首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gruenwedel DW  Hsu CH 《Biopolymers》1969,7(4):557-570
When DNA's of differing GC:AT base ratios, e.g. synthetic poly dAT, T4 DNA,calf thymus DNA, E. coli DNA, and M. lysodeikticus DNA, are heat-denatured at neutral pH in increasing concentrations of N(a)(2)SO(4) or C(s)(2)SO(4) as supporting electrolytes,the variation of melting temperature with average base composition, dT(m)/dX(G)(C), changes from 45°C (in 0.002M Na) to ll°C (in 4.5M Na) and from 42°C (in 0.002M Cs) to 3°C(in 4.5M Cs). The decrease of dT(m)/dX(G)(C) is a monotonic function of decreasing water activity in the salt solutions. We interpret this decreased composition dependence of the thermal stability of the various DNA's as being due to a destabilization of the GC base pairs relative to the AT base pairs by the concentrated salt media. A simple quantitative treatment shows that k = 8GC/SAT decreases from a value of 4.14 (in 0.01MN(a)) to 1.86 (in 3M Na) and from 4.18 (in 0.01M Cs) to 1.42 (in 3M Cs). SAT is the equilibrium constant for the formation of a hydrogen-bonded AT base pair from a pair of unbonded bases at the junction between a helical region and a denatured region and SGC is the like constant for the formation of a GC base pair. These results corroborate our previous findings of a strongly reduced composition dependence of the negative logarithm of the methylmercuric hydroxide concentration necessary to produce 50% denaturation when the helix-coil transition of DNA is studied in concentrated Cs(s)SO(4)(ultracentrifugation) instead of in dilute N(a)(2)SO(4) (ultraviolet spectrophotometry).  相似文献   

2.
Parazoanthoxanthin A is a fluorescent yellow nitrogenous pigment of the group of zoanthoxanthins, which show a broad range of biological activity. These include, among others, the ability to bind to DNA. In this study we have used a variety of spectroscopic (intrinsic fluorescence emission and UV-spectroscopy) and hydrodynamic techniques (viscometry) to characterize in more detail the binding of parazoanthoxanthin A to a variety of natural and synthetic DNA duplexes in different buffer conditions. Our results reveal the following five significant features: (i) Parazoanthoxanthin A exhibits two modes of DNA binding: One binding mode exhibits properties of intercalation, while the second binding mode is predominantly electrostatic in origin. (ii) The apparent binding "site size" for parazoanthoxanthin A near physiological salt concentration (100 mM NaCl) is in the range of 7 +/- 1 base pairs for natural genomic DNA duplexes (calf thymus and salmon testes DNA) and alternating synthetic polynucleotides (poly[d(AT)]. poly[d(AT)] and poly[d(GC)]. poly[d(GC)]). A slightly larger apparent binding site size of 9 +/- 1 bp was obtained for parazoanthoxanthin A binding to the synthetic homopolymer poly[d(A)]. poly[d(T)]. (iii) Near physiological salt concentration (100 mM NaCl) parazoanthoxanthin A binds with the same approximate binding affinity of 2-5 x 10(5) M(-1) to all DNA polymers studied. (iv) At low salt concentration, parazoanthoxanthin A preferentially binds alternating poly[d(AT)]. poly[d(AT)] and poly[d(GC)]. poly[d(GC)] host duplexes. (v) Parazoanthoxanthin A inhibits DNA polymerase in vitro.  相似文献   

3.
DNA chemical modifications caused by the binding of some antitumor drugs give rise to a very strong local stabilization of the double helix. These sites melt at a temperature that is well above the melting temperatures of ordinary AT and GC base pairs. In this work we have examined the melting behavior of DNA containing very stable sites. Analytical expressions were derived and used to evaluate the thermodynamic properties of homopolymer DNA with several different distributions of stable sites. The results were extended to DNA with a heterogeneous sequence of AT and GC base pairs. The results were compared to the melting properties of DNA with ordinary covalent interstrand cross-links. It was found that, as with an ordinary interstrand cross-link, a single strongly stabilized site makes a DNA's melting temperature (T(m)) independent of strand concentration. However in contrast to a DNA with an interstrand cross-link, a strongly stabilized site makes the DNA's T(m) independent of DNA length and equal to T(infinity), the melting temperature of an infinite length DNA with the same GC-content and without a stabilized site. Moreover, at a temperature where more than 80% of base pairs are melted, the number of ordinary (non-modified) helical base pairs (n) is independent of both the DNA length and the location of the stabilized sites. For this condition, n(T) = (2 omega-a)S/(1-S) and S = exp[DeltaS(T(infinity)-T)/(RT)] where omega is the number of strongly stabilized sites in the DNA chain, a is the number of DNA ends that contain a stabilized site, and DeltaS, T, and R are the base pair entropy change, the temperature, and the universal gas constant per mole. The above expression is valid for a temperature interval that corresponds to n<0.2N for omega=1, and n<0.1N for omega>1, where N is the number of ordinary base pairs in the DNA chain.  相似文献   

4.
Abstract

DNA interstrand cross-links are usually formed due to bidentate covalent or coordination binding of a cross-linking agent to nucleotides of different strands. However interstrand linkages can be also caused by any type of chemical modification that gives rise to a strong local stabilization of the double helix. These stabilized sites conserve their helical structure and prevent local and total strand separation at temperatures above the melting of ordinary AT and GC base pairs. This local stabilization makes DNA melting fully reversible and independent of strand concentration like ordinary covalent interstrand cross-links. The stabilization can be caused by all the types of chemical modifications (interstrand cross-links, intrastrand cross-links or monofunctional adducts) if they give rise to a strong enough local stabilization of the double helix. Our calculation demonstrates that an increase in stability by 25 to 30 kcal in the free energy of a single base pair of the double helix is sufficient for this “cross-linking effect” (i.e. conserving the helicity of this base pair and preventing strand separation after melting of ordinary base pairs). For the situation where there is more then one stabilized site in a DNA duplex (e.g., 1 stabilized site per 1000 bp), a lower stabilization per site is sufficient for the “cross-linking effect” (18–20 kcal). A substantial increase in DNA stability was found in various experimental studies for some metal-based anti-tumor compounds. These compounds may give rise to the effect described above. If ligand induced stabilization is distributed among several neighboring base pairs, a much lower minimum increase per stabilized base pair is sufficient to produce the cross-linking effect (1 bp- 24.4 kcal; 5 bp- 5.3 kcal; 10 bp- 2.9 kcal, 25 bp- 1.4 kcal; 50 bp- 1.0 kcal). The relatively weak non-covalent binding of histones or protamines that cover long regions of DNA (20–40 bp) can also cause this effect if the salt concentration of the solution is sufficiently low to cause strong local stabilization of the double helix. Stretches of GC pairs more than 25 bp in length inserted into poly(AT) DNA also exhibit properties of stabilizing interstrand cross-links.  相似文献   

5.
DNA interstrand cross-links are usually formed due to bidentate covalent or coordination binding of a cross-linking agent to nucleotides of different strands. However interstrand linkages can be also caused by any type of chemical modification that gives rise to a strong local stabilization of the double helix. These stabilized sites conserve their helical structure and prevent local and total strand separation at temperatures above the melting of ordinary AT and GC base pairs. This local stabilization makes DNA melting fully reversible and independent of strand concentration like ordinary covalent interstrand cross-links. The stabilization can be caused by all the types of chemical modifications (interstrand cross-links, intrastrand cross-links or monofunctional adducts) if they give rise to a strong enough local stabilization of the double helix. Our calculation demonstrates that an increase in stability by 25 to 30 kcal in the free energy of a single base pair of the double helix is sufficient for this "cross-linking effect" (i.e. conserving the helicity of this base pair and preventing strand separation after melting of ordinary base pairs). For the situation where there is more then one stabilized site in a DNA duplex (e.g., 1 stabilized site per 1000 bp), a lower stabilization per site is sufficient for the "cross-linking effect" (18 - 20 kcal). A substantial increase in DNA stability was found in various experimental studies for some metal-based anti-tumor compounds. These compounds may give rise to the effect described above. If ligand induced stabilization is distributed among several neighboring base pairs, a much lower minimum increase per stabilized base pair is sufficient to produce the cross-linking effect (1 bp- 24.4 kcal; 5 bp- 5.3 kcal; 10 bp- 2.9 kcal, 25 bp- 1.4 kcal; 50 bp- 1.0 kcal). The relatively weak non-covalent binding of histones or protamines that cover long regions of DNA (20- 40 bp) can also cause this effect if the salt concentration of the solution is sufficiently low to cause strong local stabilization of the double helix. Stretches of GC pairs more than 25 bp in length inserted into poly(AT) DNA also exhibit properties of stabilizing interstrand cross-links.  相似文献   

6.
Seventeen DNA dumbbells were constructed that have duplex sequences ranging in length from 14 to 18 base pairs linked on the ends by T4 single-strand loops. Fifteen of the molecules have the core duplexes with the sequences 5'G-T-A-T-C-C-(W-X-Y-Z)-G-G-A-T-A-C3', where (W-X-Y-Z) represents a unique combination of A.T, T.A, G.C, and C.G base pairs. The remaining two molecules have the central sequence (W-X-Y-Z) = A-C and A-C-A-C-A-C. These duplex sequences were designed such that the central sequences include different combinations of the 10 possible nearest-neighbor (n-n) stacks in DNA. In this sense the set of molecules is complete and serves as a model system for evaluating sequence-dependent local stability of DNA. Optical melting curves of the samples were collected in 25, 55, 85, and 115 mM [Na+], and showed, regardless of solvent ionic strength, that the transition temperatures of the dumbbells vary by as much as 14 degrees for different molecules of the set. Results of melting experiments analyzed in terms of a n-n sequence-dependent model allowed evaluation of nine independent linear combinations of the n-n stacking interactions in DNA as a function of solvent ionic strength. Although there are in principle 10 possible different n-n interactions in DNA, these 10 are not linearly independent and therefore can not be uniquely determined. For molecules with ends, there are 9 linearly independent combinations, as opposed to circular or semiinfinite repeating copolymers where only 8 linear combinations of the 10 possible n-n interactions are linearly independent. The n-n interactions are presented as combinations of the deviations from average stacking for the 5'-3' base-pair doublets, delta Gi, and reveal several interesting features: (1) Titratable changes in the values of delta Gi with changing salt environment are observed. In all salts the most stable unique combination is delta G4 = (delta GGpC+delta GCpG)/2, and the least stable is the GpG/CpC stack, delta G2 = delta GGpG/CpC. (2) The chi 2 values of the fits of the evaluated delta Gi's to experimental data increased with decreasing [Na+], suggesting that significant interactions beyond nearest neighbors become more pronounced, particularly at 25 nM Na+.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
8.
Melting of two DNA duplexes of known nucleotide sequences containing 14 and 36 base pairs has been investigated within the range of ionic strength from 0.2 to 0.02 M [Na+]. The values of melting enthalpy of base pair delta H were measured for the duplex of 14 base pairs in the solutions of varying ionic strength. The values of delta H were obtained from slopes of linear plots of reciprocal melting temperature versus logarithm of oligonucleotide chains concentration. In the aforementioned range the decrease of the ionic strength causes a 5% decrease of delta H. By fitting the theoretical profiles to the experimental ones the ionic strength dependence of the nucleation constant beta was measured for DNA fragments of various lengths. With the decrease of the ionic strength the value of beta drops 2 times for the short duplex and 8 times for the long one.  相似文献   

9.
Differential scanning calorimetry has been used to investigate the thermodynamics of denaturation of ribonuclease T1 as a function of pH over the pH range 2-10, and as a function of NaCl and MgCl2 concentration. At pH 7 in 30 mM PIPES buffer, the thermodynamic parameters are as follows: melting temperature, T1/2 = 48.9 +/- 0.1 degrees C; enthalpy change, delta H = 95.5 +/- 0.9 kcal mol-1; heat capacity change, delta Cp = 1.59 kcal mol-1 K-1; free energy change at 25 degrees C, delta G degrees (25 degrees C) = 5.6 kcal mol-1. Both T1/2 = 56.5 degrees C and delta H = 106.1 kcal mol-1 are maximal near pH 5. The conformational stability of ribonuclease T1 is increased by 3.0 kcal/mol in the presence of 0.6 M NaCl or 0.3 M MgCl2. This stabilization results mainly from the preferential binding of cations to the folded conformation of the protein. The estimates of the conformational stability of ribonuclease T1 from differential scanning calorimetry are shown to be in remarkably good agreement with estimates derived from an analysis of urea denaturation curves.  相似文献   

10.
S H Chou  D E Wemmer  D R Hare  B R Reid 《Biochemistry》1984,23(10):2257-2262
We have synthesized both strands of a DNA duplex containing the consensus Pribnow promoter sequence TATAATG , flanked by GC base pairs to stabilize the ends of the helix. The stability of this duplex has been studied by using 1H nuclear magnetic resonance. The imino protons have been assigned by using the sequential nuclear Overhauser effect approach. Exchange rates have been monitored by using selective inversion recovery measurements. The helix is relatively unstable in the center of the AT-rich region even when surrounded by GC base pairs, and there is considerable asymmetry in the melting of the helix.  相似文献   

11.
Tm curves, CD spectra, and kinetics results of the self-complementary DNA dodecamers d(A6T6), d(A3T3A3T3), d(A2T2A2T2A2T2), d(ATATATATATAT), and d(T6A6) demonstrate that the thermal transitions of these oligomers at low salt concentration involve a hairpin intermediate. At high salt concentrations (greater than 0.1 M Na+) only a duplex to denatured-strand transition appears to occur. The temperature and salt-concentration regions of the transitions are very sequence dependent. Alternating-type AT sequences have a lower duplex stability and a greater tendency to form hairpins than sequences containing more nonalternating AT base pairs. Of the two nonalternating sequences, d(T6A6) is significantly less stable than d(A6T6). Both oligomers have CD curves that are very similar to the unusual CD spectrum of poly(dA).poly(dT). The Raman spectra of these two oligomers are also quite similar, but at low temperature, small intensity differences in two backbone modes and three nucleoside vibrations are obtained. The hairpin to duplex transition for the AT dodecamers was examined by salt-jump kinetics measurements. The transition is faster than transitions for palindromic-sequence oligomers containing terminal GC base pairs. Stopped-flow kinetics studies indicate that the transition is second order and has a relatively low activation energy. The reaction rate increases with increasing ionic strength. These results are consistent with a three-step mechanism for the hairpin to duplex reaction: (i) fraying of the hairpin oligomers' terminal base pairs, (ii) a rate-determining bimolecular step involving formation of a cruciform-type intermediate from two hairpin oligomers with open terminal base pairs, and (iii) base-pair migration and formation in the intermediate to give the duplex.  相似文献   

12.
The interactions of DAPI with natural DNA and synthetic polymers have been investigated by hydrodynamic, DNase I footprinting, spectroscopic, binding, and kinetic methods. Footprinting results at low ratios (compound to base pair) are similar for DAPI and distamycin. At high ratios, however, GC regions are blocked from enzyme cleavage by DAPI but not by distamycin. Both poly[d(G-C)]2 and poly[d(A-T)]2 induce hypochromism and shifts of the DAPI absorption band to longer wavelengths, but the effects are larger with the GC polymer. NMR shifts of DAPI protons in the presence of excess AT and GC polymers are significantly different, upfield for GC and mixed small shifts for AT. The dissociation rate constants and effects of salt concentration on the rate constants are also quite different for the AT and the GC polymer complexes. The DAPI dissociation rate constant is larger with the GC polymer but is less sensitive to changes in salt concentration than with the AT complex. Binding of DAPI to the GC polymer and to poly[d(A-C)].poly[d(G-T)] exhibits slight negative cooperativity, characteristic of a neighbor-exclusion binding mode. DAPI binding to the AT polymer is unusually strong and exhibits significant positive cooperativity. DAPI has very different effects on the bleomycin-catalyzed cleavage of the AT and GC polymers, a strong inhibition with the AT polymer but enhanced cleavage with the GC polymer. All of these results are consistent with two totally different DNA binding modes for DAPI in regions containing consecutive AT base pairs versus regions containing GC or mixed GC and AT base pair sequences. The binding mode at AT sites has characteristics which are similar to those of the distamycin-AT complex, and all results are consistent with a cooperative, very strong minor groove binding mode. In GC and mixed-sequence regions the results are very similar to those observed with classical intercalators such as ethidium and indicate that DAPI intercalates in DNA sequences which do not contain at least three consecutive AT base pairs.  相似文献   

13.
Parallel-stranded (ps) DNAs with mixed AT/GC content comprising G.C pairs in a varying sequence context have been investigated. Oligonucleotides were devised consisting of two 10-nt strands complementary either in a parallel or in an antiparallel orientation and joined via nonnucleotide linkers so as to form 10-bp ps or aps hairpins. A predominance of intramolecular hairpins over intermolecular duplexes was achieved by choice of experimental conditions and verified by fluorescence determinations yielding estimations of rotational relaxation times and fractional base pairing. A multistate mode of ps hairpin melting was revealed by temperature gradient gel electrophoresis (TGGE). The thermal stability of the ps hairpins with mixed AT/GC content depends strongly on the specific sequence in a manner peculiar to the ps double helix. The thermodynamic effects of incorporating trans G.C base pairs into an AT sequence are context-dependent: an isolated G. C base pair destabilizes the duplex whereas a block of > or =2 consecutive G.C base pairs exerts a stabilizing effect. A multistate heterogeneous zipper model for the thermal denaturation of the hairpins was derived and used in a global minimization procedure to compute the thermodynamic parameters of the ps hairpins from experimental melting data. In 0.1 M LiCl at 3 degrees C, the formation of a trans G.C pair in a GG/CC sequence context is approximately 3 kJ mol(-)(1) more favorable than the formation of a trans A.T pair in an AT/TA sequence context. However, GC/AT contacts contribute a substantial unfavorable free energy difference of approximately 2 kJ mol(-)(1). As a consequence, the base composition and fractional distribution of isolated and clustered G.C base pairs determine the overall stability of ps-DNA with mixed AT/GC sequences. Thus, the stability of ps-DNA comprising successive > or =2 G.C base pairs is greater than that of ps-DNA with an alternating AT sequence, whereas increasing the number of AT/GC contacts by isolating G.C base pairs exerts a destabilizing effect on the ps duplex. Molecular modeling of the various helices by force field techniques provides insight into the structural basis for these distinctions.  相似文献   

14.
Thermally induced structural transition in the d(TTTTATAATAAA) d(TTTATTATAAAA) heteroduplex is characterized by UV-spectroscopy and differential scanning calorimetry. At low salt (less than 0.1 M) the occurrence of a cooperative transition in the lower temperature range, followed by a broad transition connected with small increase in absorbance is observed. At high salt (greater than or equal to 0.2 M) a single, monophasic transition appears. Linear dependence of the latter on log of salt concentration (dTm:dlogM = 14.2 degrees C) and of 1/Tm on log of oligomer concentration [derived therefrom delta H (v.H.) = 77.1 kcal/mole (duplex)] allows relating it to the melting of the heteroduplex helix. The non-cooperative transition, independent of oligomer concentration and similar to that of the single chain, was attributed to melting of short hairpin helices upon heteroduplex dissociation. Calorimetric enthalpy: 75.6 kcal/mole (duplex) proved significantly lower than predicted from known calorimetric data for poly[d(AT)] and poly d(A) X poly d(T).  相似文献   

15.
F Schaeffer  A Kolb    H Buc 《The EMBO journal》1982,1(1):99-105
To understand the denaturation process of short DNA segments we have chosen a 203-base pair (bp) restriction fragment containing the lactose control region. A steady decrease in GC content exists between its i proximal and z proximal ends. We confirm that this fragment melts at low salt in two subtransitions. A GC to AT mutation in the AT-rich region (mutation UV5) increases the number of denatured base pairs in the first subtransition and decreases the cooperativity of the melting process. A GC to AT mutation in the GC-rich region (mutation L8) decreases the number of denatured base pairs in the first subtransition and increases the cooperativity. These mutations induce the same shift in the temperature of half denaturation. The effects of both mutations are additive. A short deletion at the z end of the fragment affects only the first subtransition. When four GC pairs are added to both end, the fragment melts in one transition. Comparison with the results obtained with a larger 789-bp lac fragment reveals strong end effects on base pair stability and suggests that denaturation of the 203-bp fragment proceeds unidirectionally from the z end. Good agreement is shown with the predictions made with the "z ipper model" of Crothers et al. (1965).  相似文献   

16.
Salts and polyamines have a variety of effects on the physical properties of DNA, including stabilization against thermal melting. We wished to gain greater insight into the mechanism of this stabilization by ascertaining its effect on the dynamics of base opening and closing reactions, as measured by NMR. Since the binding of spermidine(3+) is influenced by salt, and since spermidine may act as a base catalyst in proton exchange reactions, we have undertaken a study of salt and base catalyst effects on the imino proton exchange kinetics of a model oligomeric DNA. The selective longitudinal NMR relaxation rates of the hydrogen-bonded imino protons of the self-complementary octadeoxyribonucleotide d(GGAATTCC) monitor the rate of the base-catalyzed chemical exchange of these protons with solvent water. The exchange rates thus obtained provide a sensitive measure of the base-pair opening reactions of the DNA duplex. Under conditions of low pH and no added base catalyst, the NMR relaxation rates allow the determination of kd, the rate constant for the dissociation of the octameric duplex into single strands. Titration with the base catalyst tris(hydroxymethyl)aminomethane allows the determination of kop, the rate constant for the localized opening of individual base pairs, prior to dissociation. A significant Na+ concentration dependence is found for kd. From an analysis of this dependence, it is determined that 0.6 +/- 0.1 sodium ion is released during the dissociation event. The activation energy for helix dissociation (200 +/- 5 kJ/mol) is not dependent on the sodium ion concentration, indicating that the dissociation is entropically driven by the release of bound sodium ions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Expressions for the partition function Q (T) of DNA hairpins are presented. Calculations of Q (T), in conjunction with our previously reported numerically exact algorithm [T. M. Paner, M. Amaratunga, M. J. Doktycz, and A. S. Benight (1990) Biopolymers, 29, 1715-1734], yield a numerical method to evaluate the temperature dependence of the transition enthalpy, entropy, and free energy of a DNA hairpin directly from its optical melting curve. No prior assumptions that the short hairpins melt in a two-state manner are required. This method is then applied in a systematic manner to investigate the stability of the six basepair duplex stem 5'-GGATAC-3' having four-base dangling single-strand ends with the sequences (XY)2, where X, Y = A, T, G, C, on the 5' end and a T4 loop on the 3' end. Results show that all dangling ends of the sample set stabilize the hairpin against melting. Increases in transition temperatures as great as 4.0 degrees C above the blunt-ended control hairpin were observed. The hierarchy of the hairpin transition temperatures is dictated by the identity of the first base of the dangling end adjoining the duplex in the order: purine greater than T greater than C. Calculated melting curves of every hairpin were fit to experimental curves by adjustment of a single parameter in the numerically exact theoretical algorithm. Exact fits were obtained in all cases. Experimental melting curves were also calculated assuming a two-state melting process. Equally accurate fits of all dangling-ended hairpin melting curves were obtained with the two-state model calculation. This was not the case for the melting curve of the blunt-ended hairpin, indicating the presence of a four-base dangling-end drives hairpin melting to a two-state process. Q (T) was calculated as a function of temperature for each hairpin using the theoretical parameters that provided calculated curves in exact agreement with the experimentally obtained optical melting curves. From Q (T), the temperature dependence of the transition enthalpy delta H, entropy delta S, and free energy delta G were calculated for every hairpin providing a quantitative assessment of the effects of dangling ends on hairpin thermodynamics. Comparisons of our results are made with those of the Breslauer group [M. Senior, R. A. Jones, and K. J. Breslauer (1988) Biochemistry 27, 3879-3885] on the T2 5' dangling-ended d(GC)3 duplexes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
A computer modeling of thermodynamic properties of a long DNA of N base pairs that includes omega interstrand crosslinks (ICLs), or omega chemical modifications involving one strand (monofunctional adducts, intrastrand crosslinks) has been carried out. It is supposed in our calculation that both types of chemical modifications change the free energy of the helix-coil transition at sites of their location by deltaF. The value deltaF>0 corresponds to stabilization, i.e., to the increase in melting temperature. It is also taken into account that ICLs form additional loops in melted regions and prohibit strand dissociation after full DNA melting. It is shown that the main effect of interstrand crosslinks on the stability of long DNA's is caused by the formation of additional loops in melted regions. This formation increases DNA melting temperature (T(m)) much stronger than replacing omega base pairs of AT type with GC. A prohibition of strand dissociation after crosslinking, which strongly elevates the melting temperature of oligonucleotide duplexes, does not influence melting behavior of long DNA's (N>/=1000 bp). As was demonstrated earlier for the modifications involving one or the other strand, the dependence of the shift of melting temperature deltaT(m) on the relative number of modifications r = omega/(2N) is a linear function for any deltaF, and deltaT(m)(r) identical with 0 for the ideal modifications (deltaF=0). We have shown that deltaT(m)(r) is the same for periodical and random distribution if the absolute value of deltaF is less 2 kcal. The absolute value of deltaT(m)(r) at deltaF>2 kcal and deltaF<-2 kcal is higher for periodical distribution. For interstrand crosslinks, the character of the dependence deltaT(m)(r) is quite different. It is nonlinear, and the shape of the corresponding curve is strongly dependent on deltaF. For "ideal" interstrand crosslinks (deltaF=0), the function deltaT(m)(r) is not zero. It is monotone positive nonlinear, and its slope decreases with r. If r<0.004, then the entropy stabilizing effect of interstrand crosslinking itself exceeds the influence of a distortion of the double helix at sites of their location. The resulting deltaT(m)(r) is positive even in the case of the infinite destabilization at sites of the ICLs (deltaF--> -infinity). In general, stabilizing influence of interstrand crosslinks is almost fully compensated for by local structural distortions caused by them if 0相似文献   

19.
Nearest neighbor interactions affect the stabilities of triple-helical complexes. Within a pyrimidine triple-helical motif, the relative stabilities of natural base triplets T.AT, C + GC, and G.TA, as well as triplets, D3.TA and D3.CG, containing the nonnatural deoxyribonucleoside 1-(2-deoxy-beta-D-ribofuranosyl)-4-(3-benzamido)phenylimidazole (D3) were characterized by the affinity cleaving method in the context of different flanking triplets (T.AT, T.AT: T.AT, C + GC: C + GC, T.AT: G + GC, C + GC). The to be insensitive to substitutions in either the 3' or 5' directions, while the relative stabilities of triple helices containing C + GC triplets decreased as the number of adjacent C + GC triplets increased. Triple helices incorporating a G.TA interaction were most stable when this triplet was flanked by two T.AT triplets and were adversely affected when a C + GC triplet was placed in the adjacent 5' direction. Similarly, complexes containing D3.TA or D3.CG triplets were most stable when the triplet was flanked by two T.AT triplets but were destabilized when the adjacent 3' neighbor position was occupied with a C + GC triplet. This information regarding sequence composition effects in triple-helix formation establishes a set of guidelines for targeting sequences of double-helical DNA by the pyrimidine triple-helix motif.  相似文献   

20.
Using immobilized trypsin and an appropriate fractionation procedure, we have been able to prepare, for the first time, nucleosome core particles containing selectively trypsinized histone domains. The particles thus obtained: [(H3T-H4T)2-2(H2AT-H2BT)].DNA; [(H3-H4)2-2(H2AT-H2BT)].DNA; [H3T-H4T)2-2(H2A-H2B)].DNA (where T means trypsinized), together with the non-trypsinized controls have been characterized using the following techniques: analytical ultracentrifugation, circular dichroism, thermal denaturation and DNAse I digestion. The major aim of this study was to analyze the role of the amino-terminal regions (the histone "tails") on the stability of the nucleosome in solution. The data obtained from this analysis clearly show that stability of the nucleosome core particle to dissociation (below a salt concentration of 0.7 M-NaCl) is not affected by the presence or the absence of any of the N-terminal regions of the histones. Furthermore, these histone regions make very little contribution, if any, to the conformational transition that nucleosomes undergo in this range of salt concentrations. They play, however, a very important role in determining the thermal stability of the particle, as reflected in the dramatic alterations exhibited by the melting profiles upon selective removal of these tails by trypsinization. The melting data can be explained by a simple hypothesis that ascribes interaction of H2A/H2B and H3/H4 tails to particular regions of the nucleosomal DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号