首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Shan ZX  Lin QX  Yang M  Zhang B  Zhu JN  Mai LP  Deng CY  Liu JL  Zhang YY  Lin SG  Yu XY 《Cytokine》2011,53(1):35-41
Macrophage migration inhibitory factor (MIF) is an inflammatory cytokine associated with the atherosclerotic process and atherosclerotic plaque stability. MIF was shown to be highly expressed in advanced atherosclerotic lesions. Neutralizing MIF with a blocking antibody induced a regression of established atherosclerotic lesions. In this study, we investigated the mechanism underlying the proangiogenic effect of MIF in human umbilical vein endothelial cells (HUVECs). We showed that MIF induced the expression of angiogenesis-related genes in HUVECs. We also showed that MIF induced tube formation of HUVECs in vitro and in vivo. Angiotensin II (Ang II) could specifically up-regulate MIF expression in HUVECs. Using a luciferase reporter assay, we demonstrated that the AP-1 response element in the 5'-UTR of the MIF gene played a role in Ang II-induced MIF expression. Small hairpin RNA (shRNA) targeting c-Jun, a component of AP-1, and the AP-1 inhibitor CHX both efficiently inhibited MIF expression. The consistent result of electrophoretic mobility shift assay (EMSA) showed that Ang II specifically increased AP-1 activation in HUVECs. Our results suggest that AP-1 mediates Ang II-induced MIF expression which contributes to atherosclerotic plaque destabilization in human endothelial cells.  相似文献   

3.
4.
Down syndrome, the most frequent genetic disorder, is characterized by an extra copy of all or part of chromosome 21. Down syndrome candidate region 1 (DSCR1) gene, which is located on chromosome 21, is highly expressed in the brain of Down syndrome patients. Although its cellular function remains unknown, DSCR1 expression is linked to inflammation, angiogenesis, and cardiac development. To explore the functional role of DSCR1 and the regulation of its expression, we searched for novel DSCR1-interacting proteins using a yeast two-hybrid assay. Using a human fetal brain library, we found that DSCR1 interacts with NF-kappaB-inducing kinase (NIK). Furthermore, we demonstrate that NIK specifically interacts with and phosphorylates the C-terminal region of DSCR1 in immortalized hippocampal cells as well as in primary cortical neurons. This NIK-mediated phosphorylation of DSCR1 increases its protein stability and blocks its proteasomal degradation, the effects of which lead to an increase in soluble and insoluble DSCR1 levels. We show that an increase in insoluble DSCR1 levels results in the formation of cytosolic aggregates. Interestingly, we found that whereas the formation of these inclusions does not significantly alter the viability of neuronal cells, the overexpression of DSCR1 without the formation of aggregates is cytotoxic.  相似文献   

5.
Reactive oxygen species (ROS) have been considered to mediate inflammation in Down syndrome (DS). The present study is purposed to examine the mechanism of increased ROS levels and inflammatory cytokine IL-8 expression in Down syndrome candidate region-1 (DSCR1)-transfected cells, by determining ROS levels, IL-8 expression, NF-κB activation, and SOD1 levels in human embryonic kidney (HEK) 293 cells. The cells were treated with an antioxidant N-acetyl cysteine (NAC) or a calcium chelator BAPTA and stimulated with or without IL-1β. As a result, basal levels of ROS, IL-8, and NF-κB-DNA binding activity were higher, and basal SOD1 levels were higher in DSCR1-transfected cells than pcDNA-transfected cells. BAPTA and NAC inhibited increase in ROS (intracellular and mitochondrial levels) in DSCR-1-transfected cells without treatment of IL-1β. DSCR1 transfection-induced changes were increased by treatment with IL-1β, which was suppressed by NAC and BAPTA. Transfection of SOD1 inhibited ROS levels in DSCR1-transfected cells. In conclusion, ROS activate NF-κB and IL-8 induction in DSCR1-transfected cells in a calcium-dependent manner, which is augmented by IL-1β since IL-1β increases calcium and ROS levels in the cells. Reducing ROS levels by treatment of antioxidants may be beneficial for preventing DS-associated inflammation by suppressing cytokine expression.  相似文献   

6.
We used immunocytochemical and fluorescence assays to investigate the subcellular location of the protein encoded by Down syndrome critical region gene 2 (DSCR2) in transfected cells. It was previously suggested that DSCR2 is located in the plasma membrane as an integral membrane protein. Interestingly, we observed this protein in the endoplasmic reticulum (ER) of cells. We also studied whether the truncated forms of DSCR2 showed different subcellular distributions. Our observations indicate that DSCR2 probably is not inserted into the membrane of the endoplasmic reticulum since the fragments lacking the predicted transmembrane (TM) helices remained associated with the ER. Our analyses suggest that, although DSCR2 is associated with the endoplasmic reticulum, it is not an integral membrane protein and it is maintained on the cytoplasmic side of the ER by indirect interaction with the ER membrane or with another protein.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
The discovery of the role of P2Y(12) receptor in platelet aggregation leads to a new anti-thrombotic drug Plavix; however, little is known about non-platelet P2Y receptors in thrombosis. This study tested the hypothesis that endothelial P2Y receptor(s) mediates up-regulation of tissue factor (TF), the initiator of coagulation cascade. Stimulation of human coronary artery endothelial cells (HCAEC) by UTP/ATP increased the mRNA level of TF but not of its counterpart-tissue factor pathway inhibitor, which was accompanied by up-regulation of TF protein and cell surface activity. RT-PCR revealed a selective expression of P2Y(2) and P2Y(11) receptors in HCAEC. Consistent with this, TF up-regulation was inhibited by suramin or by siRNA silencing of P2Y(2) receptor, but not by NF-157, a P2Y(11)-selective antagonist, suggesting a role for the P2Y(2) receptor. In addition, P2Y(2) receptor activated ERK1/2, JNK, and p38 MAPK pathways without affecting the positive NF-κB and negative AKT regulatory pathways of TF expression. Furthermore, TF up-regulation was abolished or partially suppressed by inhibition of p38 or JNK but not ERK1/2. Interestingly, blockade of the PLC/Ca(2+) pathway did not affect P2Y(2) receptor activation of p38, JNK, and TF induction. However, blockade of Src kinase reduced phosphorylation of p38 but not JNK, eliminating TF induction. In contrast, inhibition of Rho kinase reduced phosphorylation of JNK but not p38, decreasing TF expression. These findings demonstrate that P2Y(2) receptor mediates TF expression in HCAEC through new mechanisms involving Src/p38 and Rho/JNK pathways, possibly contributing to a pro-thrombotic status after vascular injury.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号