首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rad21/Rec8 is an important component and key regulator of cohesins. A RAD21-like gene from rice (Oryza sativa L. ssp. japonica) has been cloned and termed OsRAD21-1. OsRAD21-1 is a single-copy gene in the rice genome and is expressed in the entire plant. OsRad21-1 consists of 1055 amino acid residues and is the largest of the Rad21/Rec8 family identified to date. Based on sequence similarity comparison with other members of this family and gene expression patterns, it is concluded that OsRad21 is a rice orthologue of yeast Rad21.  相似文献   

2.
3.
4.
During mitosis, sister kinetochores attach to microtubules that extend to opposite spindle poles (bipolar attachment) and pull the chromatids apart at anaphase (equational segregation). A multisubunit complex called cohesin, including Rad21/Scc1, plays a crucial role in sister chromatid cohesion and equational segregation at mitosis. Meiosis I differs from mitosis in having a reductional pattern of chromosome segregation, in which sister kinetochores are attached to the same spindle (monopolar attachment). During meiosis, Rad21/Scc1 is largely replaced by its meiotic counterpart, Rec8. If Rec8 is inactivated in fission yeast, meiosis I is shifted from reductional to equational division. However, the reason rec8Delta cells undergo equational rather than random division has not been clarified; therefore, it has been unclear whether equational segregation is due to a loss of cohesin in general or to a loss of a specific requirement for Rec8. We report here that the equational segregation at meiosis I depends on substitutive Rad21, which relocates to the centromeres if Rec8 is absent. Moreover, we demonstrate that even if sufficient amounts of Rad21 are transferred to the centromeres at meiosis I, thereby establishing cohesion at the centromeres, rec8Delta cells never recover monopolar attachment but instead secure bipolar attachment. Thus, Rec8 and Rad21 define monopolar and bipolar attachment, respectively, at meiosis I. We conclude that cohesin is a crucial determinant of the attachment manner of kinetochores to the spindle microtubules at meiosis I in fission yeast.  相似文献   

5.
Replicated sister chromatids are held in close association from the time of their synthesis until their separation during the next mitosis. This association is mediated by the ring-shaped cohesin complex that appears to embrace the sister chromatids. Upon proteolytic cleavage of the α-kleisin cohesin subunit at the metaphase-to-anaphase transition by separase, sister chromatids are separated and segregated onto the daughter nuclei. The more complex segregation of chromosomes during meiosis is thought to depend on the replacement of the mitotic α-kleisin cohesin subunit Rad21/Scc1/Mcd1 by the meiotic paralog Rec8. In Drosophila, however, no clear Rec8 homolog has been identified so far. Therefore, we have analyzed the role of the mitotic Drosophila α-kleisin Rad21 during female meiosis. Inactivation of an engineered Rad21 variant by premature, ectopic cleavage during oogenesis results not only in loss of cohesin from meiotic chromatin, but also in precocious disassembly of the synaptonemal complex (SC). We demonstrate that the lateral SC component C(2)M can interact directly with Rad21, potentially explaining why Rad21 is required for SC maintenance. Intriguingly, the experimentally induced premature Rad21 elimination, as well as the expression of a Rad21 variant with destroyed separase consensus cleavage sites, do not interfere with chromosome segregation during meiosis, while successful mitotic divisions are completely prevented. Thus, chromatid cohesion during female meiosis does not depend on Rad21-containing cohesin.  相似文献   

6.
7.
Rec2 is the single Rad51 paralog in Ustilago maydis. Here, we find that Rec2 is required for radiation-induced Rad51 nuclear focus formation but that Rec2 foci form independently of Rad51 and Brh2. Brh2 foci also form in the absence of Rad51 and Rec2. By coprecipitation from cleared extracts prepared from Escherichia coli cells expressing the proteins, we found that Rec2 interacts physically not only with Rad51 and itself but also with Brh2. Transgenic expression of Brh2 in rec2 mutants can effectively restore radiation resistance, but the frequencies of spontaneous Rad51 focus formation and allelic recombination are elevated. The Dss1-independent Brh2-RPA70 fusion protein is also active in restoring radiation sensitivity of rec2 but is hyperactive to an extreme degree in allelic recombination and in suppressing the meiotic block of rec2. However, the high frequency of chromosome missegregation in meiotic products is an indicator of a corrupted process. The results demonstrate that the importance of Rec2 function is not only in stimulating recombination activity but also in ensuring that recombination is properly controlled.  相似文献   

8.
Bennett RL  Holloman WK 《Biochemistry》2001,40(9):2942-2953
Two RecA homologues have been identified to date in Ustilago maydis. One is orthologous to Rad51 while the other, Rec2, is structurally quite divergent and evolutionarily distant. DNA repair and recombination proficiency in U. maydis requires both Rec2 and Rad51. Here we have examined biochemical activities of Rec2 protein purified after overexpression of the cloned gene. Rec2 requires DNA as a cofactor to hydrolyze ATP and depends on ATP to promote homologous pairing and DNA strand exchange. ATPgammaS was found to substitute for ATP in all pairing reactions examined. With superhelical DNA and a homologous single-stranded oligonucleotide as substrates, Rec2 actively promoted formation and dissociation of D-loops. When an RNA oligonucleotide was substituted it was found that R-loops could also be formed and utilized as primer/template for limited DNA synthesis. In DNA strand exchange reactions using oligonucleotides, we found that Rec2 exhibited a pairing bias that is opposite that of RecA. Single-stranded oligonucleotides were activated for DNA strand exchange when attached as tails protruding from a duplex sequence due to enhanced binding of Rec2. The results indicate that Rec2 is competent, and in certain ways even better than Rad51, in the ability to provide the fundamental DNA pairing activity necessary for recombinational repair. We propose that the emerging paradigm for homologous recombination featuring Rad51 as the essential catalytic component for strand exchange may not be universal in eukaryotes.  相似文献   

9.
Lorenz A  Estreicher A  Kohli J  Loidl J 《Chromosoma》2006,115(4):330-340
In fission yeast, meiotic prophase nuclei develop structures known as linear elements (LinEs), instead of a canonical synaptonemal complex. LinEs contain Rec10 protein. While Rec10 is essential for meiotic recombination, the precise role of LinEs in this process is unknown. Using in situ immunostaining, we show that Rec7 (which is required for meiosis-specific DNA double-strand break (DSB) formation) aggregates in foci on LinEs. The strand exchange protein Rad51, which is known to mark the sites of DSBs, also localizes to LinEs, although to a lesser degree. The number of Rec7 foci corresponds well with the average number of genetic recombination events per meiosis suggesting that Rec7 marks the sites of recombination. Rec7 and Rad51 foci do not co-localize, presumably because they act sequentially on recombination sites. The localization of Rec7 is dependent on Rec10 but independent of the DSB-inducing protein Rec12/Spo11. Neither Rec7 nor Rad51 localization depends on the LinE-associated proteins Hop1 and Mek1, but the formation of Rad51 foci depends on Rec10, Rec7, and, as expected, Rec12/Spo11. We propose that LinEs form around designated recombination sites before the induction of DSBs and that most, if not all, meiotic recombination initiates within the setting provided by LinEs.  相似文献   

10.
In yeast, Rad21/Scc1 and its meiotic variant Rec8 are key players in the establishment and subsequent dissolution of sister chromatid cohesion for mitosis and meiosis, respectively, which are essential for chromosome segregation. Unlike yeast, our identification revealed that the rice genome has 4 RAD21-like genes that share lower than 21% identity at polypeptide levels, and each is present as a single copy in this genome. Here we describe our analysis of the function of OsRAD21-4 by RNAi. Western blot analyses indicated that the protein was most abundant in young flowers and less in leaves and buds but absent in roots. In flowers, the expression was further defined to premeiotic pollen mother cells (PMCs) and meiotic PMCs of anthers. Meiotic chromosome behaviors were monitored from male meiocytes of OsRAD21-4-deficient lines mediated by RNAi. The male meiocytes showed multiple aberrant events at meiotic prophase I, including over-condensation of chromosomes, precocious segregation of homologues and chromosome fragmentation. Fluorescence in situ hybridization experiments revealed that the deficient lines were defective in homologous pairing and cohesion at sister chromatid arms. These defects resulted in unequal chromosome segregation and aberrant spore generation. These observations suggest that OsRad21-4 is essential for efficient meiosis.  相似文献   

11.
Yokobayashi S  Watanabe Y 《Cell》2005,123(5):803-817
Meiosis resembles mitosis but employs a unique "reductional" nuclear division to allow the production of haploid gametes from diploid cells. The crucial ploidy reduction step requires that sister kinetochores attach to microtubules emanating from the same spindle pole, achieving "monopolar attachment," which ensures that maternal and paternal chromosomes are segregated. Here we screened for factors required to establish monopolar attachment in fission yeast and identified a novel protein, Moa1. Moa1 is meiosis specific and localizes exclusively to the central core of the centromere, a region that binds meiotic Rec8-containing cohesin complexes but not mitotic Rad21/Scc1-containing complexes. Enforced cleavage of Rec8 in the central core region led to the disruption of monopolar attachment, as in moa1Delta cells, without diminishing Moa1 localization. Moa1 physically interacts with Rec8, implying that Moa1 functions only through Rec8, presumably to facilitate central core cohesion. These results prove that monoorientation of kinetochores is established in a cohesion-mediated manner.  相似文献   

12.
Until the onset of anaphase, sister chromatids are bound to each other by a multi-subunit protein complex called cohesin. Since chromosomes in meiosis behave differently from those in mitosis, the cohesion and separation of homologous chromosomes and sister chromatids in meiosis are thought to be regulated by meiosis-specific cohesin subunits. Actually, several meiosis-specific cohesin subunits, including Rec8, STAG3 and SMC1beta, are known to exist in mammals; however, there are no reports of meiosis-specific cohesin subunits in other vertebrates. To investigate the protein expression and localization of cohesin subunits during meiosis in non-mammalian species, we isolated cDNA clones encoding SMC1alpha, SMC1beta, SMC3 and Rad21 in the medaka and produced antibodies against recombinant proteins. Medaka SMC1beta was expressed solely in gonads, while SMC1alpha, SMC3 and Rad21 were also expressed in other organs and in cultured cells. SMC1beta forms a complex with SMC3 but not with Rad21, in contrast to SMC1alpha, which forms complexes with both SMC3 and Rad21. SMC1alpha and Rad21 were mainly expressed in mitotically dividing cells in the testis (somatic cells and spermatogonia), although their weak expression was detected in pre-leptotene spermatocytes. SMC1beta was expressed in spermatogonia and spermatocytes. SMC1beta was localized along the chromosomal arms as well as on the centromeres in meiotic prophase I, and its existence on the chromosomes persisted up to metaphase II, a situation different from that reported in the mouse, in which SMC1beta is lost from the chromosome arms in late pachytene despite its universal presence in vertebrates.  相似文献   

13.
14.
Mutation in the REC2 gene of Ustilago maydis leads to defects in DNA repair, recombination, and meiosis. Analysis of the primary sequence of the Rec2 protein reveals a region with significant homology to bacterial RecA protein and to the yeast recombination proteins Dmc1, Rad51, and Rad57. This homologous region in the U. maydis Rec2 protein was found to be functionally sensitive to mutation, lending support to the hypothesis that Rec2 has a functional RecA-like domain essential for activity in recombination and repair. Homologous recombination between plasmid and chromosomal DNA sequences is reduced substantially in the rec2 mutant following transformation. The frequency can be restored to a level approaching, but not exceeding, that observed in the wild-type strain if transformation is performed with cells containing multiple copies of REC2.  相似文献   

15.
A single Rad52-related protein is evident by blast analysis of the Ustilago maydis genome database. Mutants created by disruption of the structural gene exhibited few discernible defects in resistance to UV, ionizing radiation, chemical alkylating or cross-linking agents. No deficiency was noted in spontaneous mutator activity, allelic recombination or meiosis. GFP-Rad51 foci were formed in rad52 cells following DNA damage, but were initially less intense than normal suggesting a possible role for Rad52 in formation of the Rad51 nucleoprotein filament. A search for interacting genes that confer a synthetic fitness phenotype with rad52 after DNA damage by UV irradiation identified the genes for Mph1, Ercc1 and the Rad51 paralogue Rec2. Testing known mutants in recombinational repair revealed an additional interaction with the BRCA2 orthologue Brh2. Suppression of the rec2 mutant's UV sensitivity by overexpressing Brh2 was found to be dependent on Rad52. The results suggest that Rad52 serves in an overlapping, compensatory role with both Rec2 and Brh2 to promote and maintain formation of the Rad51 nucleoprotein filament.  相似文献   

16.
The REC2 gene of Ustilago maydis encodes a homologue of the Escherichia coli RecA protein and was first identified in a screen for UV-sensitive mutants. The original isolate, rec2-1, was found to be deficient in repair of DNA damage, genetic recombination and meiosis. We report here that the rec2-197 allele, which was constructed by gene disruption, retains some biological activity and is partially dominant with respect to REC2. The basis for the residual activity is probably as a result of expression of a diffusible product from the rec2-197 allele that augments or interferes with REC2 functions. This product appears to be a polypeptide expressed from a remnant of the 5' end of the open reading frame that was not removed in creating the gene disruption. The mutator activity and disturbed meiosis of rec2-197 suggest that the Rec2 protein functions in a process that avoids spontaneous mutation and insures faithful meiotic chromosome segregation. A prediction based on the phenotype of rec2-197 is that Rec2 protein interacts with one or more other proteins in directing these functions. To identify interacting proteins we performed a yeast two-hybrid screen and found Rad51 as a candidate. Rec2-197 and Rad51 appear to interact to a similar degree.  相似文献   

17.
Li J  Hooker GW  Roeder GS 《Genetics》2006,173(4):1969-1981
In budding yeast, at least 10 proteins are required for formation of the double-strand breaks (DSBs) that initiate meiotic recombination. Spo11 is the enzyme responsible for cleaving DNA and is found in a complex that also contains Ski8, Rec102, and Rec104. The Mre11/Rad50/Xrs2 complex is required for both DSB formation and DSB processing. In this article we investigate the functions of the remaining three proteins--Mer2, Mei4, and Rec114--with particular emphasis on Mer2. The Mer2 protein is present in vegetative cells, but it increases in abundance and becomes phosphorylated specifically during meiotic prophase. Mer2 localizes to distinct foci on meiotic chromosomes, with foci maximally abundant prior to the formation of synaptonemal complex. If DSB formation is blocked (e.g., by a spo11 mutation), dephosphorylation of Mer2 and its dissociation from chromosomes are delayed. We have also found that the Mei4 and Rec114 proteins localize to foci on chromosomes and these foci partially colocalize with each other and with Mer2. Furthermore, the three proteins co-immunoprecipitate. Mer2 does not show significant colocalization with Mre11 or Rec102 and Mer2 does not co-immunoprecipitate with Rec102. We propose that Mer2, Mei4, and Rec114 form a distinct complex required for DSB formation.  相似文献   

18.
Sister chromatid cohesion and interhomologue recombination are coordinated to promote the segregation of homologous chromosomes instead of sister chromatids at the first meiotic division. During meiotic prophase in Saccharomyces cerevisiae, the meiosis-specific cohesin Rec8p localizes along chromosome axes and mediates most of the cohesion. The mitotic cohesin Mcd1p/Scc1p localizes to discrete spots along chromosome arms, and its function is not clear. In cells lacking Tid1p, which is a member of the SWI2/SNF2 family of helicase-like proteins that are involved in chromatin remodeling, Mcd1p and Rec8p persist abnormally through both meiotic divisions, and chromosome segregation fails in the majority of cells. Genetic results indicate that the primary defect in these cells is a failure to resolve Mcd1p-mediated connections. Tid1p interacts with recombination enzymes Dmc1p and Rad51p and has an established role in recombination repair. We propose that Tid1p remodels Mcd1p-mediated cohesion early in meiotic prophase to facilitate interhomologue recombination and the subsequent segregation of homologous chromosomes.  相似文献   

19.
DNA double-strand breaks (DSBs) are formed during meiosis by the action of the topoisomerase-like Spo11/Rec12 protein, which remains covalently bound to the 5′ ends of the broken DNA. Spo11/Rec12 removal is required for resection and initiation of strand invasion for DSB repair. It was previously shown that budding yeast Spo11, the homolog of fission yeast Rec12, is removed from DNA by endonucleolytic cleavage. The release of two Spo11 bound oligonucleotide classes, heterogeneous in length, led to the conjecture of asymmetric cleavage. In fission yeast, we found only one class of oligonucleotides bound to Rec12 ranging in length from 17 to 27 nucleotides. Ctp1, Rad50, and the nuclease activity of Rad32, the fission yeast homolog of Mre11, are required for endonucleolytic Rec12 removal. Further, we detected no Rec12 removal in a rad50S mutant. However, strains with additional loss of components localizing to the linear elements, Hop1 or Mek1, showed some Rec12 removal, a restoration depending on Ctp1 and Rad32 nuclease activity. But, deletion of hop1 or mek1 did not suppress the phenotypes of ctp1Δ and the nuclease dead mutant (rad32-D65N). We discuss what consequences for subsequent repair a single class of Rec12-oligonucleotides may have during meiotic recombination in fission yeast in comparison to two classes of Spo11-oligonucleotides in budding yeast. Furthermore, we hypothesize on the participation of Hop1 and Mek1 in Rec12 removal.  相似文献   

20.
Human Rec2/Rad51L1 is a member of the Rad51 family of proteins. Although recombinase activity, typical of this family, could not be established, its overexpression in mammalian cells has been shown to cause a delay in G1. Moreover, since hsRec2/Rad51L1 has been found to be induced by both ionizing and UV irradiation, it is likely that hsRec2/Rad51L1 is elevated following any DNA damage and causes a G1 delay to allow time for DNA repair to occur. Limited homology with catalytic domains X and XI of protein kinase A suggested that kemptide, an artificial substrate containing one phosphorylatable residue, a serine, might serve as a substrate for hsRec2/Rad51L1. Here, we report that hsRec2/Rad51L1 can phosphorylate kemptide, as well as myelin basic protein, p53, cyclin E, and cdk2, but not a peptide substrate containing tyrosine only. The finding that hsRec2/Rad51L1 exhibits protein kinase activity is a first step toward identifying a mechanism whereby this protein affects the cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号