首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Final maturation of eukaryotic ribosomes occurs in the cytoplasm and requires the sequential removal of associated assembly factors and processing of the immature 20S pre‐RNA. Using cryo‐electron microscopy (cryo‐EM), we have determined the structure of a yeast cytoplasmic pre‐40S particle in complex with Enp1, Ltv1, Rio2, Tsr1, and Pno1 assembly factors poised to initiate final maturation. The structure reveals that the pre‐rRNA adopts a highly distorted conformation of its 3′ major and 3′ minor domains stabilized by the binding of the assembly factors. This observation is consistent with a mechanism that involves concerted release of the assembly factors orchestrated by the folding of the rRNA in the head of the pre‐40S subunit during the final stages of maturation. Our results provide a structural framework for the coordination of the final maturation events that drive a pre‐40S particle toward the mature form capable of engaging in translation.  相似文献   

2.
The 5'-exonuclease Rat1 degrades pre-rRNA spacer fragments and processes the 5'-ends of the 5.8S and 25S rRNAs. UV crosslinking revealed multiple Rat1-binding sites across the pre-rRNA, consistent with its known functions. The major 5.8S 5'-end is generated by Rat1 digestion of the internal transcribed spacer 1 (ITS1) spacer from cleavage site A(3). Processing from A(3) requires the 'A(3)-cluster' proteins, including Cic1, Erb1, Nop7, Nop12 and Nop15, which show interdependent pre-rRNA binding. Surprisingly, A(3)-cluster factors were not crosslinked close to site A(3), but bound sites around the 5.8S 3'- and 25S 5'-regions, which are base paired in mature ribosomes, and in the ITS2 spacer that separates these rRNAs. In contrast, Nop4, a protein required for endonucleolytic cleavage in ITS1, binds the pre-rRNA near the 5'-end of 5.8S. ITS2 was reported to undergo structural remodelling. In vivo chemical probing indicates that A(3)-cluster binding is required for this reorganization, potentially regulating the timing of processing. We predict that Nop4 and the A(3) cluster establish long-range interactions between the 5.8S and 25S rRNAs, which are subsequently maintained by ribosomal protein binding.  相似文献   

3.
Malygin AA  Karpova GG 《FEBS letters》2010,584(21):4396-4400
After resolving the crystal structure of the prokaryotic ribosome, mapping the proteins in the eukaryotic ribosome is a challenging task. We applied RNase H digestion to split the human 40S ribosomal subunit into head and body parts. Mass spectrometry of the proteins in the 40S subunit head revealed the presence of eukaryote-specific ribosomal protein S28e. Recombinant S28e was capable of specific binding to the 3′ major domain of the 18S rRNA (Ka = 8.0 ± 0.5 × 109 M−1). We conclude that S28e has a binding site on the 18S rRNA within the 40S subunit head.

Structured summary

MINT-8044084: S8 (uniprotkb:P62241) and S19 (uniprotkb:P39019) colocalize (MI:0403) by cosedimentation through density gradient (MI:0029)MINT-8044095: S8 (uniprotkb:P62241), S19 (uniprotkb:P39019) and S13 (uniprotkb:P62277) colocalize (MI:0403) by cosedimentation through density gradient (MI:0029)MINT-8044024: S29 (uniprotkb:P62273), S28 (uniprotkb:P62857), S21 (uniprotkb:P63220), S20 (uniprotkb:P60866), S26 (uniprotkb:P62854), S25 (uniprotkb:P62851), S12 (uniprotkb:P25398), S17 (uniprotkb:P08708), S19 (uniprotkb:P39019), S14 (uniprotkb:P62263), S16 (uniprotkb:P62249) and S11 (uniprotkb:P62280) colocalize (MI:0403) by cosedimentation through density gradient (MI:0029)MINT-8044065: S29 (uniprotkb:P62273), S28 (uniprotkb:P62857), S19 (uniprotkb:P39019), S14 (uniprotkb:P62263) and S16 (uniprotkb:P62249) colocalize (MI:0403) by cosedimentation through density gradient (MI:0029)  相似文献   

4.
Pre‐mRNA splicing is a critical event in the gene expression pathway of all eukaryotes. The splicing reaction is catalyzed by the spliceosome, a huge protein‐RNA complex that contains five snRNAs and hundreds of different protein factors. Understanding the structure of this large molecular machinery is critical for understanding its function. Although the highly dynamic nature of the spliceosome, in both composition and conformation, posed daunting challenges to structural studies, there has been significant recent progress on structural analyses of the splicing machinery, using electron microscopy, crystallography, and nuclear magnetic resonance. This review discusses key recent findings in the structural analyses of the spliceosome and its components and how these findings advance our understanding of the function of the splicing machinery.  相似文献   

5.
6.
The formation mechanism of Maillard peptides was explored in Maillard reaction through diglycine/glutathione(GSH)/(Cys‐Glu‐Lys‐His‐Ile‐Met)–xlyose systems by heating at 120 °C for 30–120 min. Maximum fluorescence intensity of Maillard reaction products (MRPs) with an emission wavelength of 420~430 nm in all systems was observed, and the intensity values were proportional to the heating time. Taken diglycine/GSH–[13C5]xylose systems as a control, it was proposed that the compounds with high m/z values of 379 and 616 have the high molecular weight (HMW) products formed by cross‐linking of peptides and sugar. In (Cys‐Glu‐Lys‐His‐Ile‐Met)–xylose system, the m/z value of HMW MRPs was not observed, which might be due to the weak signals of these products. According to the results of gel permeation chromatography, HMW MRPs were formed by Maillard reaction, especially in (Cys‐Glu‐Lys‐His‐Ile‐Met)–xylose system, the percentage of Maillard peptides reached 52.90%. It was concluded that Maillard peptides can be prepared through the cross‐linking of sugar and small peptides with a certain MW range. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

7.
In regulation of the developmental process, the balance between cellular proliferation and cell death is critical. Placental development tightly controls this mechanism, and increased apoptosis of placental trophoblasts can cause a variety of gynecological diseases. Members of the immortalization‐upregulated protein (IMUP) family are nuclear proteins implicated in SV40‐mediated immortalization and cellular proliferation; however, the mechanisms by which their expression is regulated in placental development are still unknown. We compared IMUP‐2 expression in normal and pre‐eclamptic placental tissues and evaluated the function of IMUP‐2 in HTR‐8/SVneo trophoblast cells under hypoxic conditions. IMUP‐2 was expressed in syncytiotrophoblasts and syncytial knots of the placental villi. IMUP‐2 expression was significantly higher in preterm pre‐eclampsia patients than in patients who went to term (P < 0.001); however, we observed no differences in IMUP‐2 expression between normal term patients with and without pre‐eclampsia. Hypoxic conditions increased apoptosis of HTR8/SVneo trophoblast cells and induced IMUP‐2 expression. Also, apoptosis of HTR‐8/SVneo trophoblast cells was increased after IMUP‐2 gene transfection. These results suggest that IMUP‐2 expression is specifically elevated in preterm pre‐eclampsia and under hypoxic conditions, and that IMUP‐2 induces apoptosis of the trophoblast. Therefore, IMUP‐2 might have functional involvement in placental development and gynecological diseases such as pre‐eclampsia. J. Cell. Biochem. 110: 522–530, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
9.
10.
The in vivo assembly of ribosomal subunits requires assistance by maturation proteins that are not part of mature ribosomes. One such protein, RbfA, associates with the 30S ribosomal subunits. Loss of RbfA causes cold sensitivity and defects of the 30S subunit biogenesis and its overexpression partially suppresses the dominant cold sensitivity caused by a C23U mutation in the central pseudoknot of 16S rRNA, a structure essential for ribosome function. We have isolated suppressor mutations that restore partially the growth of an RbfA-lacking strain. Most of the strongest suppressor mutations alter one out of three distinct positions in the carboxy-terminal domain of ribosomal protein S5 (S5) in direct contact with helix 1 and helix 2 of the central pseudoknot. Their effect is to increase the translational capacity of the RbfA-lacking strain as evidenced by an increase in polysomes in the suppressed strains. Overexpression of RimP, a protein factor that along with RbfA regulates formation of the ribosome''s central pseudoknot, was lethal to the RbfA-lacking strain but not to a wild-type strain and this lethality was suppressed by the alterations in S5. The S5 mutants alter translational fidelity but these changes do not explain consistently their effect on the RbfA-lacking strain. Our genetic results support a role for the region of S5 modified in the suppressors in the formation of the central pseudoknot in 16S rRNA.  相似文献   

11.
The bacterial ribosome has many functional ribosomal RNA (rRNA) sites. We have computationally analyzed the rRNA regions involved in the interactions between the 30S and 50S subunits. Various properties of rRNA such as solvent accessibility, opening energy, hydrogen bonding pattern, van der Waals energy, thermodynamic stability were determined. Based on these properties we selected rRNA targets for hybridization with complementary 2′‐O‐methyl oligoribonucleotides (2′‐OMe RNAs). Further, the inhibition efficiencies of the designed ribosome‐interfering 2′‐OMe RNAs were tested using a β‐galactosidase assay in a translation system based on the E. coli extract. Several of the oligonucleotides displayed IC50 values below 1 μM, which were in a similar range as those determined for known ribosome inhibitors, tetracycline and pactamycin. The calculated opening and van der Waals stacking energies of the rRNA targets correlated best with the inhibitory efficiencies of 2′‐OMe RNAs. Moreover, the binding affinities of several oligonucleotides to both 70S ribosomes and isolated 30S and 50S subunits were measured using a double‐filter retention assay. Further, we applied heat‐shock chemical transformation to introduce 2′‐OMe RNAs to E. coli cells and verify inhibition of bacterial growth. We observed high correlation between IC50 in the cell‐free extract and bacterial growth inhibition. Overall, the results suggest that the computational analysis of potential rRNA targets within the conformationally dynamic regions of inter‐subunit bridges can help design efficient antisense oligomers to probe the ribosome function.  相似文献   

12.
Site‐specific chemical cross‐linking in combination with mass spectrometry analysis has emerged as a powerful proteomic approach for studying the three‐dimensional structure of protein complexes and in mapping protein–protein interactions (PPIs). Building on the success of MS analysis of in vitro cross‐linked proteins, which has been widely used to investigate specific interactions of bait proteins and their targets in various organisms, we report a workflow for in vivo chemical cross‐linking and MS analysis in a multicellular eukaryote. This approach optimizes the in vivo protein cross‐linking conditions in Arabidopsis thaliana, establishes a MudPIT procedure for the enrichment of cross‐linked peptides, and develops an integrated software program, exhaustive cross‐linked peptides identification tool (ECL), to identify the MS spectra of in planta chemical cross‐linked peptides. In total, two pairs of in vivo cross‐linked peptides of high confidence have been identified from two independent biological replicates. This work demarks the beginning of an alternative proteomic approach in the study of in vivo protein tertiary structure and PPIs in multicellular eukaryotes.  相似文献   

13.
14.
15.
Pre‐harvest sprouting (PHS) is one of the major problems in cereal production worldwide, which causes significant losses of both yield and quality; however, the molecular mechanism underlying PHS remains largely unknown. Here, we identified a dominant PHS mutant phs9‐D. The corresponding gene PHS9 encodes a higher plant unique CC‐type glutaredoxin and is specifically expressed in the embryo at the late embryogenesis stage, implying that PHS9 plays some roles in the late stage of seed development. Yeast two‐hybrid screening showed that PHS9 could interact with OsGAP, which is an interaction partner of the abscicic acid (ABA) receptor OsRCAR1. PHS9‐ or OsGAP overexpression plants showed reduced ABA sensitivity in seed germination, whereas PHS9 or OsGAP knock‐out mutant plants showed increased ABA sensitivity in seed germination, suggesting that PHS9 and OsGAP acted as negative regulators in ABA signaling during seed germination. Interestingly, the germination of PHS9 and OsGAP overexpression or knock‐out plant seeds was weakly promoted by H2O2, implying that PHS9 and OsGAP could affect reactive oxygen species (ROS) signaling during seed germination. These results indicate that PHS9 plays an important role in the regulation of rice PHS through the integration of ROS signaling and ABA signaling.  相似文献   

16.
17.
18.
Successful pregnancy depends on the precise regulation of extravillous trophoblast cell invasion ability. MicroRNA‐210‐3p (miR‐210), which is increased in the placenta of pre‐eclampsia. Furthermore, miR‐210 could inhibit trophoblasts invasion and might act as a serum biomarker for pre‐eclampsia. Previous studies have demonstrated that miR‐210 regulates HUVEC (human umbilical vein endothelial cell)‐mediated angiogenesis by regulating the NOTCH1 signaling pathway. Studies by our group have previously identified that NOTCH1 plays a positive role in regulating trophoblast functions. However, the miR‐210/NOTCH1 signaling pathway in the regulation of trophoblasts and pre‐eclampsia has not been characterized. Therefore, this study was conducted to investigate the role of miR‐210 and its relationship with NOTCH1 in trophoblasts. We first examined the expression levels of miR‐210 and NOTCH1 in pre‐eclamptic and normals placentas. Next, the expression and location of miR‐210 and NOTCH1 in the first‐trimester villi, maternal decidua, and placenta of late pregnancy were shown via in situ hybridization and immunohistochemistry. The trophoblast cell line HTR‐8/SVneo was used to investigate the effects of miR‐210 on the expression of NOTCH1 and cell bioactivity by upregulation and downregulation strategies. The results showed that miR‐210 expression was increased, whereas NOTCH1 expression was decreased in pre‐eclamptic placenta compared with controls. Upregulation of miR‐210 decreased NOTCH1 expression, impaired HTR‐8/SVneo proliferation, migration, invasion, and tube‐like formation capabilities, and promoted apoptosis. In contrast, downregulation of miR‐210 resulted in the opposite effects. These findings suggested that miR‐210 might act as a contributor to trophoblast dysfunction by attenuating NOTCH1 expression.  相似文献   

19.
Crowded intracellular environments present a challenge for proteins to form functional specific complexes while reducing non‐functional interactions with promiscuous non‐functional partners. Here we show how the need to minimize the waste of resources to non‐functional interactions limits the proteome diversity and the average concentration of co‐expressed and co‐localized proteins. Using the results of high‐throughput Yeast 2‐Hybrid experiments, we estimate the characteristic strength of non‐functional protein–protein interactions. By combining these data with the strengths of specific interactions, we assess the fraction of time proteins spend tied up in non‐functional interactions as a function of their overall concentration. This allows us to sketch the phase diagram for baker's yeast cells using the experimentally measured concentrations and subcellular localization of their proteins. The positions of yeast compartments on the phase diagram are consistent with our hypothesis that the yeast proteome has evolved to operate closely to the upper limit of its size, whereas keeping individual protein concentrations sufficiently low to reduce non‐functional interactions. These findings have implication for conceptual understanding of intracellular compartmentalization, multicellularity and differentiation.  相似文献   

20.
This report shows how the internal transcribed spacer (ITS) region of nuclear ribosomal DNA (rDNA) can be used to determine the species identity of insect cell lines and to distinguish between cell lines derived from closely related insect species. A PCR‐RFLP method with the endonucleases HincII and PstI produces restriction fragment profiles that could distinguish between insect cell lines at the species level. Another PCR‐based method used three species‐specific primer sets, Ly‐ITS1/Ly‐ITS2, ITS1‐1/Ld‐ITS1 and Sf9‐F2/ITS4, to identify the cell lines from Lymantria xylina, L. dispar and Spodoptera frugiperda, respectively. This method also detected cell‐line cross‐contaminations (CLCC) with contamination levels as low as 1% (10 cells in a population of 1000 cells) even when the contaminating cells were from a closely related species. Compared with conventional methods used for cell‐line identification and CLCC detection, the methods presented here are fast and sensitive and could easily be applied to other cell culture laboratories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号