首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The clade size effect refers to a bias that causes middle‐sized clades to be less supported than small or large‐sized clades. This bias is present in resampling measures of support calculated under maximum likelihood and maximum parsimony and in Bayesian posterior probabilities. Previous analyses indicated that the clade size effect is worst in maximum parsimony, followed by maximum likelihood, while Bayesian inference is the least affected. Homoplasy was interpreted as the main cause of the effect. In this study, we explored the presence of the clade size effect in alternative measures of branch support under maximum parsimony: Bremer support and symmetric resampling, expressed as absolute frequencies and frequency differences. Analyses were performed using 50 molecular and morphological matrices. Symmetric resampling showed the same tendency that bootstrap and jackknife did for maximum parsimony and maximum likelihood. Few matrices showed a significant bias using Bremer support, presenting a better performance than resampling measures of support and comparable to Bayesian posterior probabilities. Our results indicate that the problem is not maximum parsimony, but resampling measures of support. We corroborated the role of homoplasy as a possible cause of the clade size effect, increasing the number of random trees during the resampling, which together with the higher chances that medium‐sized clades have of being contradicted generates the bias during the perturbation of the original matrix, making it stronger in resampling measures of support.  相似文献   

2.
Owing to the exponential growth of genome databases, phylogenetic trees are now widely used to test a variety of evolutionary hypotheses. Nevertheless, computation time burden limits the application of methods such as maximum likelihood nonparametric bootstrap to assess reliability of evolutionary trees. As an alternative, the much faster Bayesian inference of phylogeny, which expresses branch support as posterior probabilities, has been introduced. However, marked discrepancies exist between nonparametric bootstrap proportions and Bayesian posterior probabilities, leading to difficulties in the interpretation of sometimes strongly conflicting results. As an attempt to reconcile these two indices of node reliability, we apply the nonparametric bootstrap resampling procedure to the Bayesian approach. The correlation between posterior probabilities, bootstrap maximum likelihood percentages, and bootstrapped posterior probabilities was studied for eight highly diverse empirical data sets and were also investigated using experimental simulation. Our results show that the relation between posterior probabilities and bootstrapped maximum likelihood percentages is highly variable but that very strong correlations always exist when Bayesian node support is estimated on bootstrapped character matrices. Moreover, simulations corroborate empirical observations in suggesting that, being more conservative, the bootstrap approach might be less prone to strongly supporting a false phylogenetic hypothesis. Thus, apparent conflicts in topology recovered by the Bayesian approach were reduced after bootstrapping. Both posterior probabilities and bootstrap supports are of great interest to phylogeny as potential upper and lower bounds of node reliability, but they are surely not interchangeable and cannot be directly compared.  相似文献   

3.
In recent years, the emphasis of theoretical work on phylogenetic inference has shifted from the development of new tree inference methods to the development of methods to measure the statistical support for the topologies. This paper reviews 3 approaches to assign support values to branches in trees obtained in the analysis of molecular sequences: the bootstrap, the Bayesian posterior probabilities for clades, and the interior branch tests. In some circumstances, these methods give different answers. It should not be surprising: their assumptions are different. Thus the interior branch tests assume that a given topology is true and only consider if a particular branch length is longer than zero. If a tree is incorrect, a wrong branch (a low bootstrap or Bayesian support may be an indication) may have a non-zero length. If the substitution model is oversimplified, the length of a branch may be overestimated, and the Bayesian support for the branch may be inflated. The bootstrap, on the other hand, approximates the variance of the data under the real model of sequence evolution, because it involves direct resampling from this data. Thus the discrepancy between the Bayesian support and the bootstrap support may signal model inaccuracy. In practical application, use of all 3 methods is recommended, and if discrepancies are observed, then a careful analysis of their potential origins should be made.  相似文献   

4.
In an effort to improve our knowledge of the phylogenetic relationships among species and genera of the subfamily Sarcophaginae, we analysed data from three mitochondrial gene fragments. Sequence data for portions of the genes cytochrome oxidase I (COI), cytochrome oxidase II (COII) and dehydrogenase subunit 4 (ND4) were obtained from 43 species of Sarcophagidae representing 15 genera. We used a Bayesian approach to simultaneously choose how best to partition the data and which substitution model to apply to each partition. Phylogenetic relationships were inferred using Bayesian Inference and Maximum Likelihood methods. Our results are consistent with monophyly of the subfamily Sarcophaginae (posterior probability 1; bootstrap support 93%), as well as with monophyly of several genera within the Sarcophaginae (including Sarcophaga s.l.; posterior probability 1; bootstrap support 97%). We found support for a sister‐group relationship between Ravinia Robineau‐Desvoidy and Oxysarcodexia Townsend, which has been hypothesised by past authors on the basis of morphological similarities, although this was supported only in the Bayesian analyses (posterior probability 0. 81–0. 98), and for some novel supra‐generic clades. Contrary to a recent morphological hypothesis, we do not find Helicobia Coquillett to be nested within Sarcophaga Meigen; our data suggest, but do not strongly support, a hypothesis that Peckia Robineau‐Desvoidy is the sister group to Sarcophaga.  相似文献   

5.

Background  

For parsimony analyses, the most common way to estimate confidence is by resampling plans (nonparametric bootstrap, jackknife), and Bremer support (Decay indices). The recent literature reveals that parameter settings that are quite commonly employed are not those that are recommended by theoretical considerations and by previous empirical studies. The optimal search strategy to be applied during resampling was previously addressed solely via standard search strategies available in PAUP*. The question of a compromise between search extensiveness and improved support accuracy for Bremer support received even less attention. A set of experiments was conducted on different datasets to find an empirical cut-off point at which increased search extensiveness does not significantly change Bremer support and jackknife or bootstrap proportions any more.  相似文献   

6.
The success of resampling approaches to branch support depends on the effectiveness of the underlying tree searches. Two primary factors are identified as key: the depth of tree search and the number of trees saved per resampling replicate. Two datasets were explored for a range of search parameters using jackknifing. Greater depth of tree search tends to increase support values because shorter trees conflict less with each other, while increasing numbers of trees saved tends to reduce support values because of conflict that reduces structure in the replicate consensus. Although a relatively small amount of branch swapping will achieve near‐accurate values for a majority of clades, some clades do not yield accurate values until more extensive searches are performed. This means that in order to maximize the accuracy of resampling analyses, one should employ as extensive a search strategy as possible, and save as many trees per replicate as possible. Strict consensus summary of resampling replicates is preferable to frequency‐within‐replicates summary because it is a more conservative approach to the reporting of replicate results. Jackknife analysis is preferable to bootstrap because of its closer relationship to the original data.© The Willi Hennig Society 2010.  相似文献   

7.
Quantifying branch support using the bootstrap and/or jackknife is generally considered to be an essential component of rigorous parsimony and maximum likelihood phylogenetic analyses. Previous authors have described how application of the frequency-within-replicates approach to treating multiple equally optimal trees found in a given bootstrap pseudoreplicate can provide apparent support for otherwise unsupported clades. We demonstrate how a similar problem may occur when a non-representative subset of equally optimal trees are held per pseudoreplicate, which we term the undersampling-within-replicates artifact. We illustrate the frequency-within-replicates and undersampling-within-replicates bootstrap and jackknife artifacts using both contrived and empirical examples, demonstrate that the artifacts can occur in both parsimony and likelihood analyses, and show that the artifacts occur in outputs from multiple different phylogenetic-inference programs. Based on our results, we make the following five recommendations, which are particularly relevant to supermatrix analyses, but apply to all phylogenetic analyses. First, when two or more optimal trees are found in a given pseudoreplicate they should be summarized using the strict-consensus rather than frequency-within-replicates approach. Second jackknife resampling should be used rather than bootstrap resampling. Third, multiple tree searches while holding multiple trees per search should be conducted in each pseudoreplicate rather than conducting only a single search and holding only a single tree. Fourth, branches with a minimum possible optimized length of zero should be collapsed within each tree search rather than collapsing branches only if their maximum possible optimized length is zero. Fifth, resampling values should be mapped onto the strict consensus of all optimal trees found rather than simply presenting the ≥ 50% bootstrap or jackknife tree or mapping the resampling values onto a single optimal tree.  相似文献   

8.
We compared general behaviour trends of resampling methods (bootstrap, bootstrap with Poisson distribution, jackknife, and jackknife with symmetric resampling) and different ways to summarize the results for resampling (absolute frequency, F, and frequency difference, GC') for real data sets under variable resampling strengths in three weighting schemes. We propose an equivalence between bootstrap and jackknife in order to make bootstrap variable across different resampling strengths. Specifically, for each method we evaluated the number of spurious groups (groups not present in the strict consensus of the unaltered data set), of real groups, and of inconsistencies in ranking of groups under variable resampling strengths. We found that GC' always generated more spurious groups and recovered more groups than F. Bootstrap methods generated more spurious groups than jackknife methods; and jackknife is the method that recovered more real groups. We consistently obtained a higher proportion of spurious groups for GC' than for F; and for bootstrap than for jackknife. Finally, we evaluated the ranking of groups under variable resampling strengths qualitatively in the trajectories of "support" against resampling strength, and quantitatively with Kendall coefficient values. We found fewer ranking inconsistencies for GC' than for F, and for bootstrap than for jackknife.
© The Willi Hennig Society 2009.  相似文献   

9.
Phylogeny estimation is extremely crucial in the study of molecular evolution. The increase in the amount of available genomic data facilitates phylogeny estimation from multilocus sequence data. Although maximum likelihood and Bayesian methods are available for phylogeny reconstruction using multilocus sequence data, these methods require heavy computation, and their application is limited to the analysis of a moderate number of genes and taxa. Distance matrix methods present suitable alternatives for analyzing huge amounts of sequence data. However, the manner in which distance methods can be applied to multilocus sequence data remains unknown. Here, we suggest new procedures to estimate molecular phylogeny using multilocus sequence data and evaluate its significance in the framework of the distance method. We found that concatenation of the multilocus sequence data may result in incorrect phylogeny estimation with an extremely high bootstrap probability (BP), which is due to incorrect estimation of the distances and intentional ignorance of the intergene variations. Therefore, we suggest that the distance matrices for multilocus sequence data be estimated separately and these matrices be subsequently combined to reconstruct phylogeny instead of phylogeny reconstruction using concatenated sequence data. To calculate the BPs of the reconstructed phylogeny, we suggest that 2-stage bootstrap procedures be adopted; in this, genes are resampled followed by resampling of the sequence columns within the resampled genes. By resampling the genes during calculation of BPs, intergene variations are properly considered. Via simulation studies and empirical data analysis, we demonstrate that our 2-stage bootstrap procedures are more suitable than the conventional bootstrap procedure that is adopted after sequence concatenation.  相似文献   

10.
MOTIVATION: Protein sequence comparison methods are routinely used to infer the intricate network of evolutionary relationships found within the rapidly growing library of protein sequences, and thereby to predict the structure and function of uncharacterized proteins. In the present study, we detail an improved statistical benchmark of pairwise protein sequence comparison algorithms. We use bootstrap resampling techniques to determine standard statistical errors and to estimate the confidence of our conclusions. We show that the underlying structure within benchmark databases causes Efron's standard, non-parametric bootstrap to be biased. Consequently, the standard bootstrap underpredicts average performance when used in the context of evaluating sequence comparison methods. We have developed, as an alternative, an unbiased statistical evaluation based on the Bayesian bootstrap, a resampling method operationally similar to the standard bootstrap. RESULTS: We apply our analysis to the comparative study of amino acid substitution matrix families and find that using modern matrices results in a small, but statistically significant improvement in remote homology detection compared with the classic PAM and BLOSUM matrices. AVAILABILITY: The sequence sets and code for performing these analyses are available from http://compbio.berkeley.edu/. Contact: brenner@compbio.berkeley.edu.  相似文献   

11.
Bactrocera dorsalis sensu stricto, B. papayae, B. philippinensis and B. carambolae are serious pest fruit fly species of the B. dorsalis complex that predominantly occur in south‐east Asia and the Pacific. Identifying molecular diagnostics has proven problematic for these four taxa, a situation that cofounds biosecurity and quarantine efforts and which may be the result of at least some of these taxa representing the same biological species. We therefore conducted a phylogenetic study of these four species (and closely related outgroup taxa) based on the individuals collected from a wide geographic range; sequencing six loci (cox1, nad4‐3′, CAD, period, ITS1, ITS2) for approximately 20 individuals from each of 16 sample sites. Data were analysed within maximum likelihood and Bayesian phylogenetic frameworks for individual loci and concatenated data sets for which we applied multiple monophyly and species delimitation tests. Species monophyly was measured by clade support, posterior probability or bootstrap resampling for Bayesian and likelihood analyses respectively, Rosenberg's reciprocal monophyly measure, P(AB), Rodrigo's (P(RD)) and the genealogical sorting index, gsi. We specifically tested whether there was phylogenetic support for the four ‘ingroup’ pest species using a data set of multiple individuals sampled from a number of populations. Based on our combined data set, Bactrocera carambolae emerges as a distinct monophyletic clade, whereas B. dorsalis s.s., B. papayae and B. philippinensis are unresolved. These data add to the growing body of evidence that B. dorsalis s.s., B. papayae and B. philippinensis are the same biological species, which poses consequences for quarantine, trade and pest management.  相似文献   

12.
While Bayesian analysis has become common in phylogenetics, the effects of topological prior probabilities on tree inference have not been investigated. In Bayesian analyses, the prior probability of topologies is almost always considered equal for all possible trees, and clade support is calculated from the majority rule consensus of the approximated posterior distribution of topologies. These uniform priors on tree topologies imply non-uniform prior probabilities of clades, which are dependent on the number of taxa in a clade as well as the number of taxa in the analysis. As such, uniform topological priors do not model ignorance with respect to clades. Here, we demonstrate that Bayesian clade support, bootstrap support, and jackknife support from 17 empirical studies are significantly and positively correlated with non-uniform clade priors resulting from uniform topological priors. Further, we demonstrate that this effect disappears for bootstrap and jackknife when data sets are free from character conflict, but remains pronounced for Bayesian clade supports, regardless of tree shape. Finally, we propose the use of a Bayes factor to account for the fact that uniform topological priors do not model ignorance with respect to clade probability.  相似文献   

13.
Despite the importance of molecular phylogenetics, few of its assumptions have been tested with real data. It is commonly assumed that nonparametric bootstrap values are an underestimate of the actual support, Bayesian posterior probabilities are an overestimate of the actual support, and among-gene phylogenetic conflict is low. We directly tested these assumptions by using a well-supported yeast reference tree. We found that bootstrap values were not significantly different from accuracy. Bayesian support values were, however, significant overestimates of accuracy but still had low false-positive error rates (0% to 2.8%) at the highest values (>99%). Although we found evidence for a branch-length bias contributing to conflict, there was little evidence for widespread, strongly supported among-gene conflict from bootstraps. The results demonstrate that caution is warranted concerning conclusions of conflict based on the assumption of underestimation for support values in real data.  相似文献   

14.
In addition to hypothesis optimality, the evaluation of clade (group, edge, split, node) support is an important aspect of phylogenetic analysis. Here we clarify the logical relationship between support and optimality and formulate adequacy conditions for support measures. Support, S, and optimality, O, are both empirical knowledge claims about the strength of hypotheses, h1, h2, …hn, in relation to evidence, e, given background knowledge, b. Whereas optimality refers to the absolute strength of hypotheses, support refers to the relative strength of hypotheses. Consequently, support and optimality are logically related such that they vary in direct proportion to each other, S(h | e,b) ∝ O(h | e,b). Furthermore, in order for a support measure to be objective it must quantify support as a function of explanatory power. For example, Goodman–Bremer support and ratio of explanatory power (REP) support satisfy the adequacy requirement S(h | e,b) ∝ O(h | e,b) and calculate support as a function of explanatory power. As such, these are adequate measures of objective support. The equivalent measures for statistical optimality criteria are the likelihood ratio (or log‐likelihood difference) and likelihood difference support measures for maximum likelihood and the posterior probability ratio and posterior probability difference support measures for Bayesian inference. These statistical support measures satisfy the adequacy requirement S(h | e,b) ∝ O(h | e,b) and to that extent are internally consistent; however, they do not quantify support as a function of explanatory power and therefore are not measures of objective support. Neither the relative fit difference (RFD; relative GB support) nor any of the parsimony (bootstrap and jackknife character resampling) or statistical [bootstrap character resampling, Markov chain Monte Carlo (MCMC) clade frequencies] support measures based on clade frequencies satisfy the adequacy condition S(h | e,b) ∝ O(h | e,b) or calculate support as a function of explanatory power. As such, they are not adequate support measures. © The Willi Hennig Society 2008.  相似文献   

15.
Assessment of the reliability of a given phylogenetic hypothesis is an important step in phylogenetic analysis. Historically, the nonparametric bootstrap procedure has been the most frequently used method for assessing the support for specific phylogenetic relationships. The recent employment of Bayesian methods for phylogenetic inference problems has resulted in clade support being expressed in terms of posterior probabilities. We used simulated data and the four-taxon case to explore the relationship between nonparametric bootstrap values (as inferred by maximum likelihood) and posterior probabilities (as inferred by Bayesian analysis). The results suggest a complex association between the two measures. Three general regions of tree space can be identified: (1) the neutral zone, where differences between mean bootstrap and mean posterior probability values are not significant, (2) near the two-branch corner, and (3) deep in the two-branch corner. In the last two regions, significant differences occur between mean bootstrap and mean posterior probability values. Whether bootstrap or posterior probability values are higher depends on the data in support of alternative topologies. Examination of star topologies revealed that both bootstrap and posterior probability values differ significantly from theoretical expectations; in particular, there are more posterior probability values in the range 0.85-1 than expected by theory. Therefore, our results corroborate the findings of others that posterior probability values are excessively high. Our results also suggest that extrapolations from single topology branch-length studies are unlikely to provide any general conclusions regarding the relationship between bootstrap and posterior probability values.  相似文献   

16.
The bootstrap method has become a widely used tool applied in diverse areas where results based on asymptotic theory are scarce. It can be applied, for example, for assessing the variance of a statistic, a quantile of interest or for significance testing by resampling from the null hypothesis. Recently, some approaches have been proposed in the biometrical field where hypothesis testing or model selection is performed on a bootstrap sample as if it were the original sample. P‐values computed from bootstrap samples have been used, for example, in the statistics and bioinformatics literature for ranking genes with respect to their differential expression, for estimating the variability of p‐values and for model stability investigations. Procedures which make use of bootstrapped information criteria are often applied in model stability investigations and model averaging approaches as well as when estimating the error of model selection procedures which involve tuning parameters. From the literature, however, there is evidence that p‐values and model selection criteria evaluated on bootstrap data sets do not represent what would be obtained on the original data or new data drawn from the overall population. We explain the reasons for this and, through the use of a real data set and simulations, we assess the practical impact on procedures relevant to biometrical applications in cases where it has not yet been studied. Moreover, we investigate the behavior of subsampling (i.e., drawing from a data set without replacement) as a potential alternative solution to the bootstrap for these procedures.  相似文献   

17.
We present phylogenomic analyses of the most comprehensive molecular character set compiled for Annelida and its constituent taxa, including over 347 000 aligned nucleotide sites for 39 taxa. The nucleotide data set was recovered using a pre‐existing amino acid data set of almost 48 000 aligned sites as a backbone for tBLASTn searches against NCBI. In addition, orthology determinations of the loci in the original amino acid data set were scrutinized using an All vs All Reciprocal Best Hit approach, employing BLASTp, and examining for statistical interdependency among the loci. This approach revealed considerable sequence redundancy among the loci in the original data set and a new data set was compiled, with the redundancy removed. The newly compiled nucleotide data set, the original amino acid data set, and the new reduced amino acid data set were subjected to parsimony analyses and two forms of bootstrap resampling. The last‐named data set also was analysed using a maximum‐likelihood approach. There were two main objectives to these analyses: (i) to examine the general topology, including support, resulting from the analyses of the new data sets and (ii) to assess the consistency of the branching patterns across optimality criteria by comparison with previous probabilistic approaches. The phylogenetic hypotheses resulting from analyses of the three data sets are largely unsupported, reflecting the continued difficulty of finding numerous, reliable, and suitable loci for a group as ancient as Annelida. Resulting parsimonious hypotheses disagree, in some respects, with the previous probabilistic approaches; Sedentaria and, in most cases, Errantia are not supported as monophyletic groups but Pleistoannelida is recovered as a (unsupported) monophyletic group in one of the three parsimony analyses as well as the likelihood analysis. In addition, we performed missing data titration studies to estimate the impact of missing data on overall support and support for specific clades.  相似文献   

18.
Many empirical studies have revealed considerable differences between nonparametric bootstrapping and Bayesian posterior probabilities in terms of the support values for branches, despite claimed predictions about their approximate equivalence. We investigated this problem by simulating data, which were then analyzed by maximum likelihood bootstrapping and Bayesian phylogenetic analysis using identical models and reoptimization of parameter values. We show that Bayesian posterior probabilities are significantly higher than corresponding nonparametric bootstrap frequencies for true clades, but also that erroneous conclusions will be made more often. These errors are strongly accentuated when the models used for analyses are underparameterized. When data are analyzed under the correct model, nonparametric bootstrapping is conservative. Bayesian posterior probabilities are also conservative in this respect, but less so.  相似文献   

19.
In this study, we used an empirical example based on 100 mitochondrial genomes from higher teleost fishes to compare the accuracy of parsimony-based jackknife values with Bayesian support values. Phylogenetic analyses of 366 partitions, using differential taxon and character sampling from the entire data matrix of 100 taxa and 7,990 characters, were performed for both phylogenetic methods. The tree topology and branch-support values from each partition were compared with the tree inferred from all taxa and characters. Using this approach, we quantified the accuracy of the branch-support values assigned by the jackknife and Bayesian methods, with respect to each of 15 basal clades. In comparing the jackknife and Bayesian methods, we found that (1) both measures of support differ significantly from an ideal support index; (2) the jackknife underestimated support values; (3) the Bayesian method consistently overestimated support; (4) the magnitude by which Bayesian values overestimate support exceeds the magnitude by which the jackknife underestimates support; and (5) both methods performed poorly when taxon sampling was increased and character sampling was not increases. These results indicate that (1) the higher Bayesian support values are inappropriate (in magnitude), and (2) Bayesian support values should not be interpreted as probabilities that clades are correctly resolved. We advocate the continued use of the relatively conservative bootstrap and jackknife approaches to estimating branch support rather than the more extreme overestimates provided by the Markov Chain Monte Carlo-based Bayesian methods.  相似文献   

20.
The phylogenetic relationships of multiple enterobacterial species were reconstructed based on 16S rDNA gene sequences to evaluate the robustness of this housekeeping gene in the taxonomic placement of the enteric plant pathogens Erwinia, Brenneria, Pectobacterium, and Pantoea. Four data sets were compiled, two of which consisted of previously published data. The data sets were designed in order to evaluate how 16S rDNA gene phylogenies are affected by the use of different plant pathogen accessions and varying numbers of animal pathogen and outgroup sequences. DNA data matrices were analyzed using maximum likelihood (ML) algorithms, and character support was determined by ML bootstrap and Bayesian analyses. As additional animal pathogen sequences were added to the phylogenetic analyses, taxon placement changed. Further, the phylogenies varied in their placement of the plant pathogen species, and only the genus Pantoea was monophyletic in all four trees. Finally, bootstrap and Bayesian support values were low for most of the nodes, and all nonterminal branches collapsed in strict consensus trees. Inspection of 16S rDNA nucleotide alignments revealed several highly variable blocks punctuated by regions of conserved sequence. These data suggest that 16S rDNA, while effective for both species-level and family-level phylogenetic reconstruction, may underperform for genus-level phylogenetic analyses in the Enterobacteriaceae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号