首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell cycle control in galls provoked by root‐knot nematodes involves the activity of inhibitor genes like the Arabidopsis ICK/KRP members. Ectopic KRP1, KRP2 and KRP4 expression resulted in decreased gall size by inhibiting mitotic activity, whereas KRP6 induces mitosis in galls. Herein, we investigate the role of KRP3, KRP5 and KRP7 during gall development and compared their role with previously studied members of this class of cell cycle inhibitors. Overexpression of KRP3 and KRP7 culminated in undersized giant cells, with KRP3OE galls presenting peculiar elongated giant cells. Nuclei in KRP3OE and KRP5OE lines presented a convoluted and apparently connected phenotype. This appearance may be associated with the punctuated protein nuclear localization driven by specific common motifs. As well, ectopic expression of KRP3OE and KRP5OE affected nematode development and offspring. Decreased mitotic activity in galls of KRP3OE and KRP7OE lines led to a reduced gall size which presented distinct shapes – from more elongated like in the KRP3OE line to small rounded like in the KRP7OE line. Results presented strongly support the idea that induced expression of cell cycle inhibitors such as KRP3 and KRP7 in galls can be envisaged as a conceivable strategy for nematode feeding site control in crop species attacked by phytopathogenic nematodes.  相似文献   

2.
3.
Nematode feeding sites: unique organs in plant roots   总被引:5,自引:0,他引:5  
Although generally unnoticed, nearly all crop plants have one or more species of nematodes that feed on their roots, frequently causing tremendous yield losses. The group of sedentary nematodes, which are among the most damaging plant-parasitic nematodes, cause the formation of special organs called nematode feeding sites (NFS) in the root tissue. In this review we discuss key metabolic and cellular changes correlated with NFS development, and similarities and discrepancies between different types of NFS are highlighted.  相似文献   

4.
Aging and obesity increase multimorbidity and disability risk, and determining interventions for reversing healthspan decline is a critical public health priority. Exercise and time‐restricted feeding (TRF) benefit multiple health parameters when initiated in early life, but their efficacy and safety when initiated at older ages are uncertain. Here, we tested the effects of exercise versus TRF in diet‐induced obese, aged mice from 20 to 24 months of age. We characterized healthspan across key domains: body composition, physical, metabolic, and cardiovascular function, activity of daily living (ADL) behavior, and pathology. We demonstrate that both exercise and TRF improved aspects of body composition. Exercise uniquely benefited physical function, and TRF uniquely benefited metabolism, ADL behavior, and circulating indicators of liver pathology. No adverse outcomes were observed in exercised mice, but in contrast, lean mass and cardiovascular maladaptations were observed following TRF. Through a composite index of benefits and risks, we conclude the net healthspan benefits afforded by exercise are more favorable than those of TRF. Extrapolating to obese older adults, exercise is a safe and effective option for healthspan improvement, but additional comprehensive studies are warranted before recommending TRF.  相似文献   

5.
Emerging evidence suggests that plant cell-wall-modifying enzymes induced by root-parasitic nematodes play important roles in feeding cell formation. We previously identified a tobacco endo-β-1,4-glucanase (cellulase) gene, NtCel7 , that was strongly induced in both root-knot and cyst nematode feeding cells. To characterize further the developmental and nematode-responsive regulation of NtCel7 , we isolated the NtCel7 promoter and analysed its expression over a time course of nematode infection and in response to auxin, gibberellin, ethylene and sucrose in soybean and tomato hairy roots and in Arabidopsis containing the NtCel7 promoter fused to the β-glucuronidase (GUS) reporter gene. Histochemical analyses of transgenic plant materials revealed that the NtCel7 promoter exhibited a unique organ-specific expression pattern during plant development suggestive of important roles for NtCel7 in both vegetative and reproductive growth. In all plant species tested, strong GUS expression was observed in root tips and lateral root primordia of uninfected roots with weaker expression in the root vasculature. Further analyses of transgenic Arabidopsis plants revealed expression in shoot and root meristems and the vasculature of most organs during plant development. We also determined that the NtCel7 promoter was induced by auxin, but not gibberellin, ethylene or sucrose. Moreover, strong GUS activity was observed in both cyst and root-knot nematode-induced feeding sites in transgenic roots of soybean, tomato and Arabidopsis. The conserved developmental and nematode-responsive expression of the NtCel7 promoter in heterologous plants indicates that motifs of this regulatory element play a fundamental role in regulating NtCel7 gene expression within nematode feeding sites and that this regulation may be mediated by auxin.  相似文献   

6.
7.
Abstract 1. As herbivory often elicits systemic changes in plant traits, indirect interactions via induced plant responses may be a pervasive feature structuring herbivore communities. Although the importance of this phenomenon has been emphasised for herbivorous insects, it is unknown if and how induced responses contribute to the organisation of other major phytoparasitic taxa. 2. Survey and experimental field studies were used to investigate the role of plants in linking the dynamics of foliar‐feeding insects and root‐feeding nematodes on tobacco, Nicotiana tabacum. 3. Plant‐mediated interactions between insects and nematodes could largely be differentiated by insect feeding guild, with positive insect–nematode interactions predominating with leaf‐chewing insects (caterpillars) and negative interactions occurring with sap‐feeding insects (aphids). For example, insect defoliation was positively correlated with the abundance of root‐feeding nematodes, but aphids and nematodes were negatively correlated. Experimental field manipulations of foliar insect and nematode root herbivory also tended to support this outcome. 4. Overall, these results suggest that plants indirectly link the dynamics of divergent consumer taxa in spatially distinct ecosystems. This lends support to the growing perception that plants play a critical role in propagating indirect effects among a diverse assemblage of consumers.  相似文献   

8.
9.
Gram‐negative bacteria cause many types of infections in animals from fish and shrimps to humans. Bacteria use Type III secretion systems (TTSSs) to translocate their toxins directly into eukaryotic cells. The V‐antigen is a multifunctional protein required for the TTSS in Yersinia and Pseudomonas aeruginosa. V‐antigen vaccines and anti‐V‐antigen antisera confer protection against Yersinia or P. aeruginosa infections in animal models. The V‐antigen forms a pentameric cap structure at the tip of the Type III secretory needle; this structure, which has evolved from the bacterial flagellar cap structure, is indispensable for toxin translocation. Various pathogenic gram‐negative bacteria such as Photorhabdus luminescens, Vibrio spp., and Aeromonas spp. encode homologs of the V‐antigen. Because the V‐antigens of pathogenic gram‐negative bacteria play a key role in toxin translocation, they are potential therapeutic targets for combatting bacterial virulence. In the USA and Europe, these vaccines and specific antibodies against V‐antigens are in clinical trials investigating the treatment of Yersinia or P. aeruginosa infections. Pathogenic gram‐negative bacteria are of great interest because of their ability to infect fish and shrimp farms, their potential for exploitation in biological terrorism attacks, and their ability to cause opportunistic infections in humans. Thus, elucidation of the roles of the V‐antigen in the TTSS and mechanisms by which these functions can be blocked is critical to facilitating the development of improved anti‐V‐antigen strategies.  相似文献   

10.
11.
In plant cells, the vacuolar‐type H+‐ATPases (V‐ATPase) are localized in the tonoplast, Golgi, trans‐Golgi network and endosome. However, little is known about how V‐ATPase influences plant growth, particularly with regard to the V‐ATPase c subunit (VHA‐c). Here, we characterized the function of a VHA‐c gene from Puccinellia tenuiflora (PutVHA‐c) in plant growth. Compared to the wild‐type, transgenic plants overexpressing PutVHA‐c in Arabidopsis thaliana exhibit better growth phenotypes in root length, fresh weight, plant height and silique number under the normal and salt stress conditions due to noticeably higher V‐ATPase activity. Consistently, the Arabidopsis atvha‐c5 mutant shows reduced V‐ATPase activity and retarded plant growth. Furthermore, confocal and immunogold electron microscopy assays demonstrate that PutVHA‐c is mainly localized to endosomal compartments. The treatment of concanamycin A (ConcA), a specific inhibitor of V‐ATPases, leads to obvious aggregation of the endosomal compartments labelled with PutVHA‐c‐GFP. Moreover, ConcA treatment results in the abnormal localization of two plasma membrane (PM) marker proteins Pinformed 1 (AtPIN1) and regulator of G protein signalling‐1 (AtRGS1). These findings suggest that the decrease in V‐ATPase activity blocks endosomal trafficking. Taken together, our results strongly suggest that the PutVHA‐c plays an important role in plant growth by influencing V‐ATPase‐dependent endosomal trafficking.  相似文献   

12.
Azotobacter vinelandii is a terrestrial diazotroph well studied for its siderophore production capacity and its role as a model nitrogen fixer. In addition to Fe, A. vinelandii siderophores are used for the acquisition of the nitrogenase co‐factors Mo and V. However, regulation of siderophore production by Mo‐ and V‐limitation has been difficult to confirm and knowledge of the full suite of siderophores synthesized by this organism has only recently become available. Using this new information, we conducted an extensive study of siderophore production in N2‐fixing A. vinelandii under a variety of trace metal conditions. Our results show that under Fe‐limitation the production of all siderophores increases, while under Mo‐limitation only catechol siderophore production is increased, with the strongest response seen in protochelin. We also find that the newly discovered A. vinelandii siderophore vibrioferrin is almost completely repressed under Mo‐ and V‐limitation. An examination of the potential nitrogen ‘cost’ of siderophore production reveals that investments in siderophore N can represent as much as 35% of fixed N, with substantial differences between cultures using the Mo‐ as opposed to the less efficient V‐nitrogenase.  相似文献   

13.
14.
The expression patterns of three promoters preferentially active in the roots of Arabidopsis thaliana have been investigated in transgenic potato plants in response to plant parasitic nematode infection. Promoter regions from the three genes, TUB-1, ARSK1 and RPL16A were linked to the GUS reporter gene and histochemical staining was used to localize expression in potato roots in response to infection with both the potato cyst nematode, Globodera pallida and the root-knot nematode, Meloidogyne incognita. All three promoters directed GUS expression chiefly in root tissue and were strongly up-regulated in the galls induced by feeding M. incognita. Less activity was associated with the syncytial feeding cells of the cyst nematode, although the ARSK1 promoter was highly active in the syncytia of G. pallida infecting soil grown plants. Transgenic potato lines that expressed the cystatin OcIDeltaD86 under the control of the three promoters were evaluated for resistance against Globodera sp. in a field trial and against M. incognita in containment. Resistance to Globodera of 70 +/- 4% was achieved with the best line using the ARSK1 promoter with no associated yield penalty. The highest level of partial resistance achieved against M. incognita was 67 +/- 9% using the TUB-1 promoter. In both cases this was comparable to the level of resistance achieved using the constitutive cauliflower mosaic virus 35S (CaMV35S) promoter. The results establish the potential for limiting transgene expression in crop plants whilst maintaining efficacy of the nematode defence.  相似文献   

15.
Smaller guts and slow initial mass gains at stopover sites have led to the idea that digestive physiology limits refueling rates in migrating birds. We tested the digestive-limitation hypothesis in yellow-rumped warblers using food restriction to simulate infrequent feeding during migration, which may cause a reduction in alimentary tract mass. Restricted birds had small intestine, pancreas, and liver masses 18%-22% lower than ad lib.-fed controls. Total activities of sucrase, maltase, aminopeptidase, and amylase were significantly lower in restricted birds, while those of trypsin and chymotrypsin were not. Only aminopeptidase mass-specific activity was significantly lower in restricted birds. Previously restricted birds were able to feed and digest at a high rate immediately following return to ad lib. feeding. Digestive efficiency did not differ between groups. These results suggest that before migration yellow-rumped warblers have some spare digestive capacity to compensate for declines in their digestive organ masses during migration.  相似文献   

16.
The activity of vacuolar H+‐ATPase (V‐ATPase) in the apical membrane of blowfly (Calliphora vicina) salivary glands is regulated by the neurohormone serotonin (5‐HT). 5‐HT induces, via protein kinase A, the phosphorylation of V‐ATPase subunit C and the assembly of V‐ATPase holoenzymes. The protein phosphatase responsible for the dephosphorylation of subunit C and V‐ATPase inactivation is not as yet known. We show here that inhibitors of protein phosphatases PP1 and PP2A (tautomycin, ocadaic acid) and PP2B (cyclosporin A, FK‐506) do not prevent V‐ATPase deactivation and dephosphorylation of subunit C. A decrease in the intracellular Mg2+ level caused by loading secretory cells with EDTA‐AM leads to the activation of proton pumping in the absence of 5‐HT, prolongs the 5‐HT‐induced response in proton pumping, and inhibits the dephosphorylation of subunit C. Thus, the deactivation of V‐ATPase is most probably mediated by a protein phosphatase that is insensitive to okadaic acid and that requires Mg2+, namely, a member of the PP2C protein family. By molecular biological techniques, we demonstrate the expression of at least two PP2C protein family members in blowfly salivary glands. © 2009 Wiley Periodicals, Inc.  相似文献   

17.
18.
19.
20.
Most of the cancer types in general and melanoma in particular exhibit mitochondrial dysfunction leading to the Warburg effect. Our present study stemmed from the observation that human A‐375 and melanoma B16 cells displayed overexpression of a novel micro‐RNA, miR‐2909, shown in our earlier studies to be involved in aerobic glycolysis. Consequently, our study attempts to demonstrate the role of miR‐2909 in the regulation of mitochondrial function within human melanocytes. Based upon such a study, we hypothesize that mitochondrial dysfunction observed in melanomas may result from deregulated miR‐2909 expression within such cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号