首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The white adipose tissue was initially largely known only as an energy storage tissue. It is now well recognized that white adipose tissue is a major endocrine and secretory organ, which releases a wide range of protein signals and factors termed adipokines. The regulation of adipocyte metabolism is an important factor for the understanding of obesity, and some mechanisms are still unknown. Many homeostatic processes, including appetite and food intake, are controlled by neuroendocrine circuits involving the central nervous system. There is substantial evidence demonstrating that the central nervous system also directly regulates adipocyte metabolism. In this review, we discuss the central actions of some peptides with an important role in energy balance regulation on adipocyte metabolism and the physiological relevance of these actions.  相似文献   

2.
脂肪组织可将多余能量以甘油三酯(triglycerides,TG)形式储存,在饥饿状态下可分解TG产生游离脂肪酸(free fatty acids,FFAs)为机体供能。此外,脂肪组织还具有体温调节和器官保护功能,并且越来越多的证据表明,脂肪组织也是一种重要的内分泌组织。脂肪组织分泌的蛋白质物质被称为脂肪细胞因子(adipokine),可通过自分泌、旁分泌和内分泌方式发挥多种生物学功能,例如调节能量摄入和能量消耗,调节糖脂代谢,抗炎和促炎反应。对整体而言,脂肪细胞因子可调节大脑、肝、肌肉、血管系统、心、胰腺和免疫系统等不同靶器官的生物反应。其中,脂肪细胞因子在糖脂代谢中发挥特定的作用,包括:葡萄糖代谢[瘦素(leptin)、脂联素(adiponectin)、抵抗素(resistin)];胰岛素敏感性 [瘦素、脂联素、锌-α2-糖蛋白(zinc-α2-glycoprotein,ZAG)];脂肪形成[骨形成蛋白4(bone morphogenetic protein 4,BMP4)]等生物反应过程。但目前对脂肪组织功能障碍与代谢之间机制的理解尚不完善。脂肪组织功能发生紊乱时,脂肪细胞因子的分泌会发生改变,并可能导致一系列与肥胖相关的代谢性疾病的发生。临床前和临床研究表明,激活或抑制特定脂肪细胞因子的信号转导可能是一种适合干预代谢疾病的方法。本文就部分脂肪细胞因子对代谢的调控作用做出综述,以增强对脂肪细胞因子功能的理解。  相似文献   

3.
Interest in the biology of white adipose tissue has risen markedly with the recent surge in obesity and its associated disorders. The tissue is no longer viewed simply as a vehicle for lipid storage; instead, it is recognized as a major endocrine and secretory organ. White adipocytes release a multiplicity of protein hormones, signals and factors, termed adipokines, with an extensive range of physiological actions. Foremost among these various adipokines is the cytokine-like hormone, leptin, which is synthesized predominantly in white fat. Leptin plays a critical role in the control of appetite and energy balance, with mutations in the genes encoding the hormone or its receptor leading to profound obesity in both rodents and man. Leptin regulates appetite primarily through an interaction with hypothalamic neuroendocrine pathways, inhibiting orexigenic peptides such as neuropeptide Y and orexin A, and stimulating anorexigenic peptides such as proopiomelanocortin. White fat also secretes several putative appetite-related adipokines, which include interleukin-6 and adiponectin, but whether these are indeed significant signals in the regulation of food intake has not been established. Through leptin and the other adipokines it is evident that adipose tissue communicates extensively with other organs and plays a pervasive role in metabolic homeostasis.  相似文献   

4.
Adipokines in inflammation and metabolic disease   总被引:3,自引:0,他引:3  
The worldwide epidemic of obesity has brought considerable attention to research aimed at understanding the biology of adipocytes (fat cells) and the events occurring in adipose tissue (fat) and in the bodies of obese individuals. Accumulating evidence indicates that obesity causes chronic low-grade inflammation and that this contributes to systemic metabolic dysfunction that is associated with obesity-linked disorders. Adipose tissue functions as a key endocrine organ by releasing multiple bioactive substances, known as adipose-derived secreted factors or adipokines, that have pro-inflammatory or anti-inflammatory activities. Dysregulated production or secretion of these adipokines owing to adipose tissue dysfunction can contribute to the pathogenesis of obesity-linked complications. In this Review, we focus on the role of adipokines in inflammatory responses and discuss their potential as regulators of metabolic function.  相似文献   

5.
Endocrinology of adipose tissue - an update.   总被引:1,自引:0,他引:1  
Adipose tissue is the body's largest repository of energy and it plays an important role in total energy homeostasis. Moreover, it is now well recognized as an endocrine organ. A wide range of different factors including complex proteins as well as fatty acids, prostaglandins, and steroids are either synthesized de novo or converted in adipose tissue and released into the blood stream. These so-called adipokines contribute to the development of obesity-related disorders, particularly type-2 diabetes (T2D) and cardiovascular disease. In this review, we present an overview on the endocrine functions of adipose tissue with a special focus on discoveries reported within the past 5 years.  相似文献   

6.
Adipose tissue is an endocrine and paracrine organ that releases a large number of bioactive mediators. Approximately 100 adipokines have been identified including cytokines, chemokines, growth factors and enzymes. The use of adipoproteomic analyses resulted in new findings and, in consequence, the number of new adipokines is rising rapidly. Novel adipokines such as visfatin, vaspin and omentin were discovered about five years ago. Visfatin and vaspin production and secretion take place in adipocytes, but omentin comes from the stromal cells of adipose tissue. Several differences are noticeable between these adipokines especially in correlation with obesity as visfatin and vaspin serum levels increase in obese subjects while omentin serum levels decrease. It has been suggested that these adipokines act as insulin-sensitizers/insulin-mimetics. Increasing number of publications reporting the role of new adipokines does not allow to assess clearly the influence of those adipokines on the pathogenesis of obesity.  相似文献   

7.
脂肪细胞具有贮存、供给能量和内分泌的功能,网膜素是其分泌的多种活性因子之一。网膜素与肥胖、糖脂代谢、胰岛素抵抗及动脉粥样硬化有明显的相关性,参与2型糖尿病的发生发展,本文现就网膜素对2型糖尿病的相关性作用作一简要综述。  相似文献   

8.
This review focuses on the role of adipokines in the maintenance of a healthy cardiovascular system, and the mechanisms by which these factors mediate the development of cardiovascular disease in obesity. Adipocytes are the major cell type comprising the adipose tissue. These cells secrete numerous factors, termed adipokines, into the blood, including adiponectin, leptin, resistin, chemerin, omentin, vaspin, and visfatin. Adipose tissue is a highly vascularised endocrine organ, and different adipose depots have distinct adipokine secretion profiles, which are altered with obesity. The ability of many adipokines to stimulate angiogenesis is crucial for adipose tissue expansion; however, excessive blood vessel growth is deleterious. As well, some adipokines induce inflammation, which promotes cardiovascular disease progression. We discuss how these 7 aforementioned adipokines act upon the various cardiovascular cell types (endothelial progenitor cells, endothelial cells, vascular smooth muscle cells, pericytes, cardiomyocytes, and cardiac fibroblasts), the direct effects of these actions, and their overall impact on the cardiovascular system. These were chosen, as these adipokines are secreted predominantly from adipocytes and have known effects on cardiovascular cells.  相似文献   

9.
White adipose tissue is a major endocrine and signalling organ. It secretes multiple protein hormones and factors, termed adipokines (such as adiponectin, leptin, IL-6, MCP-1, TNFalpha) which engage in extensive cross-talk within adipose tissue and with other tissues. Many adipokines are linked to inflammation and immunity and these include cytokines, chemokines and acute phase proteins. In obesity, adipose tissue exhibits a major inflammatory response with increased production of inflammation-related adipokines. It has been proposed that hypoxia may underlie the inflammatory response in adipose tissue and evidence that the tissue is hypoxic in obesity has been obtained in animal models. Cell culture studies have demonstrated that the expression and secretion of key adipokines, including leptin, IL-6 and VEGF, are stimulated by hypoxia, while adiponectin (with an anti-inflammatory action) production falls. Hypoxia also stimulates glucose transport by adipocytes and may have a pervasive effect on cell function within adipose tissue.  相似文献   

10.
11.
Objective: Increased leptin transgene expression locally in hypothalamic sites suppresses weight and energy intake, enhances thermogenic energy expenditure, and differentially modulates metabolic hormones for an extended period. We evaluated whether a similar localized expression of leptin transgene in the dorsal vagal complex (DVC) in the caudal brain stem that also displays the biologically relevant leptin receptor would reproduce these varied responses and thus demonstrate functional connectivity between the hypothalamus and DVC. Research Methods and Procedures: Adult female rats were microinjected with a recombinant adeno‐associated virus encoding either rat leptin or green fluorescent protein gene (control) in the DVC. Food intake and body weight were monitored weekly, and metabolic variables were analyzed at the end of 10 weeks. Results and Discussion: Increased leptin transgene expression in the DVC suppressed the time‐related increase in body weight accompanied by a transient decrease in food intake at week 1 post‐injection and little effect on thermogenic energy expenditure. That suppression of weight was due to decreased adiposity is shown by the markedly suppressed white adipose tissue‐derived hormones, leptin and adiponectin. Circulating concentrations of pancreatic insulin, gastric ghrelin, and glucose levels were unchanged. This segregation of the varied effects of leptin expression in hypothalamic sites vs. DVC endorses the view that among the various endocrine organs under sympathetic nervous system control, only those leptin‐activated neural circuits in the hypothalamus that suppress weight and adiposity on a long‐term basis transverse through DVC en route to white adipose tissue.  相似文献   

12.
While genome‐wide association studies as well as candidate gene studies have revealed a great deal of insight into the contribution of genetics to obesity development and susceptibility, advances in adipose tissue research have substantially changed the understanding of adipose tissue function. Its perception has changed from passive lipid storage tissue to active endocrine organ regulating and modulating whole‐body energy homeostasis and metabolism and inflammatory and immune responses by secreting a multitude of bioactive molecules, termed adipokines. The expression of human vaspin (serpinA12) is positively correlated to body mass index and insulin sensitivity and increases glucose tolerance in vivo, suggesting a compensatory role in response to diminished insulin signaling in obesity. Recently, considerable insight has been gained into vaspin structure, function, and specific target tissue‐dependent effects, and several lines of evidence suggest vaspin as a promising candidate for drug development for the treatment of obesity‐related insulin resistance and inflammation. These will be summarized in this review with a focus on molecular mechanisms and pathways. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

13.
The original concept of adipose tissue as an inert storage depot for the excess of energy has evolved over the last years and it is now considered as one of the most important organs regulating body homeostasis. This conceptual change has been supported by the demonstration that adipose tissue serves as a major endocrine organ, producing a wide variety of bioactive molecules, collectively termed adipokines, with endocrine, paracrine and autocrine activities. Adipose tissue is indeed a complex organ wherein mature adipocytes coexist with the various cell types comprising the stromal-vascular fraction (SVF), including preadipocytes, adipose-derived stem cells, perivascular cells, and blood cells. It is known that not only mature adipocytes but also the components of SVF produce adipokines. Furthermore, adipokine production, proliferative and metabolic activities and response to regulatory signals (i.e. insulin, catecholamines) differ between the different fat depots, which have been proposed to underlie their distinct association to specific diseases. Herein, we discuss the recent proteomic studies on adipose tissue focused on the analysis of the separate cellular components and their secretory products, with the aim of identifying the basic features and the contribution of each component to different adipose tissue-associated pathologies.  相似文献   

14.
The adipose tissue exerts a double function that is crucial for energy homeostasis. On the one hand, it is the only organ suited to stock triglycerides in highly specialized cells, the adipocytes. On the other hand, the adipose tissue produces biologically active molecules, collectively named "adipokines", which have been implicated in energy balance and glucose and lipid metabolism. Both adipocytes and cells of the stromal fraction participate in this function of secretion. The adipokines acts locally, in an autocrine or paracrine manner, and distantly (endocrine), on various targets, including muscles, the liver and the hypothalamus. Some adipokines, as TNFalpha and IL6, promote insulin resistance and inflammation, whereas others, as leptin and adiponectin, are required for energy and glucose homeostasis. In obesity, adipose cell hypertrophy and the recruitment of macrophages alter the secretory function and induce an inflammatory profile in the adipose tissue. Analyses of gene expression suggest that hypoxia is one of the factors favoring the attraction of the macrophages. The local and systemic consequences of interactions between macrophages and adipocytes are currently actively studied, to understand their potential implication in the metabolic and cardiovascular complications associated with obesity.  相似文献   

15.
With developments in the field of tissue engineering and regenerative medicine, the use of biological products for the treatment of various disorders has come into the limelight among researchers and clinicians. Among all the available biological tissues, research and exploration of adipose tissue have become more robust. Adipose tissue engineering aims to develop by-products and their substitutes for their regenerative and immunomodulatory potential. The use of biodegradable scaffolds along with adipose tissue products has a major role in cellular growth, proliferation, and differentiation. Adipose tissue, apart from being the powerhouse of energy storage, also functions as the largest endocrine organ, with the release of various adipokines. The progenitor cells among the heterogeneous population in the adipose tissue are of paramount importance as they determine the capacity of regeneration of these tissues. The results of adipose-derived stemcell assisted fat grafting to provide numerous growth factors and adipokines that improve vasculogenesis, fat graft integration, and survival within the recipient tissue and promote the regeneration of tissue are promising. Adipose tissue gives rise to various by-products upon processing. This article highlights the significance and the usage of various adipose tissue by-products, their individual characteristics, and their clinical applications.  相似文献   

16.
代谢综合症是一系列代谢和心血管功能失调的临床特征,包括中心性肥胖、高血压、血脂异常、高血糖及胰岛素抵抗等,其发病机制及如何预防及控制代谢综合症正日益成为目前的学术热点。目前已经公认,脂肪不仅是能量存储器官,也是一个重要的内分泌器官。脂肪组织分泌的生物活性分子被称为脂肪因子。近年来的研究表明,脂肪因子广泛参与肥胖、2型糖尿病、高血压病及心血管疾病等一系列代谢相关性疾病的病理生理过程。脂肪因子能通过介导一系列的信号转导通路,并广泛参与机体复杂的代谢平衡网络的调节。脂肪因子的失衡能导致机体发生对胰岛素敏感性改变等一系列的生物学反应,从而在肥胖和代谢综合症的病理过程中发挥重要的作用。本文综述了脂肪因子与代谢综合征的关系的研究进展。  相似文献   

17.
White adipose tissue, previously regarded as a passive lipid storage site, is now viewed as a dynamic tissue. It has the capacity to actively communicate by sending and receiving different types of signals. An overview of these signals, the external modulators that affect adipose tissue and the secreted signaling molecules, the adipokines, is presented. The secretory function is highlighted in relation to energy metabolism, inflammation and the extracellular matrix and placed in the context of adipose tissue biology. We observe that the endocrine function of adipocytes receives much attention, while its paracrine and autocrine functions are underestimated. Also, we provide examples that species specificity should not be neglected. We conclude that adipose tissue primarily is an energy storage organ, well supported by its secretory function.  相似文献   

18.
19.
Adipose tissue is a major endocrine organ, releasing signaling and mediator proteins, termed adipokines, via which adipose tissue communicates with other organs. Expansion of adipose tissue in obesity alters adipokine secretion, which may contribute to the development of metabolic diseases. Although recent profiling studies have identified numerous adipokines, the amount of overlap from these studies indicates that the adipokinome is still incompletely characterized. Therefore, we conducted a complementary protein profiling on concentrated conditioned medium derived from primary human adipocytes. SDS-PAGE/liquid chromatography-electrospray ionization tandem MS and two-dimensional SDS-PAGE/matrix-assisted laser desorption ionization/time of flight MS identified 347 proteins, 263 of which were predicted to be secreted. Fourty-four proteins were identified as novel adipokines. Furthermore, we validated the regulation and release of selected adipokines in primary human adipocytes and in serum and adipose tissue biopsies from morbidly obese patients and normal-weight controls. Validation experiments conducted for complement factor H, αB-crystallin, cartilage intermediate-layer protein, and heme oxygenase-1 show that the release and expression of these factors in adipocytes is regulated by differentiation and stimuli, which affect insulin sensitivity, as well as by obesity. Heme oxygenase-1 especially reveals to be a novel adipokine of interest. In vivo, circulating levels and adipose tissue expression of heme oxygenase-1 are significantly increased in obese subjects compared with lean controls. Collectively, our profiling study of the human adipokinome expands the list of adipokines and further highlights the pivotal role of adipokines in the regulation of multiple biological processes within adipose tissue and their potential dysregulation in obesity.  相似文献   

20.
Altered levels of adipokines, derived as a result of distorted adipocytes, are the major factors responsible for changing biochemical parameters in obesity that leads to the development of metabolic disorders such as insulin resistance and atherosclerosis. In our previous reports, chitosan oligosaccharides (CO) were proved to inhibit the differentiation of 3T3‐L1 adipocytes. In the present study, an attempt was made to investigate the anti‐obesity and anti‐diabetic effect of CO on ob/ob mice, by means of differential proteomic analysis of plasma. This was followed by immunoblotting, and gene expression in adipose tissue to clarify the molecular mechanism. CO treatment showed reduced diet intake (13%), body weight gain (12%), lipid (29%) and glucose levels (35%). 2‐DE results showed differential levels of five proteins namely RBP4, apoE, and apoA‐IV by >2‐fold down‐regulation and by >2‐fold of apoA‐I and glutathione peroxidase (GPx) up‐regulation after CO treatment. Immunoblotting studies of adiponectin and resistin showed amelioration in their levels in plasma. Furthermore, the results of gene expressions for adipose tissue specific TNF‐α, and IL‐6 secretary molecules were also down‐regulated by CO treatment. Gene expressions of PPARγ in adipose tissue were in good agreement with the ameliorated levels of adipokines, thereby improving the pathological state. Taken together, CO might act as a potent down‐regulator of obesity‐related gene expression in ob/ob mice that may normalize altered plasma proteins to overcome metabolic disorders of obesity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号