首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously shown that treatment of bovine endothelial cell (EC) monolayers with phorbol myristate acetate (PMA) leads to the thinning of cortical actin ring and rearrangement of the cytoskeleton into a grid-like structure, concomitant with the loss of endothelial barrier function. In the current work, we focused on caldesmon, a cytoskeletal protein, regulating actomyosin interaction. We hypothesized that protein kinase C (PKC) activation by PMA leads to the changes in caldesmon properties such as phosphorylation and cellular localization. We demonstrate here that PMA induces both myosin and caldesmon redistribution from cortical ring into the grid-like network. However, the initial step of PMA-induced actin and myosin redistribution is not followed by caldesmon redistribution. Co-immunoprecipitation experiments revealed that short-term PMA (5 min) treatment leads to the weakening of caldesmon ability to bind actin and, to the lesser extent, myosin. Prolonged incubation (15-60 min) with PMA, however, strengthens caldesmon complexes with actin and myosin, which correlates with the grid-like actin network formation. PMA stimulation leads to an immediate increase in caldesmon Ser/Thr phosphorylation. This process occurs at sites distinct from the sites specific for ERK1/2 phosphorylation and correlates with caldesmon dissociation from the actomyosin complex. Inhibition of ERK-kinase MEK fails to abolish grid-like structure formation, although reducing PMA-induced weakening of the cortical actin ring, whereas inhibition of PKC reverses PMA-induced cytoskeletal rearrangement. Our results suggest that PKC-dependent phosphorylation of caldesmon is involved in PMA-mediated complex cytoskeletal changes leading to the EC barrier compromise.  相似文献   

2.
Myosin was purified from ovine uterine smooth muscle. The 20,000 dalton myosin light chain was phosphorylated to varying degrees by an endogenous Ca2+ dependent kinase. The kinase and endogenous phosphatases were then removed via column chromatography. In the absence of actin neither the size of the initial phosphate burst nor the steady state Mg2+-dependent ATPase activity were affected by phosphorylation. However, phosphorylation was required for actin to increase the Mg2+-dependent ATPase activity and for the myosin to superprecipitate with actin. Ca2+ did not affect the Mg2+-dependent ATPase activity in the presence or absence of action or the rate or extent of superprecipitation with actin once phosphorylation was obtained. These data indicate that: 1) phosphorylation of the 20,000 dalton myosin light chain controls the uterine smooth muscle actomyosin interaction, 2) in the absence of actin, phosphorylation does not affect either the ATPase of myosin or the size of the initial burst of phosphate and, 3) Ca2+ is important in controlling the light chain kinase but not the actomyosin interaction.  相似文献   

3.
The tumor natural killer (NK) cell line YTS was used to examine the cytoskeletal rearrangements required for cytolysis. A multiprotein complex weighing approximately 1.3 mD and consisting of WASp-interacting protein (WIP), Wiskott-Aldrich syndrome protein (WASp), actin, and myosin IIA that formed during NK cell activation was identified. After induction of an inhibitory signal, the recruitment of actin and myosin IIA to a constitutive WIP-WASp complex was greatly decreased. Both actin and myosin IIA were recruited to WIP in the absence of WASp. This recruitment correlated with increased WIP phosphorylation, which was mediated by PKCtheta. Furthermore, the disruption of WIP expression by WIP RNA interference prevented the formation of this protein complex and led to almost complete inhibition of cytotoxic activity. Thus, the multiprotein complex is important for NK cell function, killer cell immunoglobulin-like receptor inhibitory signaling affects proteins involved in cytoskeletal rearrangements, and WIP plays a central role in the formation of the complex and in the regulation of NK cell activity.  相似文献   

4.
We have examined further the interaction between insulin surface receptors and the cytoskeleton of IM-9 human lymphoblasts. Using immunocytochemical techniques, we determined that actin, myosin, calmodulin and myosin light-chain kinase (MLCK) are all accumulated directly underneath insulin-receptor caps. In addition, we have now established that the concentration of intracellular Ca2+ (as measured by fura-2 fluorescence) increases just before insulin-induced receptor capping. Most importantly, we found that the binding of insulin to its receptor induces phosphorylation of myosin light chain in vivo. Furthermore, a number of drugs known to abolish the activation properties of calmodulin, such as trifluoperazine (TFP) or W-7, strongly inhibit insulin-receptor capping and myosin light-chain phosphorylation. These data imply that an actomyosin cytoskeletal contraction, regulated by Ca2+/calmodulin and MLCK, is involved in insulin-receptor capping. Biochemical analysis in vitro has revealed that IM-9 insulin receptors are physically associated with actin and myosin; and most interestingly, the binding of insulin-receptor/cytoskeletal complex significantly enhances the phosphorylation of the 20 kDa myosin light chain. This insulin-induced phosphorylation is inhibited by calmodulin antagonists (e.g. TFP and W-7), suggesting that the phosphorylation is catalysed by MLCK. Together, these results strongly suggest that MLCK-mediated myosin light-chain phosphorylation plays an important role in regulating the membrane-associated actomyosin contraction required for the collection of insulin receptors into caps.  相似文献   

5.
The pathways by which activation of the small GTP-binding protein Rac causes cytoskeletal changes are not fully understood but are likely to involve both assembly of new actin filaments and reorganization of actin filaments driven by the actin-dependent ATPase activity of myosin II. Here we show that expression of active RacQ61 in growing HeLa cells, in addition to inducing ruffling, substantially enhances the level of phosphorylation of serine-19 of the myosin II regulatory light chain (MLC), which would increase actomyosin II ATPase and motor activities. Phosphorylated myosin was localized to RacQ61-induced ruffles and stress fibers. RacQ61-induced phosphorylation of MLC was reduced by a maximum of about 38% by an inhibitor (Tat-PAK) of p21-activated kinase (PAK), about 35% by an inhibitor (Y-27632) of Rho kinase, 51% by Tat-PAK plus Y-27632, and 10% by an inhibitor (ML7) of myosin light chain kinase. Staurosporine, a non-specific inhibitor of serine/threonine kinases, reduced RacQ61-induced phosphorylation of MLC by about 58%, at the maximum concentration that did not kill cells. Since Rac activates PAK and PAK can phosphorylate MLC, these data strongly suggest that PAK is responsible for a significant fraction of RacQ61-induced MLC phosphorylation. To our knowledge, this is the first evidence that active Rac causes phosphorylation of MLC in cells, thus implicating activation of the ATPase activity of actomyosin II as one of the ways by which Rac may induce cytoskeletal changes.  相似文献   

6.
In Saccharomyces cerevisiae, the Tor proteins mediate a wide spectrum of growth-related cellular processes in response to nutrients. The pleiotropic role of the Tor proteins is mediated, at least in part, by type 2A protein phosphatases (PP2A) and 2A-like protein phosphatases. Tor-mediated signaling activity promotes the interaction of phosphatase-interacting protein Tap42 with PP2A and 2A-like protein phosphatases. The distinct complexes formed between Tap42 and different phosphatases mediate various cellular events and modulate phosphorylation levels of many downstream factors in the Tor pathway in a Tor-dependent and rapamycin-sensitive manner. In this study, we demonstrate that the interaction between Tap42 and the catalytic subunits of PP2A (PP2Ac) is required for cell cycle-dependent distribution of actin. We show that mutations in PP2Ac and Tap42 that perturb the interaction cause random distribution of actin during the cell cycle and that overexpression of the Rho2 GTPase suppresses the actin defects associated with the mutants. Our findings suggest that the Tap42-PP2Ac complex regulates the actin cytoskeleton via a Rho GTPase-dependent mechanism. In addition, we provide evidence that PP2A activity plays a negative role in controlling the actin cytoskeleton and, possibly, in regulation of the G(2)/M transition of the cell cycle.  相似文献   

7.
Podocytes possess major processes containing microtubules (MTs) and intermediate filaments and foot processes containing actin filaments (AFs) as core cytoskeletal elements. Although the importance of these cytoskeletal elements for maintaining podocyte processes was previously shown, so far no data are available concerning the developmental regulation of podocyte process formation. A conditionally immortalized mouse podocyte cell line, which can be induced to develop processes similar to those found in vivo, was treated with various reagents to disrupt cytoskeletal elements or to inhibit protein phosphatases. MTs colocalized with vimentin intermediate filaments but not with AFs. After AF disassembly, major processes were maintained, whereas after depolymerization of MTs, podocytes lost their processes, rounded up, and maintained only actin-based peripheral projections. Suppression of MT elongation by nanomolar vinblastine or inhibition of serine/threonine phosphatase PP2A with okadaic acid abolished process formation. PP2A was expressed in undifferentiated but not in differentiated podocytes. One- and two-dimensional western blot analyses revealed a dose-dependent increase in serine/threonine phosphorylation after okadaic acid treatment. Hence, morphogenetic activity of MTs induces podocyte process formation via serine/threonine protein dephosphorylation by PP2A. These results may open new avenues for understanding the signaling mechanism underlying podocyte cytoskeleton alterations during development and in glomerular diseases.  相似文献   

8.
M Nomura  J T Stull  K E Kamm  M C Mumby 《Biochemistry》1992,31(47):11915-11920
Smooth muscle myosin light chain kinase is phosphorylated at two sites (A and B) by different protein kinases. Phosphorylation at site A increases the concentration of Ca2+/calmodulin required for kinase activation. Diphosphorylated myosin light chain kinase was used to determine the site-specificity of several forms of protein serine/threonine phosphatase. These phosphatases readily dephosphorylated myosin light chain kinase in vitro and displayed differing specificities for the two phosphorylation sites. Type 2A protein phosphatase specifically dephosphorylated site A, and binding of Ca2+/calmodulin to the kinase had no effect on dephosphorylation. The purified catalytic subunit of type 1 protein phosphatase dephosphorylated both sites in the absence of Ca2+/calmodulin but only dephosphorylated site A in the presence of Ca2+/calmodulin. A protein phosphatase fraction was prepared from smooth muscle actomyosin by extraction with 80 mM MgCl2. On the basis of sensitivity to okadaic acid and inhibitor 2, this activity was composed of multiple protein phosphatases including type 1 activity. This phosphatase fraction dephosphorylated both sites in the absence of Ca2+/calmodulin. However, dephosphorylation of both sites A and B was completely blocked in the presence of Ca2+/calmodulin. These results indicate that two phosphorylation sites of myosin light chain kinase are dephosphorylated by multiple protein serine/threonine phosphatases with unique catalytic specificities.  相似文献   

9.
Myosin head modified with p-chloromercuribenzoate (CMB) forms rigor-like complex with actin in the presence of ATP. Actomyosins with CMB-modified myosin were reconstituted to study the effect of rigor-like complexes on superprecipitation. As native myosin was increasingly replaced by CMB-modified myosin, superprecipitation of the actomyosin was strongly suppressed. Further, the suppression of superprecipitation occurred in a different fashion depending on how CMB-modified myosin was incorporated in myosin filaments of the reconstituted actomyosin. The present results indicate that superprecipitation requires the dissociation of actin and myosin head to take place (i.e., the presence of molecular rearrangements of actomyosin network), and further suggest that superprecipitation is associated with dynamic rearrangements of actomyosin network along myosin filaments.  相似文献   

10.
In previous work, we demonstrated that C3G suppresses Ras oncogenic transformation by a mechanism involving inhibition of ERK phosphorylation. Here we present evidences indicating that this suppression mechanism is mediated, at least in part, by serine/threonine phosphatases of the PP2A family. Thus: (i) ectopic expression of C3G or C3GDeltaCat (mutant lacking the GEF activity) increases specific ERK-associated PP2A phosphatase activities; (ii) C3G and PP2A interact, as demonstrated by immunofluorescence and co-immunoprecipitation experiments; (iii) association between PP2A and MEK or ERK increases in C3G overexpressing cells; (iv) phosphorylated-inactive PP2A level decreases in C3G expressing clones and, most importantly, (v) okadaic acid reverts the inhibitory effect of C3G on ERK phosphorylation. Moreover, C3G interacts with Ksr-1, a scaffold protein of the Ras-ERK pathway that also associates with PP2A. The fraction of C3G involved in transformation suppression is restricted to the subcortical actin cytoskeleton where it interacts with actin. Furthermore, the association between C3G and PP2A remains stable even after cytoskeleton disruption with cytochalasin D, suggesting that the three proteins form a complex at this subcellular compartment. Finally, C3G- and C3GDeltaCat-mediated inhibition of ERK phosphorylation is reverted by incubation with cytochalasin D. We hypothesize that C3G triggers PP2A activation and binding to MEK and ERK at the subcortical actin cytoskeleton, thus favouring ERK dephosphorylation.  相似文献   

11.
Superprecipitation of reconstituted actomyosin composed of smooth muscle myosin, skeletal muscle actin and smooth muscle native tropomyosin was studied. When the actomyosin solution was preincubated in the presence of ATP and the absence of Ca2+, or in the relaxed state, superprecipitation was markedly suppressed. The extent of suppression was correlated with the inhibition of the phosphorylation of the 20,000-dalton light chain of smooth muscle myosin. This is consistent with the theory that the interaction of smooth muscle actomyosin is regulated by the phosphorylation of myosin light chain through a system of myosin light chain kinase and phosphatase. However, further studies showed that the myosin light chain kinase and phosphatase system could not explain the present suppression of superprecipitation, even if a cyclic AMP-dependent protein kinase system was also involved. A new regulatory factor should be taken into account in the regulation of smooth muscle actomyosin interaction.  相似文献   

12.
The antibiotic, tautomycin, was found to be a potent inhibitor of protein phosphatases and equally effective for the type-1 and type-2A enzymes. For the catalytic subunits of the type-1 and type-2A phosphatases the IC50 value was 22 to 32 nM. For the phosphatase activity present in chicken gizzard actomyosin the IC50 value was 6 nM. Tautomycin had no effect on myosin light chain kinase activity. Tautomycin induced a Ca(2+)-independent contraction of intact and permeabilized smooth muscle fibers and this was accompanied by an increase in the level of myosin phosphorylation. Thus, tautomycin by virtue of its ability to inhibit phosphatase activity is a valuable addition for studying the role of protein phosphorylation.  相似文献   

13.
The motor protein myosin in association with actin transduces chemical free energy in ATP into work in the form of actin translation against an opposing force. Mediating the actomyosin interaction in myosin is an actin binding site distributed among several peptides on the myosin surface including surface loops contributing to affinity and actin regulation of myosin ATPase. A structured surface loop on beta-cardiac myosin, the cardiac or C-loop, was recently demonstrated to affect myosin ATPase and was indirectly implicated in the actomyosin interaction. The C-loop is a conserved feature of all myosin isoforms with crystal structures, suggesting that it is an essential part of the core energy transduction machinery. It is shown here that proteolytic digestion of the C-loop in beta-cardiac myosin eliminates actin-activated myosin ATPase and reduces actomyosin affinity in rigor more than 100-fold. Studies of C-loop function in smooth muscle myosin were also undertaken using site-directed mutagenesis. Mutagenesis of a single charged residue in the C-loop of smooth muscle myosin alters actomyosin affinity and doubles myosin in vitro motility and actin-activated ATPase velocities, thereby involving a charged region of the loop in the actomyosin interaction. It appears likely that the C-loop is an essential electrostatic binding site for actin involved in modulation of actomyosin affinity and regulation of actomyosin ATPase velocity.  相似文献   

14.
The actin/myosin II cytoskeleton and its role in phagocytosis were examined in primary cultures of dog thyroid cells. Two (19 and 21 kD) phosphorylated light chains of myosin (P-MLC) were identified by two- dimensional gel electrophoresis of antimyosin immunoprecipitates, and were associated with the Triton X-100 insoluble, F-actin cytoskeletal fraction. Analyses of Triton-insoluble and soluble 32PO4-prelabeled protein fractions indicated that TSH (via cAMP) or TPA treatment of intact cells decreases the MLC phosphorylation state. Phosphoamino acid and tryptic peptide analyses of 32P-MLCs from basal cells showed phosphorylation primarily at threonine and serine residues; most of the [32P] appeared associated with a peptide containing sites typically phosphorylated by MLC kinase. Even in the presence of the agents which induced dephosphorylation, the phosphatase inhibitor, calyculin A, caused a severalfold increase in MLC phosphorylation at several distinct serine and threonine sites which was also associated with actomyosin and cell contraction. Phosphorylation of cell homogenate proteins or the cytoskeletal fraction with [gamma-32P]ATP indicated that Ca2+, EGTA, or trifluoperazine (TFP) has little effect on the phosphorylation of MLC. Both fluorescent phalloidin and antimyosin staining of cells showed distinct dorsal and ventral stress fiber complexes which were disrupted within 30 min by TSH and cAMP; TPA appeared to cause disruption of dorsal, and rearrangement of ventral complexes. Concomitant with MLC dephosphorylation and stress fiber disruption, TSH/cAMP, but not TPA, induced dorsal phagocytosis of latex beads. While stimulation of either A or C-kinase disrupts dorsal stress fibers and rearranges actomyosin, another event(s) mediated by A-kinase appears necessary for phagocytic activity.  相似文献   

15.
Caldesmon binds equally to both gizzard actin and actin containing stoichiometric amounts of bound tropomyosin. The binding of caldesmon to actin inhibits the actin-activation of the Mg-ATPase activity of phosphorylated myosin only when the actin contains bound tropomyosin. The reversal of this inhibition requires Ca2+-calmodulin; but it occurs without complete release of bound caldesmon. Although phosphorylation of the caldesmon occurs during the ATPase assay, a direct correlation between caldesmon phosphorylation and the release of the inhibited actomyosin ATPase is not consistently observed.  相似文献   

16.
C Y Wang  P K Ngai  M P Walsh  J H Wang 《Biochemistry》1987,26(4):1110-1117
Fodrin, a spectrin-like actin and calmodulin binding protein, was purified to electrophoretic homogeneity from a membrane fraction of bovine brain. The effect of fodrin on smooth muscle actomyosin Mg2+-ATPase activity was examined by using a system reconstituted from skeletal muscle actin and smooth muscle myosin and regulatory proteins. The simulation of actomyosin Mg2+-ATPase by fodrin showed a biphasic dependence on fodrin concentration and on the time of actin and myosin preincubation at 30 degrees C. Maximal stimulation (50-70%) was obtained at 3 nM fodrin following 10 min of preincubation of actin and myosin. This stimulation was also dependent on the presence of tropomyosin. In the absence of myosin light chain kinase, the fodrin stimulation of Mg2+-ATPase could not be demonstrated with normal actomyosin but could be demonstrated with acto-thiophosphorylated myosin, suggesting that fodrin stimulation depends on the phosphorylation of myosin. Fodrin stimulation was shown to require the presence of both Ca2+ and calmodulin when acto-thiophosphorylated myosin was used. These observations suggest a possible functional role of fodrin in the regulation of smooth muscle contraction and demonstrate an effect on Ca2+ and calmodulin on fodrin function.  相似文献   

17.
A method is described for obtaining brain myosin that shows significant actin activation, after phosphorylation with chicken gizzard myosin light chain kinase. Myosin with this activity could be obtained only via the initial purification of brain actomyosin. The latter complex, isolated by a method similar to that used for smooth muscle, contained actin, myosin, tropomyosin of the non-muscle type and another actin-binding protein of approximately 100,000 daltons. From the presence of a specific myosin light chain kinase and phosphatase in brain tissue it is suggested that the regulation of actin-myosin interaction operates via phosphorylation and dephosphorylation of myosin.  相似文献   

18.
Incubation of rabbit skeletal myosin with an extract of light chain kinase plus ATP phosphorylated the L2 light chain and modified the steady state kinetics of the actomyosin ATPase. With regulated actin, the ATPase activity of phosphorylated myosin (P-myosin) was 35 to 181% greater than that of unphosphorylated myosin when assayed with 0.05 to 5 micro M Ca2+. Phosphorylation had no effect on the Ca2+ concentration required for half-maximal activity, but it did increase the ATPase activity at low Ca2+. With pure actin, the percentage of increase in the actomyosin ATPase activity correlated with the percentage of phosphorylation of myosin. Steady state kinetic analyses of the actomyosin system indicated that 50 to 82% phosphorylation of myosin decreased significantly the Kapp of actin for myosin with no significant effect on the Vmax. Phosphorylaton of heavy meromyosin similarly modified the steady state kinetics of the acto-heavy meromyosin system. Both the K+/EDTA- and Mg-ATPase activities of P-myosin and phosphorylated heavy meromyosin were within normal limits indicating that phosphorylaiion had not altered significantly the hydrolytic site. Phosphatase treatment of P-myosin decreased both the level of phosphorylation of L2 and the actomyosin ATPase activity to control levels for unphosphorylated myosin. It is concluded levels for unphosphorylated myosin. It is concluded from these results that the ability of P-myosin to modify the steady state kinetics of the actomyosin ATPase was: 1) specific for phosphorylation; 2) independent of the thin filament regulatory proteins.  相似文献   

19.
Thin-filament regulation of smooth muscle contraction involves phosphorylation, association, and dissociation of contractile proteins in response to agonist stimulation. Phosphorylation of caldesmon weakens its association with actin leading to actomyosin interaction and contraction. Present data from colonic smooth muscle cells indicate that acetylcholine induced a significant association of caldesmon with PKCalpha and sustained phosphorylation of caldesmon at ser789. Furthermore, acetylcholine induced significant and sustained increase in the association of phospho-caldesmon with heat-shock protein (HSP)27 with concomitant increase in the dissociation of phospho-caldesmon from tropomyosin. At the thin filament level, HSP27 plays a crucial role in acetylcholine-induced association of contractile proteins. Present data from colonic smooth muscle cells transfected with non-phospho-HSP27 mutant cDNA indicate that the absence of phospho-HSP27 inhibits acetylcholine-induced caldesmon phosphorylation. Our results further indicate that the presence of phospho-HSP27 significantly enhances acetylcholine-induced sustained association of phospho-caldesmon with HSP27 with a concomitant increase in acetylcholine-induced dissociation of phospho-caldesmon from tropomyosin. We thus propose a model whereby upon acetylcholine-induced phosphorylation of caldesmon at ser789, the association of phospho-caldesmon (ser789) with phospho-HSP27 results in an essential conformational change leading to dissociation of phospho-caldesmon from tropomyosin. This leads to the sliding of tropomyosin on actin thus exposing the myosin binding sites on actin for actomyosin interaction.  相似文献   

20.
Recycling of platelet phosphorylation and cytoskeletal assembly   总被引:9,自引:2,他引:7  
The shape change and aggregation of washed platelets induced by 10 microM arachidonic acid (AA) can be reversed by 20 ng/ml prostacyclin (PGI2), but these platelets can be reactivated by treatment with 30 microM epinephrine and subsequent addition of 10 microM AA mixture. These events may be modulated by cAMP since 2 mM dibutyryl cAMP also reversed activation without reactivation by epinephrine and AA. We examined protein phosphorylation and formation of cytoskeletal cores resistant to 1% Triton X-100 extraction of these platelets and correlated these processes with aggregation, fibrinogen binding, and changes in ultrastructure. Unactivated platelet cores contained less than 15% of the total actin and no detectable myosin or actin-binding protein. AA-induced cytoskeletal cores, which contained 60-80% of the total actin, myosin, and actin-binding protein as the major components, were disassembled back to unactivated levels by PGI2 and then fully reassembled by epinephrine and AA. Phosphorylation of myosin light chain and a 40,000-dalton protein triggered by AA (two- to fivefold) was reversed to basal levels by PGI2 but was completely restored to peak levels upon addition of the epinephrine and AA mixture. The reversibility of actin-binding protein phosphorylation could not be established clearly because both PGI2 and dibutyryl cAMP caused its phosphorylation independent of activation. With this possible exception, cytoskeletal assembly with associated protein phosphorylation, aggregation, fibrinogen binding, and changes in ultrastructure triggered by activation are readily and concertedly recyclable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号