首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract We have devised a simple in vivo scheme for moving chromosomal mutations onto multicopy plasmids in Escherichia coli K-12. A plasmid clone of the relevant wild-type gene is first integrated into the chromosome of a PolA strain carrying the desired mutation. The plasmid cointegrate formed is then resolved by P1 transduction to a PolA+ host. A certain fraction of these transductants will have the mutant allele on the plasmid. Employing this scheme we cloned an ompR 2 mutation onto a multicopy plasmid. To show that the plasmid actually contained the ompR 2 mutation, this allele was introduced back into the chromosome by the gene replacement technique of Gutterson and Koshland [1] and shown to be indistinguishable from the original ompR 2 by genetic mapping and phenotype.  相似文献   

2.
Functional analysis of cloned genes often makes use of complementation after introducing these genes into cells of a mutant strain. Problems with this self-cloning step in the cyanobacterium Anacystis nidulans R2 have been encountered, which were mainly due to recombinational instability of gene and vector after transformation. Therefore, conditions determining the exchange of material between chromosome, insert and plasmids were studied to achieve the necessary stability. The fate of plasmid pME1, containing a wild-type methionine gene from A. nidulans R2, was investigated after its introduction into a Tn901-induced methionine mutant strain as recipient, so that the mutant chromosomal gene could be distinguished from the plasmid-borne wild-type copy. Two different recipients were constructed, one containing and one lacking the resident plasmid pCH1, which is a derivative of the indigenous small plasmid pUH24. When using the pCH1-free strain and with combined selection for both wild-type gene and vector, the original configuration of the genes in chromosome and vector was retained in the majority of the transformed cells, while the remaining transformants were reciprocal recombinants; under conditions of single selection mainly nonreciprocal recombination or loss of the vector was observed. When the recipient strain contained pCH1 additional recombinational events took place. The results show that under appropriate conditions a chromosomal gene cloned on a plasmid vector can be stably maintained in a majority of the transformants, thus making self-cloning experiments feasible in A. nidulans R2. On the other hand, the introduction of foreign DNA into the chromosome can be achieved by deliberately exploiting recombination between chromosome and plasmid.  相似文献   

3.
In thymine requiring auxotrophs of Escherichia coli the uridine phosphorylase enzyme (udp gene) can catalyze nonspecifically conversion of thymine to thymidine. By selection for effective utilization of exogenous thymine, it is possible to isolate forms with increased expression of the udp gene. Mutants with increased gene expression were isolated from the strain with transposon Tn10 within the metE gene closely linked to udp. Some mutants (designated udpPf) losing Tn10 but retaining the Met- phenotype are characterized by disturbance of recombination in the metE-udp region: they do not form Met+ transductants in P1 transduction with the wild-type donor strain. However, recovery of homology in the chromosomal metE-udp region takes place with low frequency in P1 transduction using the strain with Tn10 insertion in metE as a donor. Data obtained in transductional and conjugational experiments demonstrate that the udpPf1 mutant studied is an inversion extending about 3 min of the E. coli chromosome and including the region of chromosomal replication origin (oriC).  相似文献   

4.
A simple and efficient gene replacement method, based on the recombination and repair activities of the cell, was developed. The method permits the targeted construction of markerless deletions, insertions and point mutations in the Escherichia coli chromosome. A suicide plasmid, carrying the mutant allele and the recognition site of meganuclease I- Sce I, is inserted into the genome by homologous recombination between the mutant and the wild-type (wt) alleles. Resolution of this cointegrate by intramolecular recombination of the allele pair results in either a mutant or a wt chromosome which can be distinguished by allele-specific PCR screening. The resolution process is stimulated by introducing a unique double-strand break (DSB) into the chromosome at the I- Sce I site. Cleavage by the nuclease not only enhances the frequency of resolution by two to three orders of magnitude, but also selects for the resolved products. The DSB-stimulated gene replacement method can be used in recombination-proficient E.coli cells, does not require specific growth conditions, and is potentially applicable in other microorganisms. Use of the method was demonstrated by constructing a 17-bp and a 62-kb deletion in the MG1655 chromosome. Cleavage of the chromosome induces the SOS response but does not lead to an increased mutation rate.  相似文献   

5.
A technique is presented by which chromosomal mutations may be efficiently transferred onto chimeric multicopy plasmids in vivo. The technique employs the transduction of plasmids using bacteriophage P1 as vector. The utility of this method was demonstrated by cloning a chromosomal ompR mutation of Escherichia coli K-12. The high-frequency transduction of the chimeric plasmid appeared to be dependent on its integration into the chromosome by homologous recombination. The results also suggest that the plasmid was transduced as part of the chromosome and resolved from its integrated state in the recipient cell, resulting in a high yield of mutant plasmid segregants.  相似文献   

6.
We describe a new method of gene cloning by complementation of mutant alleles which obviates the need for construction of a gene library in a plasmid vector in vitro and its amplification in Escherichia coli. The method involves simultaneous transformation of mutant strains of the fungus Aspergillus nidulans with (i) fragmented chromosomal DNA from a donor species and (ii) DNA of a plasmid without a selectable marker gene, but with a fungal origin of DNA replication (‘helper plasmid’). Transformant colonies appear as the result of the Joining of chromosomal DNA fragments carrying the wild-type copies of the mutant allele with the helper plasmid. Joining may occur either by ligation (if the helper plasmid is in linear form) or recombination (if it is cccDNA). This event occurs with high efficiency in vivo, and generates an autonomously replicating plasmid cointegrate. Transformants containing Penicillium chrysogenum genomic DNA complementing A. nidulans niaD, nirA and argB mutations have been obtained. While some of these cointegrates were evidently rearranged or consisted only of unaltered replicating plasmid, in other cases plasmids could be recovered into E. coli and were subsequently shown to contain the selected gene. The utility of this “instant gene bank” technique is demonstrated here by the molecular cloning of the P. canescens trpC gene.  相似文献   

7.
A mobilizable plasmid which carries the promoter for the exotoxin A (ETA) structural gene fused to lacZ was integrated into the chromosome of wild-type and mutant strains of Pseudomonas aeruginosa at the toxA locus by homologous recombination. beta-galactosidase synthesis in the strains (cointegrates) carrying the toxA-lacZ fusions was regulated like ETA synthesis is in P. aeruginosa. Two multicopy plasmids carrying a positive regulatory gene designated toxR were constructed which are identical except with respect to the orientation of toxR to the lacZ promoter on the plasmid. These plasmids were then introduced into P. aeruginosa cointegrate strains. When toxR was using its own promoter, synthesis of beta-galactosidase in the cointegrate strains was increased but the pattern of iron regulation was not altered. In contrast, when the lacZ promoter was directing synthesis of the toxR product in the cointegrate strains, iron regulation of beta-galactosidase and ETA synthesis were abolished.  相似文献   

8.
Escherichia coli deleted for the tus gene are viable. Thus there must be at least one other mechanism for terminating chromosome synthesis. The tus deletion strain yielded a small fraction of cells that overproduce DNA, as determined by flow cytometry after run-out chromosome replication in the presence of rifampicin and cephalexin. A plasmid, paraBAD tus+, prevented the excess DNA replication only when arabinose was added to the medium to induce the synthesis of the Tus protein. Transduction studies were done to test whether or not additional chromosomal deletions could enhance the excess chromosome replication in the tus deletion strain. A strain containing a second deletion in metE udp overproduced DNA at a high level during run-out replication. Further studies demonstrated that a spontaneous unknown mutation had occurred during the transduction. This mutation was mapped and sequenced. It is polA(G544D). Transduction of polA(G544D) alone into the tus deletion strain produced the high DNA overproduction phenotype. The polA(G544D) and six other polA alleles were then tested in wild-type and in tus deletion backgrounds. The two alleles with low levels of 5'-->3' exonuclease (exo) overproduced DNA while those with either high or normal exo overproduce much less DNA in run-out assays in the wild-type background. In contrast, all seven mutant polA alleles caused the high DNA overproduction phenotype in a tus deletion background. To explain these results we propose a new in vivo function for wild-type DNA polymerase I in chromosome termination at site(s) not yet identified.  相似文献   

9.
E Resnik  D C LaPorte 《Gene》1991,107(1):19-25
We have developed a general method for the introduction of any cloned sequence into the chromosome of Escherichia coli. This method employs an Hfr strain which carries a fragment of bla (the pBR322 gene imparting ampicillin resistance) between lacI and lacZ. Plasmid-borne inserts which are flanked by sequences from bla and lacZ can be introduced at this locus by homologous recombination. The isolation of recombinants is enhanced by selection for transfer of an integrated copy of the plasmid during conjugation. Once introduced into the chromosome, the inserted sequences can be transferred to other strains by conventional methods such as P1 transduction or conjugation. This method is suitable for the transfer of any cloned sequence to the chromosome and is particularly well suited to the construction of chromosomal gene and operon fusions with lacZ.  相似文献   

10.
We report a technique which uses the cointegrate intermediate of transposon Tn1000 transposition as a means to lower the copy number of ColE1-type plasmids. The transposition of Tn1000 from one replicon to another is considered a two-step process. In the first step, the transposon-encoded TnpA protein mediates fusion of the two replicons to produce a cointegrate. In the second step, the cointegrate is resolved by site-specific recombination between the two transposon copies to yield the final transposition products: the target replicon with an integrated transposon plus the regenerated donor replicon. Using in vitro techniques, the DNA sequence of the Tn1000 transposon was altered so that cointegrate formation occurs but resolution by the site-specific recombination pathway is blocked. When this transposon was resident on an F factor-derived plasmid, a cointegrate was formed between a multicopy ColE1-type target plasmid and the conjugative F plasmid. Conjugational transfer of this cointegrate into a polA strain resulted in a stable cointegrate in which replication from the ColE1 plasmid origin was inhibited and replication proceeded only from the single-copy F factor replication origin. We assayed isogenic strains which harbored plasmids encoding chloramphenicol acetyltransferase to measure the copy number of such F factor-ColE1-type cointegrate plasmids and found that the copy number was decreased to the level of single-copy chromosomal elements. This method was used to study the effect of copy number on the expression of the fabA gene (which encodes the key fatty acid-biosynthetic enzyme beta-hydroxydecanoylthioester dehydrase) by the regulatory protein encoded by the fadR gene.  相似文献   

11.
The gene for leader peptidase, termed lep, was mapped to the region between purI and nadB at min 54 to 55 on the Escherichia coli chromosome. Mapping involved (i) cloning the gene into the plasmid pBR322, (ii) transforming the plasmid into a polA strain where it cannot replicate autonomously, (iii) selecting by ampicillin resistance the rare cell in which the plasmid had recombined into the chromosome, and (iv) mapping the chromosomal site of drug resistance (and thus plasmid integration) by Hfr matings and P1 transduction. The map position was confirmed by an assay of the enzyme content of cells bearing an F' factor which covered that region of the chromosome.  相似文献   

12.
Mapping of the lipoprotein signal peptidase gene (lsp)   总被引:4,自引:1,他引:3       下载免费PDF全文
A pBR322 plasmid which contains a fragment of Escherichia coli DNA encoding the lipoprotein signal peptidase gene was used to transform Hfr polA1 strains. Ampr transformants were used as donors in conjugation experiments, and the location of the plasmid amp gene adjacent to the chromosomal lsp gene was determined to be near the thr ara loci of the E. coli chromosome. P1 transduction experiments established that the location of the lsp gene is closely linked to that of dapB , at 0.5 to 0.6 min on the E. coli genetic map. The position of the lsp gene was further determined to be between ileS and dapB by complementation analysis of an E. coli mutant showing temperature-sensitive prolipoprotein signal peptidase activity.  相似文献   

13.
To facilitate efficient allelic exchange of genetic information into a wild-type strain background, we improved upon and merged approaches using a temperature-sensitive plasmid and a counter-selectable marker in the chromosome. We first constructed intermediate strains of Escherichia coli K12 in which we replaced wild-type chromosomal sequences, at either the fimB-A or lacZ-A loci, with a newly constituted DNA cassette. The cassette consists of the sacB gene from Bacillus subtilis and the neomycin (kanamycin) resistance gene of Tn5, but, unlike another similar cassette, it lacks IS1 sequences. We found that sucrose sensitivity was highly dependent on incubation temperature and sodium chloride concentration. The DNA to be exchanged into the chromosome was first cloned into derivatives of plasmid pMAK705, a temperature-sensitive pSC101 replicon. The exchanges were carried out in two steps, first selecting for plasmid integration by standard techniques. In the second step, we grew the plasmid integrates under non-selective conditions at 42 degrees C, and then in the presence of sucrose at 30 degrees C, allowing positive selection for both plasmid excision and curing. Despite marked locus-specific strain differences in sucrose sensitivity and in the growth retardation due to the integrated plasmids, the protocol permitted highly efficient exchange of cloned DNA into either the fim or lac chromosomal loci. This procedure should allow the exchange of any DNA segment, in addition to the original or mutant allelic DNA, into any non-essential parts of the E. coli chromosome.  相似文献   

14.
Like low-copy-number plasmids including P1 wild type, multicopy P1 mutants (P1 cop, maintained at five to eight copies per chromosome) can suppress the thermosensitive phenotype of an Escherichia coli dnaA host by forming a cointegrate. At 40 degrees C in a dnaA host suppressed by P1 cop, the only copy of P1 is the one in the host chromosome. Trivial explanations of the lack of extrachromosomal copies of P1 cop have been eliminated: (i) during integrative suppression, the P1 cop plasmid does not revert to cop+; (ii) the dnaA+ function of the host is not required to maintain P1 cop at a high copy number; and (iii) integrative recombination does not occur within the region of the plasmid involved in regulation of copy number. Since there are no more copies of the chromosomal origin (now located within the integrated P1 plasmid) than in a P1 cop+-suppressed strain, the extra initiation potential of the P1 cop is not used to provide multiple initiations of the chromosome. When a P1 cop-suppressed dnaA strain was grown at 30 degrees C so that replication could initiate from the chromosomal origin as well as from the P1 origin, multicopy supercoiled P1 DNA was found in the cells. This plasmid DNA was lost again when the temperature was shifted back to 40 degrees C.  相似文献   

15.
Escherichia coli ruv gene was located at 36.1 min on the chromosome by P1 transduction experiments and the gene order his - supD - uvrC, dar4 - ruv - eda - fadD - pps was proposed. Complementation analysis by an F' factor carrying genes in the his region indicated that ultraviolet light sensitivity genes, ruv and uvrC, consist of different cistrons and wild-type alleles of these genes are dominant over the mutant alleles.  相似文献   

16.
Plasmid pJMC21 contains Escherichia coli chromosomal DNA encoding Lon protease, HU-beta (HU-1), and an unidentified 67,000-dalton protein. A kanamycin resistance cassette was used in the construction of insertion and deletion mutations in hupB, the gene encoding HU-beta on plasmid pJMC21. The reconstructed plasmids were linearized and used to introduce hupB chromosomal mutations into JC7623 (recBC sbcBC). These mutations, as expected, mapped in the 9.8-min region of the E. coli chromosome by P1 transduction (16% linkage to proC+). Southern blot hybridization of chromosomal fragments verified that hupB+ was replaced by the mutant allele, with no indication of gene duplication. All the mutant strains had growth rates identical to that of wild-type E. coli, were resistant to UV irradiation and nitrofurantoin, and supported the in vivo transposition-replication of bacteriophage Mu, Mu lysogenization, Tn10 transposition from lambda 1098, and lambda replication-lysogenization. The only observable phenotypic variation was a reduced Mu plaque size on the hupB mutant strains; however, the yield of bacteriophage Mu in liquid lysates prepared from the mutant strains was indistinguishable from the yield for the wild type.  相似文献   

17.
This report describes a set of Escherichia coli and Salmonella typhimurium strains that permits the reversible transfer of lac fusions between a plasmid and either bacterial chromosome. The system relies on homologous recombination in an E. coli recD host for transfer from plasmid to chromosome. This E. coli strain carries the S. typhimurium put operon inserted into trp, and the resulting fusions are of the form trp::put::[Kanr-X-lac], where X is the promoter or gene fragment under study. The put homology flanks the lac fusion segment, so that fusions can be transduced into S. typhimurium, replacing the resident put operon. Subsequent transduction into an S. typhimurium strain with a large chromosomal deletion covering put allows selection for recombinants that inherit the fusion on a plasmid. A transposable version of the put operon was constructed and used to direct lac fusions to novel locations, including the F plasmid and the ara locus. Transductional crosses between strains with fusions bearing different segments of the hemA-prfA operon were used to determine the contribution of the hemA promoter region to expression of the prfA gene and other genes downstream of hemA in S. typhimurium.  相似文献   

18.
An efficient method for moving mutations in cloned Escherichia coli DNA from plasmid vectors to the bacterial chromosome was developed. Cells carrying plasmids that had been mutated by the insertion of a resistance gene were infected with lambda phage containing homologous cloned DNA, and resulting lysates were used for transduction. Chromosomal transductants (recombinants) were distinguished from plasmid transductants by their ampicillin-sensitive phenotype, or plasmid transductants were avoided by using a recBC sbcB E. coli strain as recipient. Chromosomal transductants were usually haploid when obtained in a nonlysogen because of selection against the lambda vector and partially diploid when obtained in a lysogen. Pure stocks of phage that carry the resistance marker and transduce it at high frequency were obtained from transductant bacteria. The lambda-based method for moving mutant alleles into the bacterial chromosome described here should be useful for diverse analyses of gene function and genome structure.  相似文献   

19.
A bacteriophage T4 insertion/substitution vector system has been developed as a means of introducing in vitro generated mutations into the T4 chromosome. The insertion/substitution vector is a 2638-base pair plasmid containing the pBR322 origin of replication and ampicillin resistance determinant, a T4 gene 23 promoter/synthetic supF tRNA gene fusion, and a polylinker with eight unique restriction enzyme recognition sites. A T4 chromosomal "target" DNA sequence is cloned into this vector and mutated by standard recombinant DNA techniques. Escherichia coli cells containing this plasmid are then infected with T4 bacteriophage that carry amber mutations in two essential genes. The plasmid integrates into the T4 chromosome by recombination between the plasmid-borne T4 target sequence and its homologous chromosomal counterpart. The resulting phage, termed "integrants," are selectable by the supF-mediated suppression of their two amber mutations. Thus, although the integrants comprise 1-3% or less of the total phage progeny, growth on a nonsuppressing host permits their direct selection. The pure integrant phage can be either analyzed directly for a possible mutant phenotype or transferred to nonselective growth conditions. In the latter case, plasmid-free phage segregants rapidly accumulate due to homologous recombination between the duplicated target sequences surrounding the supF sequence in each integrant chromosome. A major fraction of these segregants will retain the in vitro generated mutation within their otherwise unchanged chromosomes and are isolated as stable mutant bacteriophage. The insertion/substitution vector system thereby allows any in vitro mutated gene to be readily substituted for its wild-type counterpart in the bacteriophage T4 genome.  相似文献   

20.
A mutant (strain B119) of Agrobacterium tumefaciens with a chromosomal mutation was isolated by transposon (Tn5) mutagenesis. The mutant exhibited growth rates on L agar and minimal medium (AB) plates similar to those of the parent strain (strain A208 harboring a nopaline-type Ti plasmid). The mutant was avirulent on all host plants tested: Daucus carota, Cucumis sativus, and Kalanchoe diagremontiana. The mutant was not impaired in attachment ability to carrot cells. The mutant had one insertion of Tn5 in its chromosome. The avirulent phenotype of B119 was shown to be due to the Tn5 insertion in the chromosome by the marker exchange technique. A wild-type target chromosomal segment (3.0 kb) which included the site of mutation was cloned and sequenced. Two open reading frames, ORF-1 (468 bp) and ORF-2 (995 bp), were identified in the 3.0-kb DNA segment. Tn5 was inserted in the middle of ORF-2 (acvB gene). Introduction of the acvB gene into the mutant B119 strain complemented the avirulent phenotype of the strain. Homology search found no genes homologous to acvB, although it had some similarity to the open reading frame downstream of the virA gene on the Ti plasmid. Thus, the acvB gene identified in this study seems to be a new chromosomal virulence gene of A. tumefaciens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号