首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study presents evidence for the first time that rat liver peroxisomes contain a hydroxylase capable of converting 3 alpha, 7 alpha, 12 alpha,- trihydroxy-5 beta-cholestane to a cholestanetetrol. Furthermore, this hydroxylase differs from both the mitochondrial and microsomal enzymes in its response to various co-factors. Highly purified peroxisomal, mitochondrial, and microsomal fractions from cholestryamine-treated rats were incubated with [22(23)-3H]3 alpha,7 alpha,12 alpha,-trihydroxy-5 beta-cholestane under a variety of conditions. The products were acidified, extracted, and subjected to thin-layer chromatography to determine the amount of cholestanetetrol produced. The identification of the 25- and 26-hydroxylated products from the incubations with the microsomes was confirmed by gas chromatography-mass spectrometry. Peroxisomal fractions incubated with a NADPH-generating system, Mg2+, and ATP showed a rate of 40 pmol/min/mg conversion of 3 alpha,7 alpha,12 alpha,-trihydroxy-5 beta-cholestane to a cholestanetetrol. Co-factor studies indicated that both the peroxisomal and mitochondrial hydroxylase activities were dependent on NADPH, Mg2+, and ATP (with different concentration requirements) whereas the microsomal hydroxylase(s) required only NADPH. An abstract of this work has been published (1).  相似文献   

2.
The conversion of 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-[3H]cholestanoic acid into cholic acid and 3 alpha,7 alpha-dihydroxy-5 beta-[3H]cholestanoic acid into chenodeoxycholic acid has been studied in subcellular fractions of human liver. The products were separated from the substrates by high-pressure liquid chromatography and identified by combined gas chromatography-mass spectrometry. The highest rates of conversion were found in the light mitochondrial fraction. This fraction also contained the highest amount of the marker enzymes for peroxisomes. The maximal rates of cholic acid and chenodeoxycholic acid formation were 1.3 and 1.8 nmol/mg protein per h, respectively. The presence of KCN in the incubation medium stimulated the formation of bile acids. Peroxisomes were prepared from the light mitochondrial fraction by sucrose-gradient centrifugation. By use of different marker enzymes, it was confirmed that the major part of the activity for cholic acid formation in the light mitochondrial fraction was located in the peroxisomes. It is concluded that liver peroxisomes are important for the oxidative cleavage of the C27 steroid side chain in bile acid formation in man.  相似文献   

3.
Whether 3 alpha, 7 alpha, 12 alpha-trihydroxy-5 beta-cholestanoic acid (THCA) was converted into cholic acid in human skin fibroblasts was examined. THCA was incubated with subcellular fractions of cultured skin fibroblasts in the presence of NAD+, ATP, CoA, and Mg2+. The reaction products were analyzed by thin-layer chromatography and high-performance liquid chromatography after p-bromophenacyl ester derivatization. The highest specific activity was found in the light mitochondrial fraction (2.71 nmol/mg protein/h). The specific activity was about 9-fold higher than that in heavy mitochondrial fraction. The peroxisomal fraction prepared from the light mitochondrial fraction by sucrose gradient centrifugation was also able to catalyze the conversion of THCA into cholic acid. The specific activity in this fraction was a further 2.2-fold higher than that in the light mitochondrial fraction. These results suggest that cultured human skin fibroblasts are able to convert THCA into cholic acid, and that the activity exists in peroxisomes.  相似文献   

4.
Peroxisomal chain-shortening of prostaglandin F2 alpha   总被引:2,自引:0,他引:2  
We have recently reported that prostaglandin F2 alpha can be chain-shortened by isolated rat liver peroxisomes. In the present study it is further established by cell fractionation experiments that the enzymes involved in this reaction are localized to peroxisomes. Under the conditions employed, the highest activity was found in the light mitochondrial fraction. Further fractionation of the light mitochondrial fraction by sucrose density gradient centrifugation showed that the prostaglandin oxidation activity comigrated with peroxisomal marker enzymes. Di(2-ethylhexyl)phthalate treatment resulted in a tenfold increased capacity for the conversion of prostaglandin F2 alpha into tetranorprostaglandin F1 alpha. The reaction was not inhibited by KCN. The reaction was further characterized with respect to cofactor requirements. The prostaglandin oxidation was found to be completely dependent on NAD, CoA, ATP, Mg2+ and was stimulated by FAD. Incubation of prostaglandin E2 with peroxisomes resulted in conversion into several products. After alkaline hydrolysis, one of these was identified as tetranorprostaglandin B1.  相似文献   

5.
The oxidation of the side chain of 3 alpha, 7 alpha-dihydroxy-5 beta-cholestanoic acid (DHCA) into chenodeoxycholic acid has been studied in subcellular fractions of rat liver. The product was separated from the substrate by high pressure liquid chromatography and identified by gas-liquid chromatography-mass spectrometry. The highest specific rate of conversion was found in the heavy (M) and the light (L) mitochondrial fractions with the highest enrichment in the L fraction. Washing the M fraction reduced the side chain cleavage activity by 90%. The peroxisomal marker enzyme urate oxidase was reduced to the same extent. The activity found in the M fraction may thus be due to peroxisomal contamination. After centrifugation of the L fraction on a Nycodenz density gradient, the highest specific activity for side chain cleavage of DHCA (31 nmol X mg-1 X h-1) was found in the fraction with the highest peroxisomal marker enzyme activity. This fraction also catalyzed conversion of 3 alpha,7 alpha,12 alpha-5 beta-cholestanoic acid (THCA) into cholic acid at the highest rate (32 nmol X mg-1 X h-1). The peroxisomal oxidation of DHCA into chenodeoxycholic acid required the presence of ATP, CoA, Mg2+, and NAD in the incubation medium. The reaction was not inhibited by KCN. It is concluded that rat liver peroxisomes contain enzymes able to catalyze the cleavage of the side chain of both DHCA and THCA. The enzymes involved are similar to, but not necessarily identical to, those involved in the peroxisomal beta-oxidation of fatty acids.  相似文献   

6.
Rat liver peroxisomes have been found to oxidize 26-hydroxycholesterol, the product of cholesterol C-26 hydroxylation to 3 beta-hydroxy-5-cholenoic acid. Peroxisomes were purified by differential and equilibrium density centrifugation in a steep linear metrizamide gradient to greater than 95% purity. Purity of peroxisomes was determined by measurement of specific marker enzymes. The activities of cytochrome oxidase (a mitochondrial marker) and acid phosphatase (a lysosomal marker) in the purified peroxisome fractions were below the level of detection. Esterase activity indicated a 2-4% microsomal contamination. Subsequent to incubation of peroxisomes with [16,22-3H]-26-hydroxycholesterol, the reaction products were extracted, methylated, acetylated, and subjected to thin-layer, high pressure liquid, and gas-liquid chromatographic analyses. 3 beta-Hydroxy-5-cholenoic acid was the major identifiable metabolite of 26-hydroxycholesterol. Incubations of pure microsomal fractions (greater than 99%) with 26-hydroxycholesterol under the same conditions demonstrated that the production of 3 beta-hydroxy-5-cholenoic acid by peroxisomes was not attributable to microsomal contamination. This study demonstrates that peroxisomes participate in the side-chain oxidation of intermediates in bile acid synthesis.  相似文献   

7.
The presence of the enzymes of the ascorbate-glutathione cycle was investigated in mitochondria and peroxisomes purified from pea (Pisum sativum L.) leaves. All four enzymes, ascorbate peroxidase (APX; EC 1.11.1.11), monodehydroascorbate reductase (EC 1.6.5.4), dehydroascorbate reductase (EC 1.8.5.1), and glutathione reductase (EC 1.6.4.2), were present in mitochondria and peroxisomes, as well as in the antioxidants ascorbate and glutathione. The activity of the ascorbate-glutathione cycle enzymes was higher in mitochondria than in peroxisomes, except for APX, which was more active in peroxisomes than in mitochondria. Intact mitochondria and peroxisomes had no latent APX activity, and this remained in the membrane fraction after solubilization assays with 0.2 M KCl. Monodehydroascorbate reductase was highly latent in intact mitochondria and peroxisomes and was membrane-bound, suggesting that the electron acceptor and donor sites of this redox protein are not on the external side of the mitochondrial and peroxisomal membranes. Dehydroascorbate reductase was found mainly in the soluble peroxisomal and mitochondrial fractions. Glutathione reductase had a high latency in mitochondria and peroxisomes and was present in the soluble fractions of both organelles. In intact peroxisomes and mitochondria, the presence of reduced ascorbate and glutathione and the oxidized forms of ascorbate and glutathione were demonstrated by high-performance liquid chromatography analysis. The ascorbate-glutathione cycle of mitochondria and peroxisomes could represent an important antioxidant protection system against H2O2 generated in both plant organelles.  相似文献   

8.
We have recently shown that isolated rat liver peroxisomes can chain-shorten prostaglandin F2 alpha and prostaglandin E2 to tetranor-metabolites. In the present report dinor-metabolites of these two prostaglandins were also identified, suggesting that the peroxisomal chain-shortening reaction of prostaglandins is a beta-oxidation reaction. Furthermore, an intermediate containing an extra double bond was isolated from incubates of prostaglandin F2 alpha with peroxisomes. This intermediate was tentatively assigned the structure 2,3-dehydroprostaglandin F2 alpha. Prostaglandin E1 and a major circulating prostaglandin F2 alpha metabolite were also metabolized to chain-shortened products by peroxisomes. The accumulation of the 2,3-dehydro-metabolite and the dinor-metabolites suggest that the peroxisomal beta-oxidation sequence is not tightly coupled, in contrast to mitochondrial fatty acid oxidation.  相似文献   

9.
Formation of 20-hydroxyprostaglandins by lungs of pregnant rabbits   总被引:3,自引:0,他引:3  
Homogenates or particulate fractions (1,000 to 100,000 X g) from lungs of pregnant rabbits were incubated with prostaglandins or prostaglandin metabolites and the products were purified by chromatography and identified by gas chromatography-mass spectrometry. In the presence of NADPH, particulate fractions from pregnant rabbit lungs converted prostaglandins E1, E2, and F2alpha as well as 13,14-dihydro-15-oxoprostaglandin E2 and 13, 14-dihydro-15-oxoprostaglandin F2alpha to their 20-hydroxy derivatives. In the cases of the 3 primary prostaglandins, the corresponding omega-carboxylic acids were also isolated. The omega-hydroxylation reaction occurred in the presence of the microsomal fraction. The mitochondrial fraction was much less active whereas the cytosol fraction converted prostaglandins to their 13, 14-dihydro-15-oxo derivatives. When prostaglandin F2alpha was incubated with homogenates of lungs from pregnant rabbits, omega-oxidation was combined with oxidation of the 15-hydroxyl group and reduction of the 13, 14-double bond to give 13, 14-dihydro-20-hydroxy-15-oxoprostaglandin F2alpha as well as the corresponding derivative with an omega-carboxylic acid group. Lungs from nonpregnant rabbits were much less active than lungs from pregnant rabbits in the omega-oxidation of prostaglandins.  相似文献   

10.
Liver peroxisomes from both rat and humans have previously been shown to contain enzymes that catalyze the oxidative cleavage of the C27-steroid side chain in the formation of bile acids. It has not been clear, however, whether the initial step, formation of the CoA-esters of the 5 beta-cholestanoic acids, also occurs in these organelles. In the present work the subcellular localization of 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholestanoyl-CoA (THCA-CoA) ligase (THCA-CoA synthetase) and of 3 alpha,7 alpha-dihydroxy-5 beta-cholestanoyl-CoA (DHCA-CoA) ligase in rat liver has been investigated. Main subcellular fractions and peroxisome-rich density gradient fractions from rat liver were incubated with THCA or DHCA, CoA, ATP, and Mg2+. Formation of THCA-CoA and DHCA-CoA was determined after high pressure liquid chromatography of the incubation extracts. The microsomal fraction contained the highest specific (and also relative specific) activity both for the formation of THCA-CoA and DHCA-CoA. The rates of THCA-CoA formation were further increased from 124-159 nmol/mg.hr-1 in crude microsomal fractions to 184-220 nmol/mg.hr-1 when studied in purified rough endoplasmic reticulum fractions. Formation of THCA-CoA in peroxisomal fractions prepared in Nycodenz density gradients could be accounted for by a small contamination (3-7%) by microsomal protein. The distribution of THCA-CoA ligase was different from that of palmitoyl-CoA ligase that was found to be localized also to the peroxisomal fractions.  相似文献   

11.
An enzyme extract from the phycocyanin-containing unicellular rhodophyte, Cyanidium caldarium, reductively transforms biliverdin IX alpha to phycocyanobilin, the chromophore of phycocyanin, in the presence of NADPH. Unpurified cell extract forms both 3(E)-phycocyanobilin, which is identical to the major pigment that is released from phycocyanin by methanolysis, and 3(Z)-phycocyanobilin, which is obtained as a minor methanolysis product. After removal of low molecular weight material from the cell extract, only 3(Z)-phycocyanobilin is formed. 3(E)-Phycocyanobilin formation from biliverdin IX alpha, and the ability to isomerize 3(Z)-phycocyanobilin to 3(E)-phycocyanobilin, are reconstituted by the addition of glutathione to the incubation mixture. Partially purified protein fractions derived from the initial enzyme extract form 3(Z)-phycocyanobilin plus two additional, violet colored bilins, upon incubation with NADPH and biliverdin IX alpha. Further purified protein fractions produce only the violet colored bilins from biliverdin IX alpha. One of these bilins was identified as 3(Z)-phycoerythrobilin by comparative spectrophotometry, reverse-phase high pressure liquid chromatography, and 1H NMR spectroscopy. A C. caldarium protein fraction catalyzes the conversion of 3(Z)-phycoerythrobilin to 3(Z)-phycocyanobilin. This fraction also catalyzes the conversion of 3(E)-phycoerythrobilin to 3(E)-phycocyanobilin. The conversion of phycoerythrobilins to phycocyanobilins requires neither biliverdin nor NADPH. The synthesis of phycoerythrobilin and its conversion to phycocyanobilin by extracts of C. caldarium, a species that does not contain phycoerythrin, indicates that phycoerythrobilin is a biosynthetic precursor to phycocyanobilin. The enzymatic conversion of the ethylidine group from the Z to the E configuration suggests that the E-isomer is the precursor to the protein-bound chromophore.  相似文献   

12.
Catalase leakage from its particulate compartment within the light mitochondrial fraction of liver was used as an index of the integrity of peroxisomes in untreated mice and in mice treated with the peroxisome proliferators clofibrate(ethyl-p-chlorophenoxyisobutyrate), Wy-14,643(4-chloro-6[2,3-xylidino)-2-pyrimidinylthio]acetic acid) and DEHP(di-(2-ethylhexyl)phthalate).Catalase leakage represented about 2% of the total catalase activity when fractions from untreated mice were incubated at 4°C, increasing to about 5% during 60 min incubation at 37°C. In fractions from livers of mice treated with peroxisome proliferators, catalase leakage was significantly higher, being 7–11% at 4°C and increasing to approximately 20% after 60 min incubation at 37°C. The pattern of release was similar for all proliferators. Parallel data were obtained for catalase latency in these fractions, i.e. following 60 min incubation at 37°C, free (non-latent) catalase activity was 18% in control mice and 65, 67, and 83% in fractions from clofibrate-, Wy-14,643- and DEHP-treated mice, respectively. Differences in catalase leakage from peroxisomes in fractions from untreated mice and clofibrate-treated mice were also apparent following treatments designed to effect membrane permeabilization, as in freeze-thawing, osmotic rupture, and extraction with Triton X-100 and lysophosphatidylcholine.These data are consistent with a significant alteration in the integrity of the membranes of peroxisomes in livers of mice which have been treated with peroxisome proliferators, and furthermore indicate a commonality of effect of these agents.  相似文献   

13.
We have generated nine monoclonal antibodies against subunits of the maize (Zea mays L.) mitochondrial F1-ATPase. These monoclonal antibodies were generated by immunizing mice against maize mitochondrial fractions and randomly collecting useful hybridomas. To prove that these monoclonal antibodies were directed against ATPase subunits, we tested their cross-reactivity with purified F1-ATPase from pea cotyledon mitochondria. One of the antibodies ([alpha]-ATPaseD) cross-reacted with the pea F1-ATPase [alpha]-subunit and two ([beta]-ATPaseD and [beta]-ATPaseE) cross-reacted with the pea F1-ATPase [beta]-subunit. This established that, of the nine antibodies, four react with the maize [alpha]-ATPase subunit and the other five react with the maize [beta]-ATPase subunit. Most of the monoclonal antibodies cross-react with the F1-ATPase from a wide range of plant species. Each of the four monoclonal antibodies raised against the [alpha]-subunit recognizes a different epitope. Of the five [beta]-subunit antibodies, at least three different epitopes are recognized. Direct incubation of the monoclonal antibodies with the F1-ATPase failed to inhibit the ATPase activity. The monoclonal antibodies [alpha]-ATPaseD and [beta]-ATPaseD were bound to epoxide-glass QuantAffinity beads and incubated with a purified preparation of pea F1-ATPase. The ATPase activity was not inhibited when the antibodies bound the ATPase. The antibodies were used to help map the pea F1-ATPase subunits on a two-dimensional map of whole pea cotyledon mitochondrial protein. In addition, the antibodies have revealed antigenic similarities between various isoforms observed for the [alpha]- and [beta]-subunits of the purified F1-ATPase. The specificity of these monoclonal antibodies, along with their cross-species recognition and their ability to bind the F1-ATPase without inhibiting enzymic function, makes these antibodies useful and invaluable tools for the further purification and characterization of plant mitochondrial F1-ATPases.  相似文献   

14.
The key regulatory enzyme of cholesterol, dolichol, and isopentenyl adenosine biosynthesis, 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase) is a 97-kilodalton transmembrane glycoprotein which was believed until recently to reside exclusively in the endoplasmic reticulum of mammalian cells. However, several recent publications have shown that the enzyme in liver cells is present not only in the endoplasmic reticulum but also within peroxisomes. In an effort to clarify the role of peroxisomal HMG-CoA reductase, highly purified (95%) rat liver peroxisomes from cholestyramine-treated rats were incubated with RS-[2-14C]mevalonic acid plus cytosolic proteins and then tested for the presence of newly synthesized cholesterol. For comparison, highly purified microsomes from the same liver preparation were incubated at several protein concentrations under the same conditions. A three-step procedure was employed to resolve the newly synthesized cholesterol from the complex mixture of sterol intermediates in cholesterol biosynthesis. After termination of the reaction and addition of a [3H]cholesterol standard, the incubation products were extracted and separated by thin layer chromatography into a number of fractions. The fraction containing C-27 sterols was further resolved by reverse-phase high pressure liquid chromatography. After acetylation, the products were then separated by silicic acid high pressure liquid chromatography. Confirmation of the identity of newly synthesized cholesterol was obtained by recrystallization with added non-radioactive cholestenyl acetate standard. The results indicate that highly purified rat liver peroxisomes are able to convert mevalonic acid to cholesterol in the presence of cytosolic fraction in vitro. An abstract of these results has been published (Krisans, S. K., Thompson, S. L., Burrows, R., and Laub, R. J. (1986) J. Cell Biol. 103, 525 (abstr.).  相似文献   

15.
1. A heat labile, cold-stable, stannous chloride-reducible intermediate of prostaglandin biosynthesis was formed in good yield (greater than 60%) from 3H-labeled arachidonic acid during brief incubations (30--90 s, 37 degrees C) with sheep seminal vesicle microsomes in the presence of p-hydroxymercuribenzoate (4 mM). This intermediate appears to have properties similar to one of the endoperoxides (15-hydroxyprostaglandin-9,11-endoperoxide) recently isolated by Hamberg and Samuelsson (Proc. Natl. Acad. Sci. U.S. (1973) 70, 889-903) AND Nugteren and Hazelhof (Biochem. Biophys. Acta. (1973) 326, 448-461). 2. Treatment of the purified intermediate with homogenates of rat kidney cortex, medulla and papilla resulted within 2 min (37 degrees C) in complete conversion into several compounds including prostaglandins E2 and F2alpha. The main product (40-50% yield formed by papilla homogenates was prostaglandin E2. The conversion into prostaglandin E2 was largely abolished by previous bo9ling of the homogenate whereas the conversion into prostaglandin F2alpha was not. The intermediate was stable in buffer for the same period of incubation. 3. The ratio of tritiated prostaglandins E2: F2alpha obtained were: papilla, 1.90; medulla, 0.76; cortex, 0.48. 4. These observations indicate that both types of prostaglandins can be formed by all three regions of the rat kidney and that regional differences exist in the proportion of E2 : F2alpha that is formed. Whereas prostaglandin E2 is mostly formed by an enzymatic process, prostaglandin F2alpha is not.  相似文献   

16.
Two types of NADP-dependent isocitrate dehydrogenases (ICDs) have been reported: mitochondrial (ICD1) and cytosolic (ICD2). The C-terminal amino acid sequence of ICD2 has a tripeptide peroxisome targeting signal 1 sequence (PTS1). After differential centrifugation of the postnuclear fraction of rat liver homogenate, approximately 75% of ICD activity was found in the cytosolic fraction. To elucidate the true localization of ICD2 in rat hepatocytes, we analyzed the distribution of ICD activity and immunoreactivity in fractions isolated by Nycodenz gradient centrifugation and immunocytochemical localization of ICD2 antigenic sites in the cells. On Nycodenz gradient centrifugation of the light mitochondrial fraction, ICD2 activity was distributed in the fractions in which activity of catalase, a peroxisomal marker, was also detected, but a low level of activity was also detected in the fractions containing activity for succinate cytochrome C reductase (a mitochondrial marker) and acid phosphatase (a lysosomal marker). We have purified ICD2 from rat liver homogenate and raised a specific antibody to the enzyme. On SDS-PAGE, a single band with a molecular mass of 47 kD was observed, and on immunoblotting analysis of rat liver homogenate a single signal was detected. Double staining of catalase and ICD2 in rat liver revealed co-localization of both enzymes in the same cytoplasmic granules. Immunoelectron microscopy revealed gold particles with antigenic sites of ICD2 present mainly in peroxisomes. The results clearly indicated that ICD2 is a peroxisomal enzyme in rat hepatocytes. ICD2 has been regarded as a cytosolic enzyme, probably because the enzyme easily leaks out of peroxisomes during homogenization. (J Histochem Cytochem 49:1123-1131, 2001)  相似文献   

17.
The transport of glycerolipid intermediates, viz. palmitoyl dihydroxyacetone phosphate (DHAP) and lysophosphatidate from peroxisomes and their conversion to phosphatidate in endoplasmic reticulum (microsomes) were studied in cell-free systems. The lipids were biosynthesized from [32P]DHAP, palmitoyl-CoA, and freshly made rat liver peroxisomes and microsomes in the presence or absence of Mg2+, NADPH, and bovine serum albumin (BSA). After incubation, the soluble fraction and the membranes were separated, and the distribution of radioactive lipids in these fractions were determined. The results showed that palmitoyl-DHAP and lysophosphatidate were recovered in the supernatant when BSA was present or when BSA was absent, but Mg2+ was removed after incubation by chelation with EDTA (or ATP). At low optimum palmitoyl-CoA concentration or when palmitoyl-CoA was generated in peroxisomes, and in the absence of BSA, the biosynthesized keto ether and ester lipids and lysophosphatidate were similarly present in the supernatant. Phosphatidate, however, was always localized in the membranes. Further fractionation showed that phosphatidate was associated with the microsomes. The critical micellar concentrations of palmitoyl-DHAP and 1-palmitoyl-rac-glycerol 3-phosphate, under the incubation conditions used, were determined to be 58 and 70 microM, respectively. These results suggest that at physiological concentrations the biosynthesized lysolipids are water soluble, and therefore, a carrier protein is unnecessary for their transport. These lipids freely diffuse from peroxisomes to endoplasmic reticulum where they are converted to membrane-bound phosphatidate.  相似文献   

18.
Absence of DNA in peroxisomes of Candida tropicalis.   总被引:9,自引:1,他引:8       下载免费PDF全文
Yeast peroxisomes were purified to near homogeneity from cells of Candida tropicalis grown on oleic acid for the purpose of examining the possible presence of DNA in this organelle. The purification procedure includes the effective conversion of cells to spheroplasts with Zymolyase and sodium sulfite and the separation of the organelles at extremely low ionic strength. The mitochondrial contamination was less than 1%, based on several criteria, and the yield of peroxisomes was about 40%. The purified peroxisomal fraction contained a very small amount of DNA, which yielded restriction fragments indistinguishable from those of mitochondrial DNA. The absence of DNA in peroxisomes was also supported by cesium chloride density gradient centrifugation of the organelles lysed with a detergent, staining of the organelles with a fluorescent dye specific to DNA, and labeling of the DNA with [3H]adenine.  相似文献   

19.
We studied the fatty acyl-CoA binding activity of rat liver peroxisomes. After subcellular fractionation of rat liver treated with or without clofibrate, a peroxisome proliferator, the binding activity with [1-(14)C]palmitoyl-CoA was detected in the light mitochondrial fraction in addition to the mitochondrial and cytosol fractions. After Nycodenz centrifugation of the light mitochondrial fraction, the binding activity was detected in peroxisomes. The peroxisomal activity depended on the incubation temperature and peroxisome concentration. The activity also depended on the concentration of 2-mercaptoethanol, and a plateau of activity was unexpectedly found at 2-mercaptoethanol concentrations from 20 to 40 mM. Clofibrate increased the total and specific activity of the fatty acyl-CoA binding of peroxisomes by 7.9 and 2.5 times compared with the control, respectively. In the presence of 20% glycerol at 0 degree C, approximately 90% of the binding activity was maintained for up to at least 3 wk. After successive treatment with an ultramembrane Amicon YM series, about 70% of the binding activity was detected in the M.W. 30,000-100,000 fraction. When the M.W. 30,000-100,000 fraction was added to the incubation mixture of the peroxisomal fatty acyl-CoA beta-oxidation system, a slight increase in the beta-oxidation activity was found. 2-Mercaptoethanol (20 mM) significantly activated the fatty acyl-CoA beta-oxidation system to 1.4 times control. After gel filtration of the M.W. 30,000-100,000 fraction, the peaks of fatty acyl-CoA binding protein showed broad elution profiles from 45,000 to 75,000. These results suggest that fatty acyl-CoA binding activity can be detected directly in peroxisomes and is increased by peroxisome proliferators. The high binding activity in the presence of higher concentrations of 2-mercaptoethanol indicates the importance of the SH group for binding. The apparent molecular weight of the binding protein may be from 45,000 to 75,000.  相似文献   

20.
Succinate dehydrogenase activity in mitochondria, which were isolated by centrifuging partially purified mitochondria through 1. 315 M sucrose, was completely suppressed when [14C]succinate uptake was abolished by prior incubation of the mitochondria with carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) and valinomycin. The conclusion that these mitochondria were intact was confirmed by the fact that, when these mitochondria were broken by a freeze-thaw cycle followed by sonication, such inhibition was totally abolished. The yield of mitochondria, microsomes, and peroxisomes from the initial homogenate was 17.8, <0.1, and 0%, respectively, indicating that the mitochondria were not only intact but also essentially free of contamination from microsomes and peroxisomes. The overt form of carnitine palmitoyltransferase (CPT I) in these intact and pure mitochondria was totally inhibited by malonyl CoA, indicating that previous reports of incomplete inhibition in mitochondrial preparations resulted from interference from CPT activity in the inner mitochondrial membrane (CPT II), microsomes, or peroxisomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号