首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Journal of bryology》2013,35(3):309-319
Abstract

Sphagnum. inundatum Russow emend A. Eddy is lectotypified and combined with S. sub secundum Nees at the level of subspecies. S. auriculatum W.P. Schimper is a genetically distinct, but morphologically similar, species. S. subsecundum Nees subsp. subsecundum, S. subsecundum subsp. inundatum (Russ.) A. Eddy, stat. nov. and S. auriculatum W.P. Schimp. are described and figured and a key to their identification is given.  相似文献   

2.
《Journal of bryology》2013,35(2):169-179
Abstract

An examination of eighty-six samples of Sphagnum subsecundum sensu lato, using principal components analysis, discriminant analysis and cultivation experiments, has shown that the samples fall into two well-defined groups corresponding to S. subsecundum var. inundatum and S. subsecundum var. auriculatum. The best characters for separating these include the relative number of pores on the dorsal and ventral surfaces of the stem-leaves, the form of the branches and branch-leaves, and the proportion of the length of the stem-leaf with fibrils in the hyaline cells. The results provide limited evidence in favour of the inclusion of bavaricum and rufescens within var. inundatum and var. auriculatum respectively. The status of S. subsecundum var. subsecundum requires further study.  相似文献   

3.
《Journal of bryology》2013,35(4):435-441
Abstract

S. subsecundum Nees and S. auriculatum Schimp. are distinct species which can always be separated when well grown. Poorly grown S. auriculatum can resemble S. subsecundum, but can almost invariably be distinguished by careful selection of the larger stem leaves in any gathering. When the size of both stem and branch leaves is taken into account, confusion can hardly ever arise, even with depauperate forms. S. inundatum Russ. is not specifically distinct from S. auriculatum, and is recombined as S. auricula tum Schimp. var. inundatum (Russ.) M. O. Hill.  相似文献   

4.
Polyploidization is thought to result in instant sympatric speciation, but several cases of hybrid zones between one of the parental species and its polyploid derivative have been documented. Previous work showed that diploid Sphagnum lescurii is an allopolyploid derived from the haploids S. lescurii (maternal progenitor) and S. subsecundum (paternal progenitor). Here, we report the results from analyses of a population where allodiploid and haploid S. lescurii co-occur and produce sporophytes. We tested (i) whether haploids and diploids form hybrid triploid sporophytes; (ii) how hybrid and nonhybrid sporophytes compare in fitness; (iii) whether hybrid sporophytes form viable spores; (iv) the ploidy of any viable gametophyte offspring from hybrid sporophytes; (v) the relative viability of sporelings derived from hybrid and nonhybrid sporophytes; and (vi) if interploidal hybridization results in introgression between the allopolyploid and its haploid progenitor. We found that triploid hybrid sporophytes do occur and are larger than nonhybrid sporophytes, but exhibit very low germination percentages and produce sporelings that develop more slowly than those from nonhybrid sporophytes. All sporophytes attached to haploid gametophytes were triploid and were sired by diploid males, but all sporophytes attached to diploid gametophytes were tetraploid. This asymmetric pattern of interploidal hybridization is related to an absence of haploid male gametophytes in the population. Surprisingly, all sporelings from triploid sporophytes were triploid, yet were genetically variable, suggesting some form of aberrant meiosis that warrants further study. There was limited (but some) evidence of introgression between allodiploid and haploid S. lescurii.  相似文献   

5.
Genetic diversity and recombination underlie the long‐term persistence and evolution of species and are strongly influenced by population size, breeding system and plant longevity. Here, we study genetic structure in the rare Senecio macrocarpus in southeastern Australia to guide current conservation practices. Thirteen neutral microsatellite markers and two chloroplast regions were used to survey the 20 known S. macrocarpus populations and one sympatric S. squarrosus population, a morphologically similar species. All markers showed severe excess or deficit of heterozygotes and linkage disequilibrium was significant. Microsatellite markers revealed 100 multi‐locus genotypes (MLGs) from 523 S. macrocarpus individuals and a further 4 MLGs from 27 S. squarrosus individuals. MLGs varied in frequency and distribution. At the extremes, one MLG was found 108 times across the sampling region and 66 MLGs were found once. The MLGs of all 38 seedlings genotyped were identical to their seed parents implying an asexual origin. Chloroplast regions showed little variation within S. macrocarpus but differed from S. squarrosus. Chromosome counts for S. macrocarpus revealed the same ploidy level as S. squarrosus (2n = 6x = 60) and pollen–ovule ratios were typical of erechthitoid Senecio species showing self‐compatibility. Results suggest that establishment of small populations occur primarily from one extensive source population with indications that both apomixis and selfing may be contributing to its reproduction cycle. We suggest that this species may contribute to future evolutionary processes despite limited genotypic variation and restricted distribution. Its conservation will safeguard evolutionary processes that might occur through occasional outcrossing and hybridization events between sympatric species. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 115 , 256–269.  相似文献   

6.
Karyological and genomic in situ hybridization (GISH) approaches provided evidence of the parentage and origin of the hybrid species Narcissus obsoletus. Here, we demonstrate that the putative parental species, N. serotinus L. and N. elegans (Haw.) Spach, recently proposed because of their intermediate morphological traits, have participated in the hybridization process forming this taxon. Karyotype characterization of parental genomes in populations from S Spain and N Morocco has revealed differences in chromosome length and karyotype asymmetry, highlighting their diploid nature. Multicolour GISH on metaphase plates of N. obsoletus, with N. serotinus and N. elegans DNA used as probes, showed differential fluorescent staining of 10 and 20 chromosomes from parental genomes, respectively. Both parental genomes were detected in the allopolyploid, albeit in a duplicated manner. Secondary hybridization between N. obsoletus and N. serotinus was also detected karyologically. Little karyological differentiation between different geographic regions was found in either N. serotinus or N. obsoletus. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 159 , 477–498.  相似文献   

7.
Polyploidy and hybridization often provide genetic and phenotypic variability upon which evolutionary forces can act and are therefore considered as fundamental evolutionary processes for diversification in vascular plants, resulting in plant adaptation to changing environmental conditions. However, polyploid speciation is a complex process, potentially involving ecological divergence between lineages of different ploidies and/or genetic mixing with parental species. In the present study, we investigated the origins and dynamics of the Sicilian endemic orchid Neotinea commutata and its relationships with putative parental species. Molecular, cytogenetic and morphometric analyses revealed that N. commutata is a tetraploid derived from hybridization between N. tridentata and N. lactea. However, we also found variation in chromosome number and genome content within N. commutata, indicating that other events, including the possible replacement of the diploid progenitor N. tridentata by N. commutata, may have contributed, or still be contributing, to the evolutionary dynamics of this neoendemic taxon, which appears to be partially reproductively isolated from its progenitors. Distributional data indicate that the allopolyploid N. commutata has been able to establish and spread on the island when compared with its putative parents. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 173 , 707–720.  相似文献   

8.
Interspecific hybridization is an important evolutionary force promoting plant speciation. In the genus Onosma, one of three main evolutionary lineages presumably evolved by hybrid speciation. The assumed hybrid lineage (Heterotricha) consists of two species complexes with bimodal karyotypes containing different numbers of large (L) and small (S) chromosomes, the tetraploid Onosma pseudoarenaria (2n = 12 L + 14S) and the triploid Onosma arenaria (2n = 12 L + 8S). The latter represents a rare case of hemisexual, asymmetrically compensating allopolyploids. Representatives of the other two lineages of the genus, Haplotricha (2n = 12 L) and Asterotricha (2n = 14S), have been considered to be the ancestral taxa of O. pseudoarenaria and O. arenaria, although this has yet to be investigated critically. In the present study, we examined genetic [amplified fragment length polymorphism (AFLP), internal transcribed spacer (ITS) , and chloroplast (cp)DNA)], reproductive (pollen viability and seed production) and cytogenetic (chromosome counts, genome size assessment) patterns to resolve the hypothesized allopolyploid formations in the Heterotricha group, single or polytopic allopolyploid origins, as well as ongoing interspecific gene flow as one piece of evidence for understanding past hybrid speciation events in the genus. Discordant patterns in maternally inherited cpDNA (Heterotricha accessions bearing the haplotypes related to asterotrichous species) and the nuclear ITS and AFLP markers (Heterotricha clustering with haplotrichous Onosma fastigiata), as well as karyological features, support the hybrid origin of the stabilized Heterotricha lineage. Genetic variation that is both large and geographically correlated indicates multiple origins of Heterotricha allopolyploids or, less likely, a single origin with recurring introgression from the progenitor species. The nuclear markers and cytogenetic features also provide evidence for the ongoing hybridization between O. arenaria and Onosma echioides (2n = 14S), which gives rise to sterile triploids of 2n = 6 L + 15S. We contrast the two cases of triploids with LLS (hemisexual O. arenaria from the stabilized Heterotricha lineage) and LSS (recent sterile hybrids) karyotypes, which could help to understand the mechanisms ensuring the establishment and reproductive fitness of the odd allopolyploids in Onosma. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 112 , 89–107.  相似文献   

9.
Allopolyploidy is probably the most extensively studied mode of plant speciation and allopolyploid species appear to be common in the mosses (Bryophyta). The Sphagnum subsecundum complex includes species known to be gametophytically haploid or diploid, and it has been proposed that the diploids (i.e., with tetraploid sporophytes) are allopolyploids. Nucleotide sequence and microsatellite variation among haploids and diploids from Newfoundland and Scandinavia indicate that (1) the diploids exhibit fixed or nearly fixed heterozygosity at the majority of loci sampled, and are clearly allopolyploids, (2) diploids originated independently in North America and Europe, (3) the European diploids appear to have the haploid species, S. subsecundum, as the maternal parent based on shared chloroplast DNA haplotypes, (4) the North American diploids do not have the chloroplast DNA of any sampled haploid, (5) both North American and European diploids share nucleotide and microsatellite similarities with S. subsecundum, (6) the diploids harbor more nucleotide and microsatellite diversity than the haploids, and (7) diploids exhibit higher levels of linkage disequilibrium among microsatellite loci. An experiment demonstrates significant artifactual recombination between interspecific DNAs coamplified by PCR, which may be a complicating factor in the interpretation of sequence-based analyses of allopolyploids.  相似文献   

10.
We aimed to study the importance of hybridization between two cryptic species of the genus Ectocarpus, a group of filamentous algae with haploid–diploid life cycles that include the principal genetic model organism for the brown algae. In haploid–diploid species, the genetic structure of the two phases of the life cycle can be analysed separately in natural populations. Such life cycles provide a unique opportunity to estimate the frequency of hybrid genotypes in diploid sporophytes and meiotic recombinant genotypes in haploid gametophytes allowing the effects of reproductive barriers preventing fertilization or preventing meiosis to be untangle. The level of hybridization between E. siliculosus and E. crouaniorum was quantified along the European coast. Clonal cultures (568 diploid, 336 haploid) isolated from field samples were genotyped using cytoplasmic and nuclear markers to estimate the frequency of hybrid genotypes in diploids and recombinant haploids. We identified admixed individuals using microsatellite loci, classical assignment methods and a newly developed Bayesian method (XPloidAssignment), which allows the analysis of populations that exhibit variations in ploidy level. Over all populations, the level of hybridization was estimated at 8.7%. Hybrids were exclusively observed in sympatric populations. More than 98% of hybrids were diploids (40% of which showed signs of aneuploidy) with a high frequency of rare alleles. The near absence of haploid recombinant hybrids demonstrates that the reproductive barriers are mostly postzygotic and suggests that abnormal chromosome segregation during meiosis following hybridization of species with different genome sizes could be a major cause of interspecific incompatibility in this system.  相似文献   

11.
《Journal of bryology》2013,35(1):18-26
Abstract

The distribution patterns of 18 Sphagnum species along base-richness and altitudinal gradients were studied in Bulgarian treeless wetlands which are noteworthy because of the edge-of-range occurrence of many mire species including Sphagnum. Of 483 spring and mire sites studied, 202 samples contained some Sphagnum species. The most common species were S. subsecundum (n=85), S. platyphyllum (46), S. contortum (41), S. teres (40) and S. capillifolium (26). The significance of Sphagnum responses to environmental gradients was tested by comparing generalized additive models against the null model. Many Sphagnum species displayed a significant response to the altitudinal gradient. Several species were clearly linked to low or to high altitudes, but the realized niche of other species was wide with respect to altitude. Most species significantly responded to water pH, both above and below the timberline. The same result was obtained for water conductivity below the timberline, whereas only a few species had a significant response to conductivity above the timberline. The highest water conductivity under which Sphagnum species occurred was 280 μS cm?1. Sphagnum contortum was the species occupying the mires with the highest mineral content. On the contrary, Sphagnum warnstorfii, one of the most calcitolerant species in many regions of Europe, often occurred in extremely mineral-poor mires above the timberline. Some other Sphagnum species growing in mineral-rich mires below the timberline, also inhabited extremely mineral-poor mires above the timberline. This could be explained by adaptation to local conditions during long-term isolation on mineral-poor bedrock or by changed competition pressure.  相似文献   

12.
Despite its evolutionary and ecological relevance, the mode of polyploid origin has been notoriously difficult to be reconstructed from molecular data. Here, we present a method to identify the putative parents of polyploids and thus to infer the mode of their origin (auto‐ vs. allopolyploidy) from Amplified Fragment Length Polymorphism (AFLP) data. To this end, we use Cohen's d of distances between in silico polyploids, generated within a priori defined scenarios of origin from a priori delimited putative parental entities (e.g. taxa, genetic lineages), and natural polyploids. Simulations show that the discriminatory power of the proposed method increases mainly with increasing divergence between the lower‐ploid putative ancestors and less so with increasing delay of polyploidization relative to the time of divergence. We apply the new method to the Senecio carniolicus aggregate, distributed in the European Alps and comprising two diploid, one tetraploid and one hexaploid species. In the eastern part of its distribution, the S. carniolicus aggregate was inferred to comprise an autopolyploid series, whereas for western populations of the tetraploid species, an allopolyploid origin involving the two diploid species was the most likely scenario. Although this suggests that the tetraploid species has two independent origins, other evidence (ribotype distribution, morphology) is consistent with the hypothesis of an autopolyploid origin with subsequent introgression by the second diploid species. Altogether, identifying the best among alternative scenarios using Cohen's d can be straightforward, but particular scenarios, such as allopolyploid origin vs. autopolyploid origin with subsequent introgression, remain difficult to be distinguished.  相似文献   

13.
《Journal of bryology》2013,35(2):287-291
Abstract

The length of the annual growing season of five Sphagnum species was investigated on the Silver Flowe N.N.R. It ranged from five to six months for S. papillosum and S. magellanicum through approximately seven and ten months for S. capillifolium and S. auriculatum var. inundatum to twleve months for S. cuspidatum A mechanism of hollow and pool enlargement is proposed.  相似文献   

14.
Sphagnum mosses are major components of peat bogs but populations of many species are under threat due to habitat fragmentation resulting from the cutting of peat for fuel. We have used an intersimple sequence repeat (ISSR)‐based cloning method to develop nine polymorphic nuclear microsatellites for the peat moss species Sphagnum capillifolium. Between three and seven alleles per locus were detected in a sample of 48 haploid gametophytes and levels of gene diversity ranged from 0.5391 to 0.7960. These represent the first microsatellite markers developed for this important genus and most also exhibited cross‐species amplification across a range of common Sphagnum species.  相似文献   

15.
Over the past few decades, use of molecular markers for species delimitation has drastically increased. Schoenoplectiella Lye has been recognized as a taxonomically difficult genus because of its morphological simplicity and frequent interspecific hybridization. The main objective of this study was to clarify the taxonomic identities of eight Schoenoplectiella species by use of molecular markers. We also evaluated the genetic relationships among S. × trapezoidea, known as a natural hybrid, and its close relatives. We used six microsatellite markers for 44 individuals from 31 natural populations of eight Schoenoplectiella species in South Korea. Six microsatellite marker combinations generated 59 amplification-detectable bands, of which 33 were specifically detected in one or more individuals of each species. Cluster analysis revealed that the grouping was consistent with the taxonomically recognized species. Our results do not support the hybrid origin of S. × trapezoidea. Rather, they suggest that this species is more closely related to S. hotarui. The informative microsatellite markers enabled us to clarify the distinctions among Schoenoplectiella species from South Korea and to identify the genetic relationships among these species. The molecular signatures found suitable for accurate identification of Schoenoplectiella species can be reliably used for studies of the phylogeny and evolution of this genus.  相似文献   

16.
It is commonly found that individual hybrid, polyploid species originate recurrently and that many polyploid species originated relatively recently. It has been previously hypothesized that the extremely rare allopolyploid peat moss Sphagnum troendelagicum has originated multiple times, possibly after the last glacial maximum in Scandinavia. This conclusion was based on low linkage disequilibrium in anonymous genetic markers within natural populations, in which sexual reproduction has never been observed. Here we employ microsatellite markers and chloroplast DNA (cpDNA)-encoded trnG sequence data to test hypotheses concerning the origin and evolution of this species. We find that S. tenellum is the maternal progenitor and S. balticum is the paternal progenitor of S. troendelagicum. Using various Bayesian approaches, we estimate that S. troendelagicum originated before the Holocene but not before c. 80 000 years ago (median expected time since speciation 40 000 years before present). The observed lack of complete linkage disequilibrium in the genome of this species suggests cryptic sexual reproduction and recombination. Several lines of evidence suggest multiple origins for S. troendelagicum, but a single origin is supported by approximate Bayesian computation analyses. We hypothesize that S. troendelagicum originated in a peat-dominated refugium before last glacial maximum, and subsequently immigrated to central Norway by means of spore flow during the last thousands of years.  相似文献   

17.
The lager beer yeast Saccharomyces pastorianus is considered an allopolyploid hybrid species between S. cerevisiae and S. eubayanus. Many S. pastorianus strains have been isolated and classified into two groups according to geographical origin, but this classification remains controversial. Hybridization analyses and partial PCR-based sequence data have indicated a separate origin of these two groups, whereas a recent intertranslocation analysis suggested a single origin. To clarify the evolutionary history of this species, we analysed 10 S. pastorianus strains and the S. eubayanus type strain as a likely parent by Illumina next-generation sequencing. In addition to assembling the genomes of five of the strains, we obtained information on interchromosomal translocation, ploidy, and single-nucleotide variants (SNVs). Collectively, these results indicated that the two groups of strains share S. cerevisiae haploid chromosomes. We therefore conclude that both groups of S. pastorianus strains share at least one interspecific hybridization event and originated from a common parental species and that differences in ploidy and SNVs between the groups can be explained by chromosomal deletion or loss of heterozygosity.  相似文献   

18.
Abstract: Genome size was determined in thirty Austrian species of Sphagnum, using Feulgen absorbance photometry conducted on a video-based image analysis system (CIRES), and for comparison on a scanning cytophotometer (Leitz MPV II) with strongly correlated results. Pisum sativum (1C = 4.42pg DNA) was used for internal standardization. Between species, two levels of ploidy, haploid and diploid, could be unambiguously identified (although this identification remains, strictly speaking, hypothetical, as long as exact parallel chromosome counts are not available). Twenty-six haploid species yielded values from 0.392 pg to 0.506 pg DNA (1C), and four diploid species (including two varieties of S. palustre) from 0.814 pg to 0.952 pg. The average ratio between levels was 1:2.049. Variation between species within sections was lower than between sections. In some cases significant differences between accessions of one species were found. The genome size of Sphagnum palustre presented here strongly deviates from one estimate of this species in the literature.  相似文献   

19.
This paper documents the occurrence of allotriploidy (having three differentiated genomes) in gametophytes of two Southern Hemisphere Sphagnum species ( S. australe, S . falcatulum ). The pattern of microsatellite alleles indicates that both species are composed of a complex of allodiploid and allotriploid gametophytes, with the latter resulting from two allopolyploidization events. No haploid ( n  =  x ) gametophytes were found for either species. The ploidal levels suggested by the pattern of microsatellite alleles were confirmed by flow cytometry and Feulgen DNA image densitometry. For both S. australe and S. falcatulum , the respective allodiploid plants (or their ancestors) are one of the parent species of the allotriploid plants. This is the first report of triploidy in Sphagnum gametophytes occurring in nature and also the first report of the presence of three differentiated genomes in any bryophyte. It is also the first report of intersectional allopolyploidy in Sphagnum , with S. australe appearing to have parental species from Sphagnum sections Rigida and Sphagnum, and S. falcatulum having parental species from Sphagnum sections Cuspidata and Subsecunda . In both species, the allotriploid cytotypes were the most prevalent cytotype on the South Island of New Zealand. The pattern of microsatellite alleles shows the presence of two genetically distinct populations of allodiploid S. australe , possibly indicating multiple origins of polyploidy for that allodiploid cytotype. Morphological evidence is also highly indicative of recurrent polyploidy in the allotriploid cytotype of S. falcatulum . Allopolyploidy has clearly played a major evolutionary role in these two Southern Hemisphere taxa. This study, in conjunction with other recent research, indicates that allopolyploidy is a common, if not the predominant, form of polyploidy in Sphagnum .  相似文献   

20.
Stylosanthes aff. calcicola is a formally undescribed tetraploid species from the Mexican Yucatán Peninsula, showing morphological similarities to the diploid species S. calcicola , but distinct in a number of characters. We used uni- and biparentally inherited molecular markers to infer the hybrid origin of this species in relation to known diploid species of Stylosanthes . Molecular characterization was based on length and/or DNA sequence variation of nuclear sequence-tagged site (STS) markers, the internal transcribed spacer (ITS) region of nuclear rDNA and the trnL intron of chloroplast DNA (cpDNA). Stylosanthes aff. calcicola contains a distinct cpDNA haplotype and nuclear DNA fragment, with closest relationship to the diploid species S. calcicola . In contrast, the DNA sequences of two nuclear loci reveal a closer relationship to the diploid species S. angustifolia , S. hispida , S. humilis , S. leiocarpa and S. viscosa . The majority of the STS markers showed additivity of PCR fragments in S. aff. calcicola , representing the combination of two genetically different genomes. We postulate that S. aff. calcicola is a distinct species of allotetraploid origin that appears to have originated once from hybridization between two divergent genomes, of which the maternal and paternal parent are closely related to, or derived from, a member of the lineages represented by S. calcicola and S. viscosa , respectively.  © 2002 The Linnean Society of London, Botanical Journal of the Linnean Society , 140 , 1–13.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号