首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Heterochromatin, or condensed chromatin, has the potential to encroach into what ordinarily would be euchromatin and repress resident genes. We explore how heterochromatin is restricted to the appropriate regions of the genome, using Saccharomyces cerevisiae as a case study and emphasizing two under‐appreciated aspects of silenced chromatin. First, the capacity of silenced chromatin to propagate along a chromosome is limited by the intrinsic instability of the structure. We argue that this limited potential to spread is an important factor restricting silenced chromatin to the vicinity of recruitment sites (silencers). Second, this limited capacity to spread creates the need for additional mechanisms to stabilize silenced chromatin at the required locations. Such mechanisms include the use of multiple silencers and higher‐order arrangements of the chromatin fiber. Therefore, to understand how silenced chromatin is restricted to the appropriate genomic locations, researchers must take into account the mechanisms by which silenced chromatin is stabilized in appropriate locations. J. Cell. Physiol. 219: 525–528, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
Members of histone H1 family bind to nucleosomal and linker DNA to assist in stabilization of higher‐order chromatin structures. Moreover, histone H1 is involved in regulation of a variety of cellular processes by interactions with cytosolic and nuclear proteins. Histone H1, composed of a series of subtypes encoded by distinct genes, is usually differentially expressed in specialized cells and frequently non‐randomly distributed in different chromatin regions. Moreover, a role of specific histone H1 subtype might be also modulated by post‐translational modifications and/or presence of polymorphic isoforms. While the significance of covalently modified histone H1 subtypes has been partially recognized, much less is known about the importance of histone H1 polymorphic variants identified in various plant and animal species, and human cells as well. Recent progress in elucidating amino acid composition‐dependent functioning and interactions of the histone H1 with a variety of molecular partners indicates a potential role of histone H1 polymorphic variation in adopting specific protein conformations essential for chromatin function. The histone H1 allelic variants might affect chromatin in order to modulate gene expression underlying some physiological traits and, therefore could modify the course of diverse histone H1‐dependent biological processes. This review focuses on the histone H1 allelic variability, and biochemical and genetic aspects of linker histone allelic isoforms to emphasize their likely biological relevance.  相似文献   

3.
The multifunctional zinc‐finger protein CCCTC‐binding factor (CTCF) is a very strong candidate for the role of coordinating the expression level of coding sequences with their three‐dimensional position in the nucleus, apparently responding to a “code” in the DNA itself. Dynamic interactions between chromatin fibers in the context of nuclear architecture have been implicated in various aspects of genome functions. However, the molecular basis of these interactions still remains elusive and is a subject of intense debate. Here we discuss the nature of CTCF‐DNA interactions, the CTCF‐binding specificity to its binding sites and the relationship between CTCF and chromatin, and we examine data linking CTCF with gene regulation in the three‐dimensional nuclear space. We discuss why these features render CTCF a very strong candidate for the role and propose a unifying model, the “CTCF code,” explaining the mechanistic basis of how the information encrypted in DNA may be interpreted by CTCF into diverse nuclear functions.  相似文献   

4.
Chromatin immunoprecipitation (ChIP) is an important technique for studying protein–DNA interactions. Whole genome ChIP methods have enjoyed much success, but are limited in that they cannot uncover important long‐range chromatin interactions. Chromosome conformation capture (3C) and related methods are capable of detecting remote chromatin interactions, but are tedious, have low signal‐to‐noise ratios, and are not genome‐wide. Although the addition of ChIP to 3C (ChIP–3C) would conceivably reduce noise and increase specificity for chromatin interaction detection, there are concerns that simple mixing of the ChIP and 3C protocols would lead to high levels of false positives. In this essay, we dissect current ChIP‐ and 3C‐based methodologies, discuss the models of specific as opposed to non‐specific chromatin interactions, and suggest approaches to separate specific chromatin complexes from non‐specific chromatin fragments. We conclude that the combination of sonication‐based chromatin fragmentation, ChIP‐based enrichment, chromatin proximity ligation and Paired‐End Tag ultra‐high‐throughput sequencing will be a winning implementation for genome‐wide, unbiased and de novo discovery of long‐range chromatin interactions, which will help to establish an emerging field for studying human chromatin interactomes and genome regulation networks in three‐dimensional spaces. J. Cell. Biochem. 107: 30–39, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
The mammalian genome is compacted to fit within the confines of the cell nucleus. DNA is wrapped around nucleosomes, forming the classic ‘beads‐on‐a‐string’ 10‐nm chromatin fibre. Ten‐nanometre chromatin fibres are thought to condense into 30‐nm fibres. This structural reorganization is widely assumed to correspond to transitions between active and repressed chromatin, thereby representing a chief regulatory event. Here, by combining electron spectroscopic imaging with tomography, three‐dimensional images are generated, revealing that both open and closed chromatin domains in mouse somatic cells comprise 10‐nm fibres. These findings indicate that the 30‐nm chromatin model does not reflect the true regulatory structure in vivo.  相似文献   

6.
The mammalian oocyte undergoes dynamic changes in chromatin structure to reach complete maturation. However, little known is about behaviors of ATP‐dependent chromatin remodeling factors (ACRFs) during meiosis. Here, we found that respective ACRFs may differently behave in the process of oocyte maturation in the bovine. All ACRFs interacted with oocytic chromatin at the germinal vesicle (GV) stage. Mi‐2 and hSNF2H disappeared from GV‐chromatin within 1 hr of in vitro culture whereas Brg‐1 and BAF‐170 were retained throughout germinal vesicle break down (GVBD). Brg‐1 was localized on the condensed chromatin outside, whereas BAF‐170 was entirely excluded from condensed chromatin. Thereafter, Brg‐1 and BAF‐170 interacted with metaphase I and metaphase II chromosomes. These results imply that Mi‐2 and hSNF2H may initiate the meiotic resumption, and Brg‐1 and BAF‐170 may support chromatin condensation during meiosis. In addition, DNA methylation and methylation of histone H3 at lysine 9 (H3K9) seem to be constantly retained in the oocyte chromatin throughout in vitro maturation. Inhibition of ACRF activity by treatment with the inhibitor apyrase led to retarded chromatin remodeling in bovine oocytes, thereby resulting in poor development of fertilized embryos. Therefore, these results indicate that precise behaviors of ACRFs during meiosis are critical for nuclear maturation and subsequent embryonic development in the bovine. Mol. Reprod. Dev. 77: 126–135, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
Morphological changes and chromatin condensation of sperm nuclei were observed during spermatogenesis in the fucalean brown alga Cystoseira hakodatensis (Yendo) Fensholt. Ultrastructural studies have shown that the mature spermatozoid has an elongated and concave nucleus with condensed chromatin. The morphological changes and the chromatin condensation process during spermatogenesis was observed. Nuclear size decreased in two stages during spermatogenesis. During the first stage, spherical nuclei decreased in size as they were undergoing meiotic divisions and the subsequent mitoses within the antheridium. During the second stage, the morphological transformation from a spherical into an elongated nucleus occurred. Afterwards, chromatin condensed at the periphery in each nucleus, and chromatin‐free regions were observed in the center of the nucleus. These chromatin‐free regions in the center of nucleus were compressed by the peripheral chromatin‐condensed region. As the result, the elongated and concave nucleus of the mature sperm consisted of uniformly well‐condensed chromatin.  相似文献   

8.
9.
10.
11.
12.
13.
We have applied chromatin sequencing technology to the euryarchaeon Thermococcus kodakarensis, which is known to possess histone‐like proteins. We detect positioned chromatin particles of variable sizes associated with lengths of DNA differing as multiples of 30 bp (ranging from 30 bp to >450 bp) consistent with formation from dynamic polymers of the archaeal histone dimer. T. kodakarensis chromatin particles have distinctive underlying DNA sequence suggesting a genomic particle‐positioning code and are excluded from gene‐regulatory DNA suggesting a functional organization. Beads‐on‐a‐string chromatin is therefore conserved between eukaryotes and archaea but can derive from deployment of histone‐fold proteins in a variety of multimeric forms.  相似文献   

14.
Arabidopsis thaliana mutants dysfunctional in the evolutionarily conserved protein complex chromatin assembly factor‐1 (CAF‐1), which deposits the canonical histone H3 variant H3.1 during DNA synthesis‐dependent chromatin assembly, display complex phenotypic changes including meristem and growth alterations, sensitivity to DNA‐damaging agents, and reduced fertility. We reported previously that mutants in the FAS1 subunit of CAF‐1 progressively lose telomere and 45S rDNA repeats. Here we show that multiple aspects of the fas phenotype are recovered immediately on expression of a reintroduced FAS1 allele, and are clearly independent of the recovery of rDNA copy‐numbers and telomeres. In reverted lines, 45S rDNA genes are recovered to diverse levels with a strikingly different representation of their variants, and the typical association of nucleolar organizing region 4 with the nucleolus is perturbed. One of 45S rDNA variants (VAR1), which is silenced in wild‐type (WT) plants without mutation history (Col‐0 WT), dominates the expression pattern, whereas VAR2 is dominant in Col‐0 WT plants. We propose an explanation for the variability of telomere and 45S rDNA repeats associated with CAF‐1 function, suggesting that the differences in nuclear partitioning and expression of the rDNA variants in fas mutants and their revertants provide a useful experimental system to study genetic and epigenetic factors in gene dosage compensation.  相似文献   

15.
Protection of chromosome ends from DNA repair and degradation activities is mediated by specialized protein complexes bound to telomere repeats. Recently, it has become apparent that epigenetic regulation of the telomric chromatin template critically impacts on telomere function and telomere‐length homeostasis from yeast to man. Across all species, telomeric repeats as well as the adjacent subtelomeric regions carry features of repressive chromatin. Disruption of this silent chromatin environment results in loss of telomere‐length control and increased telomere recombination. In turn, progressive telomere loss reduces chromatin compaction at telomeric and subtelomeric domains. The recent discoveries of telomere chromatin regulation during early mammalian development, as well as during nuclear reprogramming, further highlights a central role of telomere chromatin changes in ontogenesis. In addition, telomeres were recently shown to generate long, non‐coding RNAs that remain associated to telomeric chromatin and will provide new insights into the regulation of telomere length and telomere chromatin. In this review, we will discuss the epigenetic regulation of telomeres across species, with special emphasis on mammalian telomeres. We will also discuss the links between epigenetic alterations at mammalian telomeres and telomere‐associated diseases.  相似文献   

16.
17.
Fertilization triggers assembly of higher‐order chromatin structure from a condensed maternal and a naïve paternal genome to generate a totipotent embryo. Chromatin loops and domains have been detected in mouse zygotes by single‐nucleus Hi‐C (snHi‐C), but not bulk Hi‐C. It is therefore unclear when and how embryonic chromatin conformations are assembled. Here, we investigated whether a mechanism of cohesin‐dependent loop extrusion generates higher‐order chromatin structures within the one‐cell embryo. Using snHi‐C of mouse knockout embryos, we demonstrate that the zygotic genome folds into loops and domains that critically depend on Scc1‐cohesin and that are regulated in size and linear density by Wapl. Remarkably, we discovered distinct effects on maternal and paternal chromatin loop sizes, likely reflecting differences in loop extrusion dynamics and epigenetic reprogramming. Dynamic polymer models of chromosomes reproduce changes in snHi‐C, suggesting a mechanism where cohesin locally compacts chromatin by active loop extrusion, whose processivity is controlled by Wapl. Our simulations and experimental data provide evidence that cohesin‐dependent loop extrusion organizes mammalian genomes over multiple scales from the one‐cell embryo onward.  相似文献   

18.
SUMO conjugation is known to occur in response to double‐stranded DNA breaks in mammalian cells, but whether SUMO deconjugation has a role remains unclear. Here, we show that the SUMO/Sentrin/Smt3‐specific peptidase, SENP7, interacts with the chromatin repressive KRAB‐associated protein 1 (KAP1) through heterochromatin protein 1 alpha (HP1α). SENP7 promotes the removal of SUMO2/3 from KAP1 and regulates the interaction of the chromatin remodeler CHD3 with chromatin. Consequently, in the presence of CHD3, SENP7 is required for chromatin relaxation in response to DNA damage, for homologous recombination repair and for cellular resistance to DNA‐damaging agents. Thus, deSUMOylation by SENP7 is required to promote a permissive chromatin environment for DNA repair.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号