首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Chromaffin cells have been widely used to study neurosecretion since they exhibit similar calcium dependence of several exocytotic steps as synaptic terminals do, but having the enormous advantage of being neither as small or fast as neurons, nor as slow as endocrine cells. In the present study, secretion associated to experimental measurements of the exocytotic dynamics in human chromaffin cells of the adrenal gland was simulated by using a model that combines stochastic and deterministic approaches for short and longer depolarizing pulses, respectively. Experimental data were recorded from human chromaffin cells, obtained from healthy organ donors, using the perforated patch configuration of the patch-clamp technique. We have found that in human chromaffin cells, secretion would be mainly managed by small pools of non-equally fusion competent vesicles, slowly refilled over time. Fast secretion evoked by brief pulses can be predicted only when 75% of one of these pools (the “ready releasable pool” of vesicles, abbreviated as RRP) are co-localized to Ca2?+? channels, indicating an immediately releasable pool in the range reported for isolated cells of bovine and rat (Álvarez and Marengo, J Neurochem 116:155–163, 2011). The need for spatial correlation and close proximity of vesicles to Ca2?+? channels suggests that in human chromaffin cells there is a tight control of those releasable vesicles available for fast secretion.  相似文献   

2.
3.
Serial section electron microscopy is typically applied to investigation of small tissue volumes encompassing subcellular structures. However, in neurobiology, the need to relate subcellular structure to organization of neural circuits can require investigation of large tissue volumes at ultrastructural resolution. Analysis of ultrastructure and three-dimensional reconstruction of even one to a few cells is time consuming, and still does not generate the necessary numbers of observations to form well-grounded insights into biological principles. We describe an assemblage of existing computer-based methods and strategies for graphical analysis of large photographic montages to accomplish the study of multiple neurons through large tissue volumes. Sample preparation, data collection and subsequent analyses can be completed within 3-4 months. These methods generate extremely large data sets that can be mined in future studies of nervous system organization.  相似文献   

4.
The signal transduction process involved in the development of the nerve terminal is an intriguing question in developmental neurobiology. During the formation of the neuromuscular junction, presynaptic development is induced by growth cone's contact with the target muscle cell. Fluorescence microscopy with specific markers has made it possible to follow signalling events during this process. By using fluorescent calcium indicators, such as fura-2 and fluo-3, we found that a rise in intracellular calcium is elicited in the growth cone upon its contact with a target, and this calcium signal can also be elicited by local application of basic fibroblast growth factor. To monitor the clustering of synaptic vesicles in response to target contact, the fluorescent vesicular probe FMl-43 was used. With this probe, we observed that packets of synaptic vesicle are already present along the length of naive neurite, which has not encountered its synaptic target. The activity-dependent loading of FMl-43 indicates that these packets can undergo exocytosis and endocytosis upon depolarization. Time-lapse recording showed that these packets are quite mobile. Upon target contact, synaptic vesicles become clustered and immobilized at the contact site. The methodology and instrumentation used in these studies are described in this article. 1998 © Chapman & Hall  相似文献   

5.
The size of a pool of readily releasable vesicles at a giant brainstem synapse, the calyx of Held, was probed with three independent approaches. Using simultaneous pre- and postsynaptic whole-cell recordings, two forms of presynaptic Ca2+ stimuli were applied in rapid succession: uncaging of Ca2+ by flash photolysis and the opening of voltage-gated Ca2+ channels. The ensuing transmitter release showed a nearly complete cross-inhibition between the two stimuli, indicating the depletion of a limited pool of about 700 transmitter quanta. The pool size was confirmed in experiments using enhanced extracellular Ca2+ concentrations, as well as short, high-frequency stimulus trains. The results reveal a surprisingly large pool of functionally available vesicles, of which a fraction of about 0.2 is released by a single presynaptic action potential under physiological conditions.  相似文献   

6.
Fioravante D  Chu Y  Myoga MH  Leitges M  Regehr WG 《Neuron》2011,70(5):1005-1019
High-frequency stimulation leads to a transient increase in the amplitude of evoked synaptic transmission that is known as posttetanic potentiation (PTP). Here we examine the roles of the calcium-dependent protein kinase C isoforms PKCα and PKCβ in PTP at the calyx of Held synapse. In PKCα/β double knockouts, 80% of PTP is eliminated, whereas basal synaptic properties are unaffected. PKCα and PKCβ produce PTP by increasing the size of the readily releasable pool of vesicles evoked by high-frequency stimulation and by increasing the fraction of this pool released by the first stimulus. PKCα and PKCβ do not facilitate presynaptic calcium currents. The small PTP remaining in double knockouts is mediated partly by an increase in miniature excitatory postsynaptic current amplitude and partly by a mechanism involving myosin light chain kinase. These experiments establish that PKCα and PKCβ are crucial for PTP and suggest that long-lasting presynaptic calcium increases produced by tetanic stimulation may activate these isoforms to produce PTP.  相似文献   

7.
8.
Because certain primitive behavioral responses in the large sea snail Aplysia have recently been linked to neurophysiological events at a synaptic level, special interest attaches to the role played by calcium ions at such synapses. Using an extended version of the model applied earlier to trace the flow of energy and information through a ganglion of the medicinal leech (Triffet & Green, 1980), the authors investigate the electropotential effects of small transient localized changes in the calcium concentration near the inner membrane surface of a neuron in the resting state.When this state is well below the firing threshold, changes in Ca2+ concentration less than 10−8 M are shown to result only in low-level harmonic background oscillations. When the potential of the neurons is closer to threshold, however, and/or the Ca2+ concentration is of the order of 10−8 M, easily recognizable graded potentials appear, and these grow into firing peaks when the calcium concentration is increased still further.Though no attempt is made to deal with the amplification effects dependent on calcium-vesicle interactions and the related release of transmitter molecules, a unified mechanism for the underlying calcium ion dynamics is proposed. Graded potentials of increasing size are associated with a progressive localized thickening of the inner and outer Debye layers. Moreover, the transverse and longitudinal calcium currents set up in such regions prove adequate to account for both the depletion of Ca2+ ions necessary to achieve habituation, and the increase in their concentration required for sensitization.  相似文献   

9.
1. Density dependence may act at several stages in an organisms life-cycle (e.g. on mortality, fecundity, etc.), but not all density-dependent processes necessarily regulate population size. In this paper I use a density manipulation experiment to determine the effects of density on the transition rates between different size classes of the clonal zoanthid Palythoa caesia Dana 1846. I then formulate a density-dependent matrix model of population dynamics of Palythoa , and perform a series of sensitivity analyses on the model to determine at what stage in the life-cycle regulation acts.
2. Seven of the 16 transition probabilities decreased with density, most of them being shrinkage (due to loss of tissue or fission) and stasis (the self–self transition) of medium and large colonies. The only probability to increase was for the stasis of large colonies. Recruitment was quadratically dependent on density, peaking at intermediate densities.
3. Equilibrium cover in the model was 84% and was reached in ≈40 years. To determine which density-dependent transitions were involved in population regulation, the strength of density dependence was varied in each independently. This sensitivity analysis showed that only changes in the probabilities of large colonies remaining large and producing medium colonies, were regulating.
4. These results suggest that regulation is primarily acting on fission of large colonies to produce intermediate-sized colonies, in combination with size specific growth rates. Fission rates decrease greatly with density, resulting in a greater proportion of large colonies at high densities and large colonies grow more slowly than small. Overall, this behaviour is very similar to that of clonal plants which have a phalanx type life history.  相似文献   

10.
Computer simulation using Luo-Rudy I1 model of ventricular myocyte showed that intracellular calcium dynamics become irregular in case of high rate stimulation. This causes the transition from stationary to nonstationary spiral wave and its breakup in 2D model of cardiac tissue. Obtained results suggest how ventricular fibrillation may occur due to the abnormalities of intracellular calcium dynamics. The short review of existing cardiac cell models with calcium dynamics is presented.  相似文献   

11.
Using transfected fibroblasts expressing both wild-type I-E(k) and green fluorescent protein-tagged I-E(k) with covalently attached antigenic peptide, we have monitored movement of specific MHC:peptide complexes during CD4(+) T cell-APC interactions by live-cell video microscopy. Ag recognition occurs within 30 s of T cell-APC contact, as shown by a sharp increase in cytoplasmic calcium ion concentration. Within 1 min, small MHC:peptide clusters form in the contact zone that coalesce into an immunological synapse over 3-20 min. When T cells conjugated to APC move across the APC surface, they appear to drag the synapse with them. This system was used to examine the role of costimulation in the formation of the immunological synapse. Blocking CD80/CD28 or ICAM-1/LFA-1 interactions alters synapse morphology and reduces the area and density of accumulated complexes. These reductions correlate with reduced T cell proliferation, while CD69 and CD25 expression and TCR down-modulation remain unaffected. Thus, costimulation is essential for normal mature immunological synapse formation.  相似文献   

12.
Electrophysiological studies of the human heart face the fundamental challenge that experimental data can be acquired only from patients with underlying heart disease. Regarding human atria, there exist sizable gaps in the understanding of the functional role of cellular Ca2+ dynamics, which differ crucially from that of ventricular cells, in the modulation of excitation-contraction coupling. Accordingly, the objective of this study was to develop a mathematical model of the human atrial myocyte that, in addition to the sarcolemmal (SL) ion currents, accounts for the heterogeneity of intracellular Ca2+ dynamics emerging from a structurally detailed sarcoplasmic reticulum (SR). Based on the simulation results, our model convincingly reproduces the principal characteristics of Ca2+ dynamics: 1) the biphasic increment during the upstroke of the Ca2+ transient resulting from the delay between the peripheral and central SR Ca2+ release, and 2) the relative contribution of SL Ca2+ current and SR Ca2+ release to the Ca2+ transient. In line with experimental findings, the model also replicates the strong impact of intracellular Ca2+ dynamics on the shape of the action potential. The simulation results suggest that the peripheral SR Ca2+ release sites define the interface between Ca2+ and AP, whereas the central release sites are important for the fire-diffuse-fire propagation of Ca2+ diffusion. Furthermore, our analysis predicts that the modulation of the action potential duration due to increasing heart rate is largely mediated by changes in the intracellular Na+ concentration. Finally, the results indicate that the SR Ca2+ release is a strong modulator of AP duration and, consequently, myocyte refractoriness/excitability. We conclude that the developed model is robust and reproduces many fundamental aspects of the tight coupling between SL ion currents and intracellular Ca2+ signaling. Thus, the model provides a useful framework for future studies of excitation-contraction coupling in human atrial myocytes.  相似文献   

13.
There is evidence of variation in the infection dynamics of different Salmonella serotypes in cattle--ranging from transient epidemics to long term persistence and recurrence. We seek to identify possible causes of these differences. In this study we present mathematical models which describe both managed population dynamics and epidemiology and use these to investigate the effects of demographic and epidemiological factors on epidemic behaviour and threshold for invasion. In particular, when the system is perturbed by higher culling or pathogen-induced mortality we incorporate mechanisms to constrain the lactating herd size to remain constant in the absence of pathogen or to lie within a fairly small interval in the presence of pathogen. A combination of numerical and analytical techniques is used to analyse the models. We find that the epidemiologically dominating management group can change from the dry/lactating cycle to the weaned group with increasing culling rate. Pseudovertical transmission is found to have little effect on the invasion criteria, while indirect transmission has significant influence. Pathogen-induced mortality, recovery, immune response and pathogen removal are found to be factors inducing damped oscillations; variation in these factors between Salmonella serotypes may be responsible for some of the observed differences in within herd dynamics. Specifically, higher pathogen-induced mortality, shorter infectious period, more persistent immune response and more rapid removal of faeces result in a lower number of infectives and smaller epidemics but a greater tendency for damped oscillations.  相似文献   

14.
Caudal hair cell impulses cause postsynaptic inhibition of ipsilateral type B photoreceptors in the snail Hermissenda. This inhibition is shown to be GABAergic according to a number of criteria. HPLC, mass spectrophotometric, and immunocytochemical techniques demonstrated the presence of GABA in the hair cells and their axons. GABA agonists and antagonists mimic and block the synaptic effect in a manner consistent with endogenous GABAergic transmission. Other properties, including I-V relations, conductance changes and reversal potentials, are comparable for exogenous GABA responses and endogenous effects of the hair cell impulses. This inhibitory synapse has been found to undergo a long-lasting transformation into an excitatory synapse if GABA release is paired with post-synaptic depolarization. GABA, via GABAA and GABAB receptors in the B cell, causes the opening of calcium sensitive chloride and potassium channels that leads to the post-synaptic hyperpolarization. GABA also induces a long-lasting intracellular calcium elevation at the terminal branches of the B cell that greatly outlasts the voltage responses. Synaptic transformation induced by pairings is caused by a decrease in both GABA induced chloride and potassium conductances in the post-synaptic B cell, as well as a significant prolongation of the intracellular calcium accumulation in the B cell's terminal axonal branches.  相似文献   

15.
16.
17.
Zenisek D  Matthews G 《Neuron》2000,25(1):229-237
Mitochondria are thought to be important in clearing calcium from synaptic terminals. It is unclear, however, whether the principal role of mitochondria in pre-synaptic calcium handling is to take up Ca2+ directly or to fuel Ca2+ removal by other mechanisms. We used patch clamp techniques and fluorescence imaging to examine calcium clearance mechanisms, including mitochondrial uptake, in single synaptic terminals of retinal bipolar neurons. We found that extrusion through the ATP-dependent Ca2+ pump of the plasma membrane is the dominant form of Ca2+ removal in the synaptic terminal. Calcium uptake into mitochondria was sometimes evident with large Ca2+ loads but was consistently observed only when plasma membrane extrusion was inhibited. We conclude that mitochondria act primarily as an energy source in clearance of Ca2+ from bipolar cell synaptic terminals.  相似文献   

18.
19.
Conformational studies of synthetic peptides corresponding to the pore-forming regions of voltage-gated sodium channels show a high tendency for beta-sheet conformation when interacting with lipid vesicles, as revealed by circular dichroism and infrared spectroscopy. These observations have guided our choice of possible molecular models for the P-region peptide of domain II of voltage-gated sodium channels: three alternative beta-hairpins, with differing turn assignments, or an alpha-helical hairpin. After generation of models by distance geometry-based methods, molecular dynamics (MD) simulations were run. in the absence of explicit solvent molecules but employing three different dielectric constants, to explore possible conformational preferences. The simulations in the different dielectric environments suggest that a 4-residue turn with the sequence LCGE yields more stable beta-hairpins. The MD results suggest that the SS1 part of the peptide may be more stable as an alpha-helix, whereas the SS2 part tends to adopt a beta-conformation.  相似文献   

20.
Intracellular Ca(2+) spikes trigger cell proliferation, differentiation and cytoskeletal reorganization. In addition to Ca(2+) spiking that can be initiated by a ligand binding to its receptor, exposure to electromagnetic stimuli has also been shown to alter Ca(2+) dynamics. Using neuronal cells differentiated from a mouse embryonic stem cell line and a custom-built, frequency-tunable applicator, we examined in real time the altered Ca(2+) dynamics and observed increases in the cytosolic Ca(2+) in response to nonthermal radiofrequency (RF)-radiation exposure of cells from 700 to 1100 MHz. While about 60% of control cells (not exposed to RF radiation) were observed to exhibit about five spontaneous Ca(2+) spikes per cell in 60 min, exposure of cells to an 800 MHz, 0.5 W/kg RF radiation, for example, significantly increased the number of Ca(2+) spikes to 15.7+/-0.8 (P<0.05). The increase in the Ca(2+) spiking activities was dependent on the frequency but not on the SAR between 0.5 to 5 W/kg. Using pharmacological agents, it was found that both the N-type Ca(2+) channels and phospholipase C enzymes appear to be involved in mediating increased Ca(2+) spiking. Interestingly, microfilament disruption also prevented the Ca(2+) spikes. Regulation of Ca(2+) dynamics by external physical stimulation such as RF radiation may provide a noninvasive and useful tool for modulating the Ca(2+)-dependent cellular and molecular activities of cells seeded in a 3D environment for which only a few techniques are currently available to influence the cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号