首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pregnant squamate reptiles (i.e. lizards and snakes) often maintain higher and more stable body temperatures than their nonpregnant conspecifics, and this maternal thermophily enhances developmental rate and can lead to increased offspring quality. However, it is unclear when this behaviour evolved relative to the evolution of viviparity. A preadaptation hypothesis suggests that maternal thermophily was a preadaptation to viviparity. Oviparous squamates are unique among oviparous reptiles for generally retaining their eggs until the embryos achieve one fourth of their development. As a result, maternal thermophily by gravid squamates may provide the same thermoregulatory benefits, at least during early development, that have been associated with viviparity. Thus, the evolution of viviparity in squamates may reflect an expanded duration of a pre-existing maternal thermoregulatory behaviour. Despite its evolutionary relevance, thermoregulation during gravidity in oviparous squamates has not yet been explored in depth. In the present study, we examined whether gravidity was associated with thermoregulatory changes in the oviparous children's python, Antaresia childreni . First, we discovered that, compared to most snakes, A. childreni is at an advanced stage of embryonic development at oviposition. Second, using surgically implanted temperature loggers, we detected a significant influence of reproductive status on thermoregulation. Reproductive females maintained higher and less variable body temperatures than nonreproductive females and this difference was most pronounced during the last 3 weeks of gravidity. Overall, these results highlight the continuum between oviparity and viviparity in squamate reptiles and emphasize the importance of thermal control of early embryonic development independent of reproductive mode.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 93 , 499–508.  相似文献   

2.
The transition between oviparity and viviparity in reptiles is generally accepted to be a gradual process, the result of selection for increasingly prolonged egg retention within the oviduct. We examined egg retention plasticity in an oviparous strain of the lacertid lizard Zootoca vivipara, a species having both oviparous and viviparous populations. We forced a group of female Z. vivipara to retain their clutch in utero by keeping them in dry substrata, and assessed the effect on embryonic development and hatching success, along with offspring phenotype and locomotor performance. Forced egg retention for one additional week affected the developmental stage of embryos at oviposition, as well as hatchling robustness and locomotor performance. However, embryos from forced clutch retention treatment reached one stage unit more than control embryos at oviposition time. Embryos from control eggs were more developed than embryos from experimental eggs after approximately the same period of external incubation, showing that embryonic development is retarded during the period of extended egg retention, despite the high temperature inside the mother's body. Significant differences in external incubation time were only found in one of the two years of study. Hatching success was much lower in the experimental group with forced egg retention (21.1%) than in the control group (95.4%). Therefore, we conclude that there are limitations that hinder the advance of intrauterine embryonic development beyond the normal time of oviposition, and that extended egg retention does not represent clear advantages in this population of Z. vivipara. Nevertheless, the fact that some eggs are successful after forced egg retention could be advantageous for the females that are able to retain their clutch under unfavourable climatic conditions. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 75–82.  相似文献   

3.
The evolution of reptilian viviparity is favoured, according to the cold‐climate hypothesis, at high latitudes or altitudes, where egg retention would entail thermal benefits for embryogenesis because of maternal thermoregulation. According to this hypothesis, and considering that viviparity would have evolved through a gradual increase in the extent of intrauterine egg retention, highland oviparous populations are expected to exhibit more advanced embryo development at oviposition than lowland populations. We tested for possible differences in the level of egg retention, embryo development time and thermal biology of oviparous Zootoca vivipara near the extreme altitudinal limits of the species distribution in the north of Spain (mean altitude for lowland populations, 235 m asl.; for highland populations, 1895 m asl.). Altitude influenced neither temperature of active lizards in the field nor temperature selected by lizards in a laboratory thermal gradient, and pregnant females selected lower temperatures in the thermal gradient than did males and nonpregnant females across altitudinal levels. Eggs from highland populations contained embryos more developed at the time of oviposition (Dufaure and Hubert's stages 33–35) than eggs of highland populations (stages 30–34) and partly because of this difference incubation time was shorter for highland embryos. When analysed for clutches from both altitudinal extremes at the same embryonic stage at oviposition (stage 33), again incubation time was shorter for highland populations, indicating genuine countergradient variation in developmental rate. Our results indicate that temperature is an environmental factor affecting the geographical distribution of different levels of egg retention in Z. vivipara, as predicted by the cold‐climate hypothesis on the evolution of viviparity.  相似文献   

4.
Geographic variation in offspring size is widespread, but the proximate causes of this variation have not yet been explicitly determined. We compared egg size and egg contents among five populations of a lizard (Takydromus septentrionalis, Günther, 1864) along a latitudinal gradient, and incubated eggs at two temperatures to determine the influence of maternal investment and incubation temperature on offspring size. The mean values for female size and egg size were both greater in the two northern populations (Chuzhou and Anji) than in the three southern populations (Lishui, Dongtou, and Ningde). The larger eggs were entirely attributable to the body size of females in the Anji population, but their increased size also stemmed from further enlargement of egg size relative to female body size in Chuzhou, the northernmost population sampled in this study. Eggs of the Chuzhou population contained more yolk and less water than those of southern populations. Despite the lower lipid content in the yolk, eggs from the Chuzhou population had higher energy contents than those from the two southern populations, owing to the larger egg size and increased volume of yolk. Hatchling size was not affected by incubation temperature, but differed significantly among populations, with hatchlings being larger in the Chuzhou population than in the other populations. Our data provide an inference that oviparous reptiles from cold climates may produce larger offspring, not only by increasing egg size but also by investing more energy into their eggs. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 59–67.  相似文献   

5.
Geographic variation in offspring size can be viewed as an adaptive response to local environmental conditions, but the causes of such variation remain unclear. Here, we compared the size and composition of eggs laid by female Chinese skinks (Plestiodon chinensis) from six geographically distinct populations in southeastern China to evaluate geographic variation in hatchling size. We also incubated eggs from these six populations at three constant temperatures (24, 28 and 32 °C) to evaluate the combined effects of incubation temperature and population source on hatchling size. Egg mass and composition varied among populations, and interpopulation differences in yolk dry mass and energy content were still evident after accounting for egg mass. Population mean egg mass and thus hatchling mass were greater in the colder localities. Females from three northern populations increased offspring size by laying larger eggs relative to their own size. Females from an inland population in Rongjiang could increase offspring size by investing relatively more dry materials and thus more energy into individual eggs without enlarging the size of their eggs. The degree of embryonic development at oviposition was almost the same across the six populations, so was the rate of embryonic development and thus incubation length at any given temperature. Both incubation temperature and population source affected hatchling traits examined, but the relative importance of these two factors varied between traits. Our data show that in P. chinensis hatchling traits reflecting overall body size (body mass, snout‐vent length and tail length) are more profoundly affected by population source. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 283–296.  相似文献   

6.
In egg‐laying species, maternal oviposition choice can influence egg survival and offspring phenotypes. According to the maternal‐preference offspring‐performance hypothesis, females should choose oviposition sites that are optimal for offspring fitness. However, in thermally challenging environments, maternal oviposition behaviour may be constrained by the limited availability of suitable oviposition sites. We investigated nest‐site selection in a nocturnal lizard [velvet gecko Oedura lesueurii (Duméril and Bibron)] that inhabits a thermally challenging environment in south‐eastern Australia. The viability of these gecko populations is critical for the persistence of an endangered snake species (Hoplocephalus bungaroides Wagler) that feeds heavily on velvet geckos. Female geckos chose nest sites nonrandomly, with 87% of nests (N = 30) being laid in deep crevices. By contrast, only 13% of clutches were laid under rocks, which were the most readily available potential nest sites. Nest success in crevices was high (100%), but no eggs hatched from nests under rocks. Temperatures in nest crevices remained relatively low and constant throughout the incubation period (mean = 22.7 °C, range 21.0–24.5 °C), whereas thermal regimes under rocks showed large diurnal fluctuations. Geckos selected crevices that were deeper, had less canopy cover, and were warmer than most available crevices; in 85% of cases, such crevices were used simultaneously by more than one female. The thermally distinctive attributes of nest sites, and their frequent communal use, suggest that nest sites are a scarce resource for female velvet geckos, and that the shading of rock outcrops through vegetation encroachment may influence nest success in this species. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 250–259.  相似文献   

7.
Squamate embryos require weeks of high temperature to complete development, with the result that cool climatic areas are dominated by viviparous taxa (in which gravid females can sun‐bask to keep embryos warm) rather than oviparous taxa (which rely on warm soil to incubate their eggs). How, then, can some oviparous taxa reproduce successfully in cool climates – especially late in summer, when soil temperatures are falling? Near the northern limit of their distribution (in Sweden), sand lizards (Lacerta agilis) shift tactics seasonally, such that the eggs in late clutches complete development more quickly (when incubated at a standard temperature) than do those of early clutches. That acceleration is achieved by a reduction in egg size and by an increase in the duration of uterine retention of eggs (especially, after cool weather). Our results clarify the ability of oviparous reptiles to reproduce successfully in cool climates and suggest a novel advantage to reptilian viviparity in such conditions: by maintaining high body temperatures, viviparous females may escape the need to reduce offspring size in late‐season litters.  相似文献   

8.
Evolutionary origins of viviparity among the squamate reptiles are strongly associated with cold climates, and cold environmental temperatures are thought to be an important selective force behind the transition from egg-laying to live-bearing. In particular, the low nest temperatures associated with cold climate habitats are thought to be detrimental to the developing embryos or hatchlings of oviparous squamates, providing a selective advantage for the retention of developing eggs in utero, where the mother can provide warmer incubation temperatures for her eggs (by actively thermoregulating) than they would experience in a nest. However, it is not entirely clear what detrimental effects cold incubation temperatures may have on eggs and hatchlings, and what role these effects may play in favouring the evolution of viviparity. Previous workers have suggested that viviparity may be favoured in cold climates because cold incubation temperatures slow cmbryogenesis and delay hatching of the eggs, or because cold nest temperatures are lethal to developing eggs and reduce hatching success. However, incubation temperature has also been shown to have other, potentially long-term, effects on hatchling phcnotypcs, suggesting that cold climates may favour viviparity because cold incubation temperatures produce offspring of poor quality or low fitness. We experimentally incubated eggs of the oviparous phrynosomatid lizard, Sceloporus virgatus, at temperatures simulating nests in a warm (low elevation) habitat, as is typical for this species, and nests in a colder (high elevation) habitat, to determine the effects of cold incubation temperatures on embryonic development and hatchling phenotypes. Incubation at cold nest temperatures slowed embryonic development and reduced hatching success, but also affected many aspects of the hatchlings' phenotypes. Overall, the directions of these plastic responses indicated that cold-incubated hatchlings did indeed exhibit poorer quality phenotypes; they were smaller at hatching (in body length) and at 20 days of age (in length and mass), grew more slowly (in length and mass), had lower survival rates, and showed greater fluctuating asymmetry than their conspecifics that were incubated at warmer temperatures. Our findings suggest that cold nest temperatures are detrimental to S. virgatus, by delaying hatching of their eggs, reducing their hatching success, and by producing poorer quality offspring. These negative effects would likely provide a selective advantage for any mechanism through which these lizards could maintain warmer incubation temperatures in cold climates, including the evolution of prolonged egg retention and viviparity.  相似文献   

9.
The preference‐performance hypothesis predicts that female insects should prefer to lay eggs in locations that enhance offspring performance. This study examines the choices of females regarding where to oviposit within plants, focusing on the hawkmoth Manduca sexta L. (Lepidoptera: Sphingidae) and its host Datura wrightii Regel (Solanaceae) in the southwestern USA. Smaller Datura leaves provide cooler microclimates for eggs (which may lead to faster embryonic development, shortening their exposure to egg predators) and more nitrogen for larvae. In contrast, large leaves reach temperatures that are stressfully high (which slows embryonic development) and provide less nitrogen for larvae. Thus, we would expect females to oviposit on small leaves. To examine whether leaf size influences female preference and offspring performance, we used laboratory and field studies to address the following questions. (1) On what size leaves do females typically oviposit? (2) Does the distribution of eggs in nature differ from that expected by chance? And (3) how does leaf size affect survival or growth of eggs and larvae? We find that oviposition choices of females do not lead to the highest probability of offspring survival. Females lay eggs on larger leaves, likely due to the greater accessibility of those leaves; however, eggs are more likely to hatch on small leaves. Larvae grow faster on large leaves, but larvae are also surprisingly mobile, suggesting that the consequences of oviposition site are minor once eggs have hatched. Larval mobility was seen only in the field, not in the laboratory, emphasizing the importance of field studies for predicting real‐world performance. Although females' leaf choices are potentially risky for eggs, the threats of high temperature and predation may vary sufficiently in space and time that there is no consistent selection for strong preferences. Furthermore, the fitness consequences for eggs and larvae largely offset each other and offspring are sufficiently mobile to cope with the conditions where they are laid.  相似文献   

10.
Offspring size is a key characteristic in life histories, reflecting maternal investment per offspring and, in marine invertebrates, being linked to mode of development. Few studies have focused explicitly on intraspecific variation and plasticity in developmental characteristics such as egg size and hatching size in marine invertebrates. We measured over 1000 eggs and hatchlings of the marine gastropods Crepidula atrasolea and Crepidula ustulatulina from two sites in Florida. A common‐garden experiment showed that egg size and hatching size were larger at 23 °C than at 28 °C in both species. In C. ustulatulina, the species with significant genetic population structure in cytochrome oxidase I (COI), there was a significant effect of population: Eggs and hatchlings from the Atlantic population were smaller than those from the Gulf. The two populations also differed significantly in hatchling shape. Population effects were not significant in C. atrasolea, the species with little genetic population structure in COI, and were apparent through their marginal interaction with temperature. In both species, 60–65% of the variation in egg size and hatching size was a result of variation among females and, in both species, the population from the Atlantic coast showed greater temperature‐mediated plasticity than the population from the Gulf. These results demonstrate that genetic differentiation among populations, plastic responses to variation in environmental temperature, and differences between females all contribute significantly to intraspecific variation in egg size and hatching size. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 489–499.  相似文献   

11.
Abstract Phylogenetic transitions from oviparity to viviparity in reptiles generally have occurred in cold climates, apparently driven by selective advantages accruing from maternal regulation of incubation temperature. But why, then, are viviparous reptiles so successful in tropical climates? Viviparity might enhance fitness in the tropics via the same pathway as in the temperate zone, if pregnant female reptiles in the tropics maintain more stable temperatures than are available in nests (Shin's maternal manipulation hypothesis). Alternatively, viviparity might succeed in the tropics for entirely different reasons than apply in the temperate zone. Our data support the maternal manipulation hypothesis. In a laboratory thermal gradient, pregnant death adders (Acanthophis praelongus) from tropical Australia maintained less variable body temperatures (but similar mean temperatures) than did nonpregnant females. Females kept at a diel range of 25–31d?C (as selected by pregnant females) gave birth earlier and produced larger offspring (greater body length and head size) than did females kept at 23–33d?C (as selected by nonpregnant snakes). Larger body size enhanced offspring recapture rates (presumably reflecting survival rates) in the field. Thus, even in the tropics, reproducing female reptiles manipulate the thermal regimes experienced by their developing embryos in ways that enhance the fitness of their offspring. This similarity across climatic zones suggests that a single general hypothesis‐maternal manipulation of thermal conditions for embryogenesis‐may explain the selective advantage of viviparity in tropical as well as cold‐climate reptiles.  相似文献   

12.
Lifetime reproductive success in female insects is often egg‐ or time‐limited. For instance in pro‐ovigenic species, when oviposition sites are abundant, females may quickly become devoid of eggs. Conversely, in the absence of suitable oviposition sites, females may die before laying all of their eggs. In pollinating fig wasps (Hymenoptera: Agaonidae), each species has an obligate mutualism with its host fig tree species [Ficus spp. (Moraceae)]. These pro‐ovigenic wasps oviposit in individual ovaries within the inflorescences of monoecious Ficus (syconia, or ‘figs’), which contain many flowers. Each female flower can thus become a seed or be converted into a wasp gall. The mystery is that the wasps never oviposit in all fig ovaries, even when a fig contains enough wasp females with enough eggs to do so. The failure of all wasps to translate all of their eggs into offspring clearly contributes to mutualism persistence, but the underlying causal mechanisms are unclear. We found in an undescribed Brazilian Pegoscapus wasp population that the lifetime reproductive success of lone foundresses was relatively unaffected by constraints on oviposition. The number of offspring produced by lone foundresses experimentally introduced into receptive figs was generally lower than the numbers of eggs carried, despite the fact that the wasps were able to lay all or most of their eggs. Because we excluded any effects of intraspecific competitors and parasitic non‐pollinating wasps, our data suggest that some pollinators produce few offspring because some of their eggs or larvae are unviable or are victims of plant defences.  相似文献   

13.
The maternal manipulation hypothesis states that ectothermic females modify thermal conditions during embryonic development to benefit their offspring (anticipatory maternal effect). However, the recent theory suggests that the ultimate currency of an adaptive maternal effect is female fitness that can be maximized also by decreasing mean fitness of individual offspring. We evaluated benefits of temperature oviposition preferences in Alpine newts (Ichthyosaura [formerly Triturus] alpestris) by comparing the thermal sensitivity of maternal and offspring traits across a range of preferred oviposition temperatures (12, 17, and 22°C) and by manipulating the egg-predation risk during oviposition in a laboratory thermal gradient (12-22°C). All traits showed varying responses to oviposition temperatures. Embryonic developmental rates increased with oviposition temperature, whereas hatchling size and swimming capacity showed the opposite pattern. Maternal oviposition and egg-predation rates were highest at the intermediate temperature. In the thermal gradient, females oviposited at the same temperature despite the presence of caged egg-predators, water beetles (Agabus bipustulatus). We conclude that female newts prefer a particular temperature for egg-deposition to maximize their oviposition performance rather than offspring fitness. The evolution of advanced reproductive modes, such as prolonged egg-retention and viviparity, may require, among others, the transition from selfish temperature preferences for ovipositon to the anticipatory maternal effect.  相似文献   

14.
In egg‐laying animals with no post‐oviposition parental care, between‐ or within‐patch oviposition site selection can determine offspring survival. However, despite the accumulation of evidence supporting the substantial impact predators have on oviposition site selection, few studies have examined whether oviposition site shift within patches (“micro‐oviposition shift”) reduces predation risk to offspring. The benefits of prey micro‐oviposition shift are underestimated in environments where predators cannot disperse from prey patches. In this study, we examined micro‐oviposition shift by the herbivorous mite Tetranychus kanzawai in response to the predatory mite, Neoseiulus womersleyi, by testing its effects on predator patch exploitation in situations where predatory mites were free to disperse from prey patches. Adult T. kanzawai females construct three‐dimensional webs on leaf surfaces and usually lay eggs under the webs; however, females that have experienced predation risks, shift oviposition sites onto the webs even in the absence of current predation risks. We compared the predation of eggs on webs deposited by predator‐experienced females with those on leaf surfaces. Predatory mites left prey patches with more eggs unpredated when higher proportions of prey eggs were located on webs, and egg survival on webs was much higher than that on leaf surfaces. These results indicate that a micro‐oviposition shift by predator‐experienced T. kanzawai protects offspring from predation, suggesting adaptive learning and subsociality in this species. Conversely, fecundity and longevity of predator‐experienced T. kanzawai females were not reduced compared to those of predator‐naïve females; we could not detect any costs associated with the learned micro‐oviposition shift. Moreover, the previously experienced predation risks did not promote between‐patch dispersal of T. kanzawai females against subsequently encountered predators. Based on these results, the relationships of between‐patch oviposition site selection and micro‐oviposition shift are discussed.  相似文献   

15.
We collected gravid Chinese cobras (Naja atra) from one island (Dinghai) and three mainland (Yiwu, Lishui and Quanzhou) populations in south‐eastern China to study geographical variation in female reproductive traits and the trade‐off between the size and number of eggs. We then conducted an common experiment on cobras from two of the four populations to further identify factors contributing to the observed trade‐offs. The mean size (snout–vent length) of the smallest five reproductive females increased with increasing latitude. Oviposition occurred between late June and early August, with females from the warmer localities laying eggs earlier than those from the colder localities. Maternal size was a major determinant of the reproductive investment in all populations, with larger females producing not only more but also larger eggs. Clutch size was more variable than egg size within and among populations. The observed geographical variation in clutch size, egg size, clutch mass and post‐oviposition body condition was not a simple consequence of variation in maternal size among populations, because interpopulation differences in these traits were still evident when the influence of maternal size was removed. The upper limit to reproductive investment was more likely to be set by the space availability in the island population, but by the resource availability in the three mainland populations. Trade‐offs between size and number of eggs were detected in all populations, with females that had larger clutches for their size having smaller eggs. Egg size at any given level of relative fecundity differed among populations, primarily because of interpopulation differences in the resource availability rather than the space availability. Except for the timing date of oviposition and the mean size of the smallest five reproductive females, all other examined traits did not vary in a geographically continuous trend. The common garden experiment, which standardized environmental factors, synchronized the timing date of oviposition, but it did not modify the conclusion drawn from the gravid females collected from the field. The observed geographical variation in the female reproductive traits could be attributed to the consequence of the effects of either proximate or ultimate factors. © 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 85 , 27–40.  相似文献   

16.
Symbiotic bacteria on house fly eggs, Musca domestica L. (Diptera: Muscidae), provide ovipositional cues for conspecific female flies and curtail the growth of fungi that compete with fly larval offspring for resources. Because bacteria are also essential dietary constituents for developing larvae, we tested the hypothesis that egg‐derived bacteria support development of larvae to adults. From house fly eggs, we isolated and identified 12 strains of bacteria, eight and four of which were previously shown to induce and inhibit oviposition, respectively. When larvae were provisioned with a total dose of 106–107 colony‐forming units of bacteria from either the oviposition‐inducing or inhibiting group, or from both groups together, significantly more larvae completed development. Thus, egg‐associated bacteria could be a fail‐safe mechanism that ensures a bacterial food supply for larval offspring, particularly if the resource selected by parent females is poor in bacterial food.  相似文献   

17.
T. Mathies  R. M. Andrews 《Oecologia》1995,104(1):101-111
Viviparity in squamate reptiles is presumed to evolve in cold climates by selection for increasingly longer periods of egg retention. Longer periods of egg retention may require modifications to other reproductive features associated with the evolution of viviparity, including a reduction in eggshell thickness and clutch size. Field studies on the thermal and reproductive biology of high (HE) and low (LE) elevation populations of the oviparous lizard, Sceloporus scalaris, support these expectations. Both day and night-time temperatures at the HE site were considerably cooler than at the LE site, and the activity period was 2 h shorter at the HE than at the LE site. The median body temperature of active HE females was 2°C lower than that of LE females. HE females initiated reproduction earlier in the spring than LE females, apparently in order to compensate for relatively low temperatures during gestation. HE females retained eggs for about 20 days longer than LE females, which was reflected by differences in the degree of embryonic development at the time of oviposition (stages 35.5–37.0 versus stages 31.0–33.5, respectively). These results support the hypotheses that evolution of viviparity is a gradual process, and is favored in cold climates. Females in the HE population exhibited other traits consistent with presumed intermediate stages in the evolution of viviparity; mean eggshell thickness of HE eggs (19.3 m) was significantly thinner than that of LE eggs (26.6 m) and the size-adjusted clutch sizes of HE females (9.4) were smaller than those of LE females (11.2).  相似文献   

18.
Viviparity has evolved numerous times among squamate reptiles; however, the combination of viviparity and nocturnality is apparently rare among lizards. We used time‐lapse photography to examine evidence for diurnal activity in a viviparous lizard often described as nocturnal, the gecko Woodworthia ‘Otago/Southland’ from southern New Zealand (family Diplodactylidae). Evidence for diurnal emergence was extensive. Females have a higher incidence of basking compared to males, although no difference was detected between females in different reproductive conditions. Temperature loggers inserted into calibrated copper models were used to compare the body temperatures available to geckos in two basking positions and in two retreat types. Models in basking positions reached higher mean temperatures than models in retreats, although there was no significant effect of basking position or retreat type on model temperatures. Collectively, our results indicate that pregnant geckos that bask consistently could reduce gestation length by at least 14 days compared with females that remain in retreats. Extensive basking in this species adds to the growing evidence of diurno‐nocturnality in many New Zealand lepidosaurs, including other viviparous geckos. Our results lead us to question whether viviparity in lizards is ever compatible with ‘pure’ nocturnality in a cool climate. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, ●● , ●●–●●.  相似文献   

19.
Two hypotheses have prevailed to explain the evolution of viviparity in reptiles: the first proposed that viviparity evolved in response to cold-climates because the possibility of pregnant females to thermoregulate at higher temperatures than embryos could experience in a nest in nature. The second hypothesis posits that the advantage of viviparity is based on the possibility of females to maintain stable body temperatures during development, enhancing offspring fitness. With the aim to contribute to understanding the origins of viviparity in reptiles, we experimentally subjected pregnant females of the austral lizard Liolaemus sarmientoi to two temperature treatments until parturition: one that simulated environmental temperatures for a potential nest (17–25?°C) and another that allowed females to thermoregulate at their preferred body temperature (17–45?°C). Then, we analysed newborn body conditions and their locomotor performance to estimate their fitness. In addition, we measured the body temperature in the field and the preferred temperature in the laboratory of pregnant and non-pregnant females. Pregnant females thermoregulated to achieve higher temperatures than the environmental temperatures, and also thermoregulated within a narrower range than non-pregnant females. This could have allowed embryos to develop in higher and more stable temperatures than they would experience in a nest in nature. Thus, offspring developed at the female preferred temperature showed greater fitness and were born earlier in the season than those developed at lower environmental temperatures. Herein, we show that results are in agreement with the two hypotheses of the origin of viviparity for one of the southernmost lizards of the world.  相似文献   

20.
Cold-climate reptiles show three kinds of adaptation to provide warmer incubation regimes for their developing embryos: maternal selection of hot nest sites; prolonged uterine retention of eggs; and increased maternal basking during pregnancy. These traits may evolve sequentially as an oviparous lineage invades colder climates. To compare the thermal consequences of these adaptations, I measured microhabitat temperatures of potential nest sites and actual nests of oviparous scincid lizards ( Bassiana duperreyi ), and body temperatures of pregnant and non-pregnant viviparous scincid lizards ( Eulamprus heatwolei ). These comparisons were made at a site where both species occur, but close to the upper elevational limit for oviparous reptiles in south-eastern Australia. Viviparity and maternal basking effort had less effect on mean incubation temperature than did maternal nest-site selection. Eggs retained in utero experienced bimodal rather than unimodal diel thermal distributions, but similar mean incubation temperatures. Often the published literature emphasizes the ability of heliothermic (basking) reptiles to maintain high body temperatures despite unfavourable ambient weather conditions; this putative ability is central to many hypotheses on selective forces for the evolution of viviparity. In cold climates, however, opportunities for maternal thermoregulation to elevate mean body temperatures (and thus, incubation temperatures) above ambient levels may be severely limited. Hence, at least over the broad elevational range in which oviparous and viviparous species live in sympatry, maternal selection of 'hot' nests may be as effective as is viviparity in providing favourable incubation regimes.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 83 , 145–155.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号