translocated and introduced fish species (including the original native species richness of each basin), and landscape variables. 3. Over a period of approximately 50 years, the mean range size of native fish species has decreased by 60%. The greatest decline occurred in Gasterosteus gymnurus, Anguilla anguilla and Salaria fluviatilis, for which species over 75% of the original distribution area has been lost. The species with the highest conservation index were Gasterosteus gymnurus and Salaria fluviatilis. 4. Basin area and the catchment type explained 70% of variation in native species richness, whereas the number of dams and basin area accounted for more than 80% of variation in the number of introduced species. 5. The original native species richness and the number of introduced species at basin scale were not related, and thus there was no evidence of “biotic resistance” to invasion. The restoration of natural hydrologic processes and the development of specific management tools to protect native species, such as the prioritization of areas for fish conservation and the eradication of local populations of exotic species, are required to restore native fish fauna in these catchments.  相似文献   

9.
10.
1. The use of trait‐based approaches to examine the ecology of stream fish assemblages is increasing. However, selection of traits that will be useful in testing spatial or temporal hypotheses about ecological organisation is currently limited by availability of data, rather than empirical evaluation. 2. We analysed two data sets of stream fish assemblages to compare taxonomy and trait‐based approaches. The Wabash River temporal data set is based on 25 years of boat electrofishing collections over a 230‐km river distance. The Indiana Department of Environmental Management data set of stream collections in the state of Indiana was selected to represent a spatial database. We compared several trait‐based approaches: reproductive guilds, life history variables, biomonitoring metrics, ecosystem‐based functional guilds and feeding and ecosystem interaction guilds. 3. Analyses of fish assemblages that are designed to detect how environmental variation structures fish assemblages can expect similar results using taxonomic or trait‐based approaches. Results of trait‐based approaches will vary according to the spatial extent of the region and the number of unique entities of trait groups for a given data set. However, taxonomic analyses accounted for more variation than any trait‐based analyses.  相似文献   

11.
12.
Aim To determine relative effects of habitat type, climate and spatial pattern on species richness and composition of native and alien plant assemblages in central European cities. Location Central Europe, Belgium and the Netherlands. Methods The diversity of native and alien flora was analysed in 32 cities. In each city, plant species were recorded in seven 1‐ha plots that represented seven urban habitat types with specific disturbance regimes. Plants were classified into native species, archaeophytes (introduced before ad 1500) and neophytes (introduced later). Two sets of explanatory variables were obtained for each city: climatic data and all‐scale spatial variables generated by analysis of principal coordinates of neighbour matrices. For each group of species, the effect of habitat type, climate and spatial variables on variation in species composition was determined by variation partitioning. Responses of individual plant species to climatic variables were tested using a set of binomial regression models. Effects of climatic variables on the proportion of alien species were determined by linear regression. Results In all cities, 562 native plant species, 188 archaeophytes and 386 neophytes were recorded. Proportions of alien species varied among urban habitats. The proportion of native species decreased with increasing range and mean annual temperature, and increased with increasing precipitation. In contrast, proportions of archaeophytes and neophytes increased with mean annual temperature. However, spatial pattern explained a larger proportion of variation in species composition of the urban flora than climate. Archaeophytes were more uniformly distributed across the studied cities than the native species and neophytes. Urban habitats rich in native species also tended to be rich in archaeophytes and neophytes. Main conclusions Species richness and composition of central European urban floras are significantly affected by urban habitat types, climate and spatial pattern. Native species, archaeophytes and neophytes differ in their response to these factors.  相似文献   

13.
Non‐invasive methods of monitoring wild populations (such as genotyping faeces or hair) are now widely used and advocated. The potential advantages of such methods over traditional direct monitoring (such as live capture) are that accuracy improves because sampling of non‐trappable individuals may be possible, species in difficult and remote terrain can be surveyed more efficiently, and disturbance to animals is minimal. Few studies have assessed the effects of interactions between species on remote sampling success. We test the use of non‐invasive monitoring for the cryptic, forest‐dwelling, solitary and endangered bridled nailtail wallaby (Onychogalea fraenata) that is sympatric with the ecologically similar and more common black‐striped wallaby (Macropus dorsalis). Six types of hair traps were tested for 3668 trap days, and hairs were caught with about a 10% success rate. Camera traps showed that baited hair traps targeted both wallaby species. We microscopically identified hair as bridled nailtail wallaby or black‐striped wallaby. We compared these hairs and their genotypes (using seven microsatellite loci) with known bridled nailtail wallaby hairs and genotypes derived from animal trapping. Trapped bridled nailtail wallaby hairs had characteristics that could be mistaken for black‐stripe wallaby hairs; characteristics were not diagnostic. Genetic assignment tests consistently differentiated the known bridled nailtail wallaby samples from identified black‐striped wallaby samples, however genetic overlap between most of the microsatellite markers means that they are not suitable for species identification of single samples, with the possible exception of the microsatellite locus B151. With similar trapping effort and within the same area, live‐capture mark‐recapture techniques estimated 40–60 individuals and non‐invasive methods only detected 14 genotypes. A species‐specific genetic marker would allow more efficient targeting of bridled nailtail wallaby samples and increase capture rates.  相似文献   

14.
Phenology is a harbinger of climate change, with many species advancing flowering in response to rising temperatures. However, there is tremendous variation among species in phenological response to warming, and any phenological differences between native and non‐native species may influence invasion outcomes under global warming. We simulated global warming in the field and found that non‐native species flowered earlier and were more phenologically plastic to temperature than natives, which did not accelerate flowering in response to warming. Non‐native species' flowering also became more synchronous with other community members under warming. Earlier flowering was associated with greater geographic spread of non‐native species, implicating phenology as a potential trait associated with the successful establishment of non‐native species across large geographic regions. Such phenological differences in both timing and plasticity between native and non‐natives are hypothesised to promote invasion success and population persistence, potentially benefiting non‐native over native species under climate change.  相似文献   

15.
Ten tetranucleotide, dinucleotide and compound microsatellite loci were isolated and characterized for the round goby, Neogobius melanostomus. Analysis of 64 gobies from one nonindigenous population in Lake Erie, Ontario, Canada, indicated that allele number varied from three to 12 per locus, while observed heterozygosity ranged between 0.33 and 0.86. Eight of these primers showed some amplification in other species in four genera. These newly developed microsatellite markers are a powerful tool that will provide insights into population structure and dispersal of the round goby in their novel environment.  相似文献   

16.
17.
1. Climate change could be one of the main threats faced by aquatic ecosystems and freshwater biodiversity. Improved understanding, monitoring and forecasting of its effects are thus crucial for researchers, policy makers and biodiversity managers. 2. Here, we provide a review and some meta‐analyses of the literature reporting both observed and predicted climate‐induced effects on the distribution of freshwater fish. After reviewing three decades of research, we summarise how methods in assessing the effects of climate change have evolved, and whether current knowledge is geographically or taxonomically biased. We conducted multispecies qualitative and quantitative analyses to find out whether the observed responses of freshwater fish to recent changes in climate are consistent with those predicted under future climate scenarios. 3. We highlight the fact that, in recent years, freshwater fish distributions have already been affected by contemporary climate change in ways consistent with anticipated responses under future climate change scenarios: the range of most cold‐water species could be reduced or shift to higher altitude or latitude, whereas that of cool‐ and warm‐water species could expand or contract. 4. Most evidence about the effects of climate change is underpinned by the large number of studies devoted to cold‐water fish species (mainly salmonids). Our knowledge is still incomplete, however, particularly due to taxonomic and geographic biases. 5. Observed and expected responses are well correlated among families, suggesting that model predictions are supported by empirical evidence. The observed effects are of greater magnitude and show higher variability than the predicted effects, however, indicating that other drivers of changes may be interacting with climate and seriously affecting freshwater fish. 6. Finally, we suggest avenues of research required to address current gaps in what we know about the climate‐induced effects on freshwater fish distribution, including (i) the need for more long‐term data analyses, (ii) the assessment of climate‐induced effects at higher levels of organisation (e.g. assemblages), (iii) methodological improvements (e.g. accounting for uncertainty among projections and species’ dispersal abilities, combining both distributional and empirical approaches and including multiple non‐climatic stressors) and (iv) systematic confrontation of observed versus predicted effects across multi‐species assemblages and at several levels of biological organisation (i.e. populations and assemblages).  相似文献   

18.
19.
20.
Many successful invasions have taken place in systems where harmful disturbance has changed habitat conditions. However, less attention has been paid to the role of habitat restoration, which modifies habitats and thus also has the potential to facilitate invasions. We examined whether in‐stream habitat restorations have the potential to either facilitate or resist invasion by two widely introduced non‐native stream salmonids, Salvelinus fontinalis Mitchill and Oncorhynchus mykiss Walbaum, in Finland. A physical habitat simulation system was used to calculate whether the habitat area for the target species increased or decreased following the restorations. For comparison, we also reported results for four native stream fish species. The simulations showed that the restored streams provided the highest amount of usable habitat area for the native species, particularly for Salmo salar L. and Gottus gobio L. However, it was interesting to note that the restorations significantly increased habitat quality for the two non‐native species, especially at low flows. Nevertheless, the non‐native species had the lowest amount of usable habitat area overall. The modeling results indicated that not only habitat destruction but also habitat restoration could contribute to the spread of non‐native species. Fisheries and wildlife managers should be aware of the possibility, when restoring habitats in order to preserve native ecosystems, that non‐native species could manage to gain a foothold in restored habitats and use them as population sources for further spread. Knowing the widespread negative effect of non‐native species, this risk should not be underestimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号