首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rapid infant weight gain is associated with increased abdominal adiposity, but there is no published report of the relationship of early infant growth to differences in specific adipose tissue depots in the abdomen, including visceral adipose tissue (VAT). In this study, we tested the associations of birth weight, infant weight gain, and other early life traits with VAT, abdominal subcutaneous adipose tissue (ASAT), and other body composition measures using magnetic resonance imaging (MRI) and dual‐energy X‐ray absorptiometry in middle adulthood (mean age = 46.5 years). The sample included 233 appropriate for gestational age singleton white children (114 males) enrolled in the Fels Longitudinal Study. Multivariate‐adjusted general linear models were used to test the association of infant weight gain (from 0 to 2 years), maternal BMI, gestational age, parity, maternal age, and other covariates with adulthood body composition. Compared to infants with slow weight gain, rapid weight gain was associated with elevated risk of obesity (adjusted odds ratio = 4.1, 95% confidence interval = 1.4, 11.1), higher total body fat (+7 kg, P = 0.0002), percent body fat (+5%, P = 0.0006), logVAT mass (+0.43 kg, P = 0.02), logASAT mass (+0.47 kg, P = 0.001), and percent abdominal fat (+5%, P = 0.03). There was no evidence that the increased abdominal adipose tissue was due to a preferential deposition of VAT. In conclusion, rapid infant weight gain is associated with increases in both VAT and ASAT, as well as total adiposity and the risk of obesity in middle adulthood.  相似文献   

2.
Excess weight gain during both pre‐ and postnatal life increases risk for obesity in later life. Although a number of gestational and early life contributors to this effect have been identified, there is a dearth of research to examine whether gestational factors and weight gain velocity in infancy exert independent effects on subsequent body composition and fat distribution.

Objective:

To test the hypothesis that birth weight, as a proxy of prenatal weight gain, and rate of weight gain before 6 months would be associated with total and truncal adiposity at 12 months of age.

Design and Methods:

Healthy, term infants (N = 47) were enrolled in the study and rate of weight gain (g/day) was assessed at 0‐3 months, 3‐6 months, and 6‐12 months.

Results:

Total and regional body composition were measured by dual‐energy X‐ray absorptiometry (DXA) at 12 months. Stepwise linear regression modeling indicated that lean mass at 12 months, after adjusting for child length, was predicted by rate of weight gain during each discrete period of infancy (P < 0.05), and by maternal pre‐pregnancy BMI (P < 0.05). Total fat mass at 12 months was predicted by rate of weight gain during each discrete period (P < 0.01), and by older maternal age at delivery (P < 0.05). Trunk fat mass at 12 months, after adjusting for leg fat mass, was predicted by rate of weight gain from 0‐3 months and 3‐6 months (P < 0.05).

Conclusion:

Results suggest that growth during early infancy may be a critical predictor of subsequent body composition and truncal fat distribution.  相似文献   

3.
Objective: The presence of appetite hormones, namely glucagon‐like peptide‐1 (GLP‐1), peptide YY (PYY), and leptin in breast milk may be important in infant feeding regulation and infant growth. This study evaluated whether concentrations of GLP‐1, PYY, and leptin change across a single feeding (from fore‐ to hindmilk), and are associated with maternal and infant anthropometrics. Design and Methods: Thirteen postpartum women (mean ± SD: 25.6 ± 4.5 years, 72.0 ± 11.9 kg) provided fore‐ and hindmilk samples 4‐5 weeks after delivery and underwent measurements of body weight and composition by Dual X‐ray Absorptiometry. GLP‐1, PYY, and leptin concentrations were measured using radioimmunoassay, and milk fat content was determined by creamatocrit. Results: Concentration of GLP‐1 and content of milk fat was higher in hindmilk than foremilk (P ≤ 0.05). PYY and leptin concentrations did not change between fore‐ and hindmilk. Both leptin concentration and milk fat content were correlated with indices of maternal adiposity, including body mass index (r = 0.65‐0.85, P < 0.02), and fat mass (r = 0.65‐0.84, P < 0.02). Hindmilk GLP‐1 was correlated with infant weight gain from birth to 6 months (r = ?0.67, P = 0.034). Conclusion: The presence of appetite hormones in breast milk may be important in infant appetite and growth regulation.  相似文献   

4.
Animal studies demonstrate that circadian rhythm disruption during pregnancy can be deleterious to reproductive capacity and the long-term health of the progeny. Our previous studies in rats have shown that exposure of pregnant dams to an environment that significantly disrupts maternal circadian rhythms programs increased adiposity and poor glucose metabolism in offspring. In this study, we used mice with a ClockΔ19 mutation to determine whether foetal development within a genetically disrupted circadian environment affects pregnancy outcomes and alters the metabolic health of offspring. Ten female ClockΔ19+MEL mutant mice were mated with 10 wildtype males, and 10 wildtype females were mated with 10 ClockΔ19+MEL mutant males. While genetically identical, the heterozygote foetuses were exposed to either a normal (wildtype dams) or disrupted (ClockΔ19+MEL mutant dams) circadian environment during gestation. Pregnancy outcomes including time to mate, gestation length, litter size and birth weight were assessed. One male and one female offspring from each litter were assessed for postnatal growth, body composition, intraperitoneal glucose tolerance test and intraperitoneal insulin tolerance test at 3 and 12 months of age. There was no effect of maternal genotype on pregnancy outcomes, with days to plug, gestation length, litter size and perinatal mortality not significantly different between wildtype and ClockΔ19+MEL mutant dams. Similarly, there was no effect of maternal genotype on weight of the offspring at birth or at any stage of postnatal growth. While there was an effect of sex on various tissue weights at 3 and 12 months of age, there were minimal effects of maternal genotype. Relative adrenal weight was significantly reduced (?32%) in offspring from ClockΔ19+MEL mutant dams, whereas gastrocnemius muscle was significantly increased (+16%) at 3 months of age only. Intraperitoneal glucose tolerance tests at 3 months of age revealed female offspring from ClockΔ19+MEL mutant dams had significantly reduced area under the curve following glucose administration (?25%), although no differences were found at 12 months of age. There was no effect of maternal genotype on intraperitoneal insulin tolerance at 3 or 12 months of age for either sex. These results demonstrate that foetal growth within a genetically disrupted circadian environment during gestation has no effect on pregnancy success, and only marginal impacts upon the long-term metabolic health of offspring. These results do not support the hypothesis that circadian rhythm disruption during pregnancy programs poor metabolic homeostasis in offspring. However, when maintained on a 12L:12D photoperiod, the ClockΔ19+MEL mutant dams display relatively normal patterns of activity and melatonin secretion, which may have reduced the impact of the mutation upon foetal metabolic programming.  相似文献   

5.
Animal models to study the causes and consequences of obesity during infancy in humans would be valuable. In this study, we examine the patterns of fat mass gain from birth to 12 months in common marmosets (Callithrix jacchus). Lean and fat mass was measured by quantitative magnetic resonance at 1, 2, 6, and 12 months for 31 marmosets, 15 considered Normal and 16 considered Fat (>14% body fat) at 12 months. Animals were fed either the regular colony diet mix or a high‐fat variation. Subjects classified as Fat at 12 months already had greater lean mass (198.4 ± 6.2 g vs. 174.0 ± 6.8 g, P = 0.013) and fat mass (45.5 ± 5.0 g vs. 24.9 ± 3.4 g, P = .002) by 6 months. Body mass did not differ between groups prior to 6 months, however, by 1 month, Fat infants had greater percent body fat. Percent body fat decreased between 1 and 12 months in Normal subjects; in Fat subjects, it increased. The high‐fat diet was associated with body fat >14% at 6 months (P = 0.049), but not at 12 months. This shift was due to three subjects on the normal diet changing from Normal to Fat between 6 and 12 months. Although maternal prepregnancy adiposity did not differ, overall, between Normal and Fat subjects, the subjects Normal at 6 and Fat at 12 months all had Fat mothers. Therefore, diet and maternal obesity appear to have potentially independent effects that may also vary with developmental age. Although birth weight did not differ between groups, it was associated with fat mass gain from 1 to 6 months in animals with >14% body fat at 6 months of age (r = 0.612, P = 0.026); but not in 6‐month‐old animals with <14% body fat (r = –0.012, P = 0.964). Excess adiposity in captive marmosets develops by 1 month. Birth weight is associated with adiposity in animals vulnerable to obesity.  相似文献   

6.

Background:

The delivery of excess maternal nutrients to the fetus is known to increase the risk of macrosomia, even among infants of women without gestational diabetes mellitus. With the current obesity epidemic, maternal adiposity and its associated effects on circulating adipokines and inflammatory proteins may now have a greater impact on fetal growth. We sought to evaluate the independent effects of maternal glycemia, lipids, obesity, adipokines and inflammation on infant birth weight.

Methods:

We included 472 women who underwent an oral glucose tolerance test in late pregnancy and were found not to have gestational diabetes; 104 (22.0%) had gestational impaired glucose tolerance. We also measured fasting levels of insulin, low-and high-density lipoprotein cholesterol, triglycerides, leptin, adiponectin and C-reactive protein. Obstetric outcomes were assessed at delivery.

Results:

The mean birth weight was 3481 g (standard deviation 493 g); 68 of the infants were large for gestational age. On multiple linear regression analysis, positive determinants of birth weight were length of gestation, male infant, weight gain during pregnancy up to the time of the oral glucose tolerance test, body mass index (BMI) before pregnancy and impaired glucose tolerance in pregnancy. Leptin, adiponectin and C-reactive protein levels were each negatively associated with birth weight. On logistic regression analysis, the significant metabolic predictors of having a large-for-gestational-age infant were BMI before pregnancy (odds ratio [OR] 1.16, 95% confidence interval [CI] 1.05–1.27, per 1 kg/m2 increase), weight gain during pregnancy up to the time of the oral glucose tolerance test (OR 1.12, 95% CI 1.05–1.19, per 1 kg increase) and leptin level (OR 0.50, 95% CI 0.30–0.82, per 1 standard deviation change).

Interpretation:

Among women without gestational diabetes, maternal adiposity and leptin levels were the strongest metabolic determinants of having a large-for-gestational-age infant rather than glucose intolerance and lipid levels.In 1952, Jørgen Pedersen proposed that delivery of excess maternal glucose to the fetus may be responsible for the increased risk of macrosomia among infants of women with diabetes during pregnancy.1 He postulated that maternal hyperglycemia leads to fetal hyperglycemia, which in turn stimulates insulin secretion in the fetus, the anabolic effects of which result in excessive fetal growth. Since its introduction, the Pedersen hypothesis has been further extended by other investigators and accepted as the pathophysiologic basis for increased risk of macrosomia among infants of women with diabetes during pregnancy.2,3 Accordingly, for pregnant women with either pre-existing diabetes or gestational diabetes, modern clinical practice focuses on normalizing blood glucose levels to reduce the risk of fetal hyperglycemia and hence the risk of fetal macrosomia and its associated adverse clinical outcomes (e.g., shoulder dystocia, birth injury, need for cesarean delivery).It is now recognized that the association between maternal nutrients and fetal growth is not restricted solely to women with diabetes. Several studies have shown associations linking maternal blood glucose and triglyceride levels with infant birth weight among women without gestational diabetes.47 This awareness has led to recent recommendations to lower the diagnostic thresholds for gestational diabetes on glucose tolerance testing in pregnancy, to optimize the detection of women who may be at risk of having a large-for-gestational-age infant.8Another important factor relevant to the risk of macrosomia is maternal adiposity.9 Indeed, the past decade has seen a marked increase in the prevalence of pre-existing obesity among pregnant women.10 In the context of the current obesity epidemic, we hypothesized that, in women without gestational diabetes, maternal adiposity and its associated effects on circulating levels of adipokines (e.g., adiponectin and leptin) and inflammatory proteins (C-reactive protein) may now have a greater impact than glucose and lipid levels on fetal growth. We conducted this study to evaluate the independent effects of maternal glycemia, lipid levels, obesity, adipokine levels and inflammation on the infant birth weight in a cohort of women without gestational diabetes.  相似文献   

7.
Objective: Animal models suggest that fetal exposure to glucocorticoids can program adiposity, especially central adiposity, later in life. We examined associations of maternal corticotropin‐releasing hormone (CRH) levels in the late 2nd trimester of pregnancy, a marker of fetal glucocorticoid exposure, with child adiposity at age 3 years. Research Methods and Procedures: We analyzed data from 199 participants in Project Viva, a prospective cohort study of pregnant women and their children, At age 3 years, the main outcomes were age‐sex‐specific BMI z score and the sum of subscapular (SS) and triceps (TR) skinfold thicknesses to represent overall adiposity, and ratio of SS to TR (SS:TR) to represent central adiposity. Results: Mean (standard deviation) maternal 2nd trimester log CRH was 4.94 (0.56) pg/mL. At age 3, mean (standard deviation) for BMI z score was 0.52 (1.02); for SS + TR, 16.51 (3.94) mm; and for SS:TR, 0.67 (0.17). Log CRH was mildly inversely correlated with birth weight (r = ?0.08), chiefly because of its association with length of gestation (r = ?0.21) rather than fetal growth (r = ?0.004). After adjustment for sociodemographic factors, maternal smoking, BMI, and gestational weight gain, fetal growth, length of gestation, breastfeeding duration, and (for SS:TR only) child's 3‐year BMI, each increment of 1 unit of log CRH was associated with a reduction in BMI z score [?0.43; 95% confidence interval (CI), ?0.73, ?0.14; p = 0.004] and possible reduction in SS + TR (?1.10; 95% CI, ?2.33, 0.14; p = 0.08). In contrast, log CRH was associated with higher SS:TR (0.07; 95% CI, 0.02, 0.13; p = 0.007). Discussion: Fetal exposure to glucocorticoids, although associated with an overall decrease in body size, may cause an increase in central adiposity.  相似文献   

8.
《Endocrine practice》2019,25(11):1158-1165
Objective: Macrosomia is closely associated with gestational diabetes mellitus (GDM) but its relationship with maternal intermediate state gestational blood glucose (ISGBG; normal fasting blood glucose and 7.8 mmol/L <1 hour blood glucose &lsqb;BG] <10 mmol/L or 6.7 mmol/L <2 hour BG <8.5 mmol/L) is unclear. Here, we analyzed the clinical characteristics and pregnancy outcomes and explored risk factors for macrosomia in women with ISGBG.Methods: A total of 847 women with normal glucose tolerance gestation, 330 with ISGBG, and 99 with GDM were included. Maternal and fetal clinical data were collected and 3-point BG following oral glucose tolerance test, fasting insulin, glycated hemoglobin, and blood lipids profile were measured.Results: The incidence rate of macrosomia among the neonates of women with ISGBG was as high as 10.9%. In the ISGBG group, prepregnancy body mass index (BMI), gestational weight gain (GWG) and the proportion of women with excessive GWG (eGWG) were significantly higher in women with macrosomia compared with those who delivered a normal weight neonate. In women with ISGBG, neonate weight was positively correlated with maternal prepregnancy weight (r = 0.183, P<.01), prepregnancy BMI (r = 0.135, P<.01), and GWG (r = 0.255, P<.01), and negatively correlated with high-density lipoprotein cholesterol (r = -0.172, P<.01). Nonetheless, only eGWG was an independent risk factor (odds ratio = 3.18, 95% confidence interval = 1.26 to 7.88, P<.05) for macrosomia. The risk of macrosomia in pregnant women with prepregnancy BMI <25 kg/m2 or BMI ≥25 kg/m2 and eGWG was 3.39 and 3.27 times, respectively.Conclusion: The incidence rate of macrosomia is increased in women with ISGBG and eGWG is the strongest independent risk factor. In order to reduce the risk for macrosomia, timely lifestyle intervention to promote appropriate weight gain during pregnancy deserves evaluation.Abbreviations: AUC = area under the curve; BG = blood glucose; 1 hour BG = 1 hour blood glucose after OGTT; 2 hour BG = 2 hour blood glucose after OGTT; BMI = body mass index; CI = confidence interval; eGWG = excessive gestational weight gain; FBG = fasting blood glucose; FINS = fasting insulin; GDM = gestational diabetes mellitus; HbA1c = glycated hemoglobin; HDL-C = high-density lipoprotein cholesterol; HOMA-IR = homeostasis model assessment of insulin resistance index; ISGBG = intermediate state gestation blood glucose; LDL-C = low-density lipoprotein cholesterol; Ln = natural logarithm; MLBW = mature low birth weight; NGTG = normal glucose tolerance gestation; OGTT = oral glucose tolerance test; OR = odds ratio; SD = standard deviation  相似文献   

9.
10.
Mothers vary in duration of breastfeeding. These individual differences are related to a variety of demographic and individual maternal factors including maternal hormones, mood and early experiences. However, little is known about the role of genetic factors. We studied single‐nucleotide polymorphisms (SNPs) in the OXT peptide gene (rs2740210; rs4813627) and the OXT receptor gene (OXTR rs237885) in two samples of mothers from the Maternal adversity, Vulnerability and Neurodevelopment study (MAVAN), a multicenter (Hamilton and Montreal, Canada) study following mothers and their children from pregnancy until 7 years of age. Data from the Hamilton site was the primary sample (n = 201) and data from Montreal was the replication sample (n = 151). Breastfeeding duration, maternal mood (measured by the CES‐D scale) and early life adversity (measured by the CTQ scale) were established during 12 months postpartum. In our primary sample, polymorphisms in OXT rs2740210, but not the other SNPs, interacted with early life adversity to predict variation in breastfeeding duration (overall F8,125 = 2.361, P = 0.021; interaction effect b = ?8.12, t = ?2.3, P = 0.023) and depression (overall F8,118 = 5.751, P ≤ 0.001; interaction effect b = 6.06, t = 3.13, P = 0.002). A moderated mediation model showed that higher levels of depression mediated the inverse relation of high levels of early life adversity to breastfeeding duration, but only in women possessing the CC genotype [effect a′ = ?3.3401, 95% confidence interval (CI) = ?7.9466 to ?0.0015] of the OXT SNP and not in women with the AA/AC genotype (a′ = ?1.2942, ns). The latter findings (moderated mediation model) were replicated in our Montreal sample (a′ = ?0.277, 95% CI = ?0.7987 to ?0.0348 for CC; a′ = ?0.1820, ns for AA/AC) .  相似文献   

11.
The aim was to determine maternal weight gain and body composition during pregnancy and 3 months postpartum in women with uncomplicated singleton and twin pregnancies and in women with gestational diabetes (GDM) and gestational hypertension (GH). This prospective study includes four groups of subjects: those with an uncomplicated pregnancy (n = 32), those with a diagnosis of GH (n = 28), those with a diagnosis of GDM (n = 52), and those with twin pregnancy (n = 11). Their body compositions were estimated by a bioimpedance analysis and fasting lipids and glucose levels were determined during the pregnancy and 3 months after pregnancy. Women with GDM were 11.7 kg heavier than the reference group before pregnancy, whereas weight before pregnancy was not different in other investigated groups. Weight loss after delivery was attenuated in GH group. Percentage body fat remained elevated in women with GDM (34.1 ± 7.0%) and hypertension (31.5 ± 6.4%) at 3 months after pregnancy. Also their total cholesterol and low‐density lipoprotein (LDL)‐cholesterol levels as well as fasting glucose remained elevated in comparison to values of the reference group. In conclusion, women with hypertensive pregnancies, though not overweight before pregnancy, gain and retain excess gestational weight and this leads to metabolic abnormalities similar to those seen in women GDM. Thus, postpartum period appears to be critical for weight management and interventional programs are called for.  相似文献   

12.
The prevalence of type 2 diabetes is higher among African Americans (AA) vs. European Americans (EA), is highest at middle age, and is related to obesity. This study was conducted to test the hypothesis that the association of adiposity (percent body fat (%fat)) with indexes of insulin sensitivity (SI) and β‐cell function would differ with ethnicity and age. Subjects were 168 healthy, normoglycemic AA and EA girls and women aged 7–12 years, 18–32 years, and 40–70 years. An intravenous glucose tolerance test (IVGTT) was used to assess indexes of insulin secretion and action: SI, acute C‐peptide secretion (X0); basal, first‐phase, second‐phase, and total β‐cell responsivity to glucose (PhiB, Phi1, Phi2, and PhiTOT, respectively); and the disposition index (DI = SI × PhiTOT). %Fat was assessed with dual energy X‐ray absorptiometrys. Adiposity was significantly associated with SI among EA (?0.57, P < 0.001) but not AA (?0.20, P = 0.09). Adiposity appeared stimulatory to β‐cell function in the two groups of younger subjects and in EA, but inhibitory in postmenopausal women, particularly AA postmenopausal women. Among AA postmenopausal women, %fat was inversely associated with Phi1 (r = ?0.57, P < 0.05) and PhiTOT (r = ?0.68, P < 0.01). These results suggest that the impact of adiposity on insulin secretion and action differs with age and ethnicity.  相似文献   

13.

Objective:

Overweight and obesity are associated with increased high‐sensitivity C‐reactive protein (hsCRP) levels. The purpose of this study was to determine if weight loss diets differing in fat, protein, or carbohydrate composition differentially reduce hsCRP.

Design and Methods:

POUNDS (preventing overweight using novel dietary strategies) LOST was a 2‐year trial of overweight and obese adults randomly allocated to one of four weight loss diets with targeted percentages of energy derived from fat, protein, and carbohydrates (20, 15, 65%; 20, 25, 55%; 40, 15, 45%; 40, 25, 35%, respectively). hsCRP was measured at baseline, 6, and 24 months among 710 participants, and adiposity as measured by dual X‐ray absorptiometry (N = 340) or abdominal computed tomography (N = 126) was correlated with hsCRP change.

Results:

At 6 months, hsCRP was reduced in all trial participants by ?24.7% (Interquartile range (IQR) +7%, ?50%), weight by ?6.7% (IQR ?3%, ?11%), and waist circumference by ?6.0% (IQR ?3%, ?10%) (all P < 0.002), with no significant differences according to dietary composition. The percent change in hsCRP at 6 and 24 months correlated modestly with change in weight, waist circumference, fasting insulin, fasting glucose, HOMA, and most lipid levels. Reductions in hsCRP persisted despite ~ 50% regain of weight by 24 months. The percent change in hsCRP at 24 months significantly correlated with changes in total body fat (r = 0.42), total abdominal adiposity (r = 0.52), subcutaneous abdominal adiposity (r = 0.52), visceral adiposity (r = 0.47), and hepatic tissue density (r = ?0.34) (all P < 0.0006).

Conclusion:

Weight loss decreased hsCRP by similar magnitude, irrespective of dietary composition. Clinicians concerned about inflammation and cardiovascular risk should recommend weight loss diets most likely to succeed for their patients.
  相似文献   

14.
Objective: Signaling through adrenergic receptors (ARs) by norepinephrine (NE) and epinephrine (Epi) regulates weight gain when mice are fed a high‐fat diet (HFD) by controlling diet‐induced thermogenesis. Thus, one would predict that mice unable to make NE/Epi because of inactivation of the dopamine β‐hydroxylase gene (Dbh‐null mice) would have a propensity to become obese. We characterized the response of Dbh‐null and control mice to a HFD. Research Methods and Procedures: Dbh‐null and control mice were fed an HFD or a regular diet (RD) for 2 months. Body weight, adiposity, muscle triglyceride levels, and adipocyte size were measured, as were circulating leptin, adiponectin, triglyceride, glucose, and insulin levels. A glucose tolerance test was also preformed. Results: Dbh‐null mice gain weight normally on an HFD and have the same adiposity. Their serum triglyceride and leptin levels are normal, but adipocytes are ~30% smaller than controls. Dbh‐null mice maintain low blood glucose levels and glucose tolerance when exposed to the HFD in contrast to controls. Discussion: Complete lack of NE/Epi does not predispose to obesity. Because mice lacking all three βARs become obese on an HFD, an imbalance of signaling through α‐ and βARs seems to be responsible for obesity. Surprisingly, Dbh‐null mice maintain glucose tolerance.  相似文献   

15.
《Endocrine practice》2018,24(4):361-368
Objective: Our pilot study examined the effectiveness of sitagliptin-metformin (SITA-MET), metformin (MET), and placebo (P) therapy on fasting and post–glucose challenge glucose levels in postpartum women with prior gestational diabetes mellitus (GDM) and impaired glucose regulation.Methods: Prediabetic women (N = 36, age 18 to 42 years) with recent GDM were randomized to P (one pill twice a day), MET (1,000 mg twice a day), or SITA-MET (50 mg SITA, 1,000 mg MET twice a day) for 16 weeks in a single-blind fashion. An individualized diet and exercise plan were provided to all participants. At baseline and 16 weeks, oral glucose tolerance tests were performed to assess glycemia, mean blood glucose (MBG), and calculate insulin sensitivity (IS) and secretion (SI) indexes. Lipid profile, thyroid-stimulating hormone level, and pregnancy test were performed in the baseline sample.Results: Thirty-three (92%) participants completed the study. At study end, 15 participants had normal glycemia (SITA-MET vs. MET, P; P = .035). MBG, IS, IS-SI index, and waist to height ratio were significantly improved with SITA-MET compared with MET and P treatment. SITAMET therapy was more effective in lowering body mass index and waist circumference compared to P treatment.Conclusion: Our pilot study is the first to evaluate the use of a dipeptidyl peptidase 4 inhibitor combined with MET in glucose-impaired women with a history of GDM. In this investigation, combination SITA-MET was found to be superior to MET and P in improving glycemia and metabolic measures in this prediabetic population.Abbreviations: BID = twice a day; BMI = body mass index; BP = blood pressure; BW = body weight; CHOL = cholesterol; DI = disposition index; DM = diabetes mellitus; DPP-4i = dipeptidyl peptidase 4 inhibitor; FBG = fasting blood glucose; GDM = gestational diabetes mellitus; GLP-1 = glucagon-like peptide 1; HDL-C = high-density-lipoprotein cholesterol; HOMA-IR = homeostasis model assessment of insulin resistance; IGI = insulinogenic index; IGR = impaired glucose regulation; IGT = impaired glucose tolerance; IR = insulin resistance; IS = insulin sensitivity; LDL-C = low-density-lipoprotein cholesterol; MBG = mean blood glucose; MET = metformin; OGTT = oral glucose tolerance test; P = placebo; SI = insulin secretion; SIOGTT = Matsuda's insulin sensitivity index; TRG = triglycerides; WC = waist circumference; WHR = waist to hip ratio; WHtR = waist to height ratio  相似文献   

16.

Background

Low birth weight followed by accelerated weight gain during early childhood has been associated with adverse metabolic and cardiovascular outcomes later in life. The aim of this study was to examine the impact of early infant weight gain on glucose metabolism and cardiovascular risk factors in adolescence and to study if the effect differed between adolescents born small for gestational age (SGA) vs. appropriate for gestational age (AGA).

Methodology/Principal Findings

Data from 30 SGA and 57 AGA healthy young Danish adolescents were analysed. They had a mean age of 17.6 years and all were born at term. Data on early infant weight gain from birth to three months as well as from birth to one year were available in the majority of subjects. In adolescence, glucose metabolism was assessed by a simplified intravenous glucose tolerance test and body composition was assessed by dual-energy X-ray absorptiometry. Blood pressures as well as plasma concentrations of triglycerides and cholesterol were measured. Early infant weight gain from birth to three months was positively associated with the fasting insulin concentration, HOMA-IR, basal lipid levels and systolic blood pressure at 17 years. There was a differential effect of postnatal weight gain on HOMA-IR in AGA and SGA participants (P for interaction = 0.03). No significant associations were seen between postnatal weight gain and body composition or parameters of glucose metabolism assessed by the simplified intravenous glucose tolerance test. In subgroup analysis, all associations with early infant weight gain were absent in the AGA group, but the associations with basal insulin and HOMA-IR were still present in the SGA group.

Conclusion

This study suggests that accelerated growth during the first three months of life may confer an increased risk of later metabolic disturbances – particularly of glucose metabolism – in individuals born SGA.  相似文献   

17.
Plasma total cysteine (tCys) is strongly and independently associated with obesity in large human cohorts, but whether the association is causal is unknown. Dietary cyst(e)ine increases weight gain in some rodent models. We investigated the body composition, metabolic rate and metabolic phenotype of mature C3H/HeH mice assigned to low-cystine (LC) or high-cystine (HC) diets for 12 weeks.Compared to LC mice, HC mice gained more weight (P=.004 for 12-week weight gain %), with increased fat mass and lean mass, and lowered O2 consumption and CO2 production by calorimetry. The HC mice had 30% increase in intestinal fat/body weight % (P=.003) and ~twofold elevated hepatic triglycerides (P=.046), with increased expression of hepatic lipogenic factors, peroxisome proliferator-activated receptor-γ and sterol regulatory element binding protein-1. Gene expression of both basal and catecholamine-stimulated lipolytic enzymes, adipose triglyceride lipase and hormone-sensitive lipase was inhibited in HC mice adipose tissue. The HC mice also had elevated fasting glucose (7.0 vs. 4.5 mmol/L, P<.001) and a greater area under the curve (P<.001) in intraperitoneal glucose tolerance tests, with enhanced expression of the negative regulator of insulin signaling, protein tyrosine phosphatase-1B, in liver and adipose tissue.Overall, high cystine intake promotes adiposity and an adverse metabolic phenotype in mice, indicating that the positive association of plasma tCys with obesity in humans may be causal.  相似文献   

18.
This study was designed to test the hypothesis that polymorphic variation in maternally transmitted foetal H19 alleles is associated with offspring size at birth and alterations in maternal glucose concentrations in pregnancy. Inferred parent of origins of transmitted alleles from 13 haplotype tag SNPs in the H19 gene region from 845 family (mother, partner, offspring) trios from the prospective Cambridge Baby Growth Study and 315 trios from the retrospective Cambridge Wellbeing Study cohorts were tested for association with offspring size at birth measures, as well as maternal glucose concentrations 1 h after a glucose load at week 28 of pregnancy. The foetal rs2071094 allele inherited from the mother was associated with increased birth weight (p = 0.0015) adjusted for gestational age, parity and sex. In the Cambridge Baby Growth Study it was also associated with increased head circumference (p = 0.004), length (p = 0.017) and sum of skinfold thicknesses (p = 0.017) at birth. In contrast to these results there was no association between offspring birth weight and either the maternal rs2071094 genotype or the foetal allele from the father. None of the foetal alleles or maternal genotypes were associated with maternal glucose concentrations, neither were there any other associations with offspring birth weight. In conclusion, consistent with imprinting, common polymorphic variation in foetal H19 alleles transmitted only from the mother are associated with birth weight and other markers of size at birth. Polymorphic variation in H19 is not associated with significant changes in maternal glucose tolerance in the third trimester of pregnancy.  相似文献   

19.
Excessive inflammation during pregnancy alters homeostatic mechanisms of the developing fetus and has been linked to adverse pregnancy outcomes. An anti-inflammatory diet could be a promising avenue to combat the pro-inflammatory state of pregnancy, particularly in obese women, but we lack mechanistic data linking this dietary pattern during pregnancy to inflammation and birth outcomes. In an ethnically diverse cohort of 1057 mother-child pairs, we estimated the relationships between dietary inflammatory potential [measured via the energy-adjusted dietary inflammatory index (E-DII?)] and birth outcomes overall, as well as by offspring sex and maternal pre-pregnancy body mass index (BMI). In a subset of women, we also explored associations between E-DII, circulating cytokines (n = 105), and offspring methylation (n = 338) as potential modulators of these relationships using linear regression. Adjusted regression models revealed that women with pro-inflammatory diets had elevated rates of preterm birth among female offspring [β = ?0.22, standard error (SE) = 0.07, P<0.01], but not male offspring (β=0.09, SE = 0.06, P<0.12) (Pinteraction = 0.003). Similarly, we observed pro-inflammatory diets were associated with higher rates of caesarean delivery among obese women (β = 0.17, SE = 0.08, P = 0.03), but not among women with BMI <25 kg/m2 (Pinteraction = 0.02). We observed consistent inverse associations between maternal inflammatory cytokine concentrations (IL-12, IL-17, IL-4, IL-6, and TNFα) and lower methylation at the MEG3 regulatory sequence (P<0.05); however, results did not support the link between maternal E-DII and circulating cytokines. We replicate work by others on the association between maternal inflammatory diet and adverse pregnancy outcomes and provide the first empirical evidence supporting the inverse association between circulating cytokine concentrations and offspring methylation.  相似文献   

20.

Objective:

High dietary calcium (Ca) in the context of a dairy food matrix has been shown to reduce obesity development and associated inflammation in diet‐induced obese (DIO) rodents. The influence of Ca and dairy on these phenotypes in the context of preexisting obesity is not known. Furthermore, interpretations have been confounded historically by differences in body weight gain among DIO animals fed dairy‐based protein or high Ca.

Design and Methods:

Adiposity along with associated metabolic and inflammatory outcomes were measured in DIO mice previously fattened for 12 week on a soy protein‐based obesogenic high fat diet (45% energy, 0.5% adequate Ca), then fed one of three high fat diets (n = 29‐30/group) for an additional 8 week: control (same as lead‐in diet), high‐Ca (1.5% Ca), or high‐Ca + nonfat dry milk (NFDM).

Results and Conclusion:

Mice fed high‐Ca + NFDM had modestly, but significantly, attenuated weight gain compared to mice fed high‐Ca or versus controls (P < 0.001), whereas mice fed high‐Ca alone had increased weight gain compared to controls (P < 0.001). Total measured adipose depot weights between groups were similar, as were white adipose tissue inflammation and macrophage infiltration markers (e.g. TNFα, IL‐6, CD68 mRNAs). Mice fed high‐Ca + NFDM had significantly improved glucose tolerance following a glucose tolerance test, and markedly lower liver triglycerides compared to high‐Ca and control groups. Improved metabolic phenotypes in prefattened DIO mice following provision of a diet enriched with dairy‐based protein and carbohydrates appeared to be driven by non‐Ca components of dairy and were observed despite minimal differences in body weight or adiposity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号