首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sorghum insect problems and management   总被引:1,自引:0,他引:1  
Guo C  Cui W  Feng X  Zhao J  Lu G 《植物学报(英文版)》2011,53(3):178-192
Sorghum (Sorghum bicolor) has high levels of starch, sugar, and fiber and is one of the most important energy crops in the world. Insect damage is one of the challenges that impacts sorghum biomass production. There are at least 150 insect species that can infest sorghum varieties worldwide. These insects can complete several generations within a growing season, they target various parts of sorghum plants at developmental stages, and they cause significant biomass losses. Genetic research has revealed the existence of resistant genetics in sorghum and insect tolerant sorghum varieties have been identified. Various control methods have been developed, yet more effective management is needed for increasing sorghum biomass production. Although there are no transgenic sorghum products on the market yet, biotechnology has been recognized as an important tool for controlling insect pests and increasing sorghum production.  相似文献   

2.
Sorghum midge, Stenodiplosis ( Contarinia ) sorghicola (Coquillett) is an important pest of grain sorghum world-wide. Considerable progress has been made in screening and breeding for resistance to sorghum midge. However, some of the sources of resistance have become susceptible to sorghum midge in Kenya, in eastern Africa. Therefore, the wild relatives of Sorghum bicolor were studied as a possible source of new genes conferring resistance to sorghum midge. Midge females did not lay eggs in the spikelets of Sorghum amplum , Sorghum bulbosum , and Sorghum angustum compared to 30% spikelets with eggs in Sorghum halepense when infested with five midge females per panicle under no-choice conditions. However, one egg was laid in S. amplum when infested with 50 midges per panicle. A larger number of midges were attracted to the odours from the panicles of S. halepense than to the panicles of Sorghum stipoideum , Sorghum brachypodum , S. angustum , Sorghum macrospermum , Sorghum nitidium , Sorghum laxiflorum , and S. amplum in dual-choice olfactometer tests. The differences in midge response to the odours from S. halepense and Sorghum intrans were not significant. Under multi-choice conditions, when the females were also allowed a contact with the host, more sorghum midge females were attracted to the panicles of S. bicolor compared with S. amplum , S. angustum , and S. halepense . In another test, numerically more midges responded to the panicles of IS 10712 compared with S. halepense , whereas the differences in midge response to the panicles of ICSV 197 ( S. bicolor ) and S. halepense were not apparent, indicating that S. halepense is as attractive to sorghum midge females as S. bicolor . The wild relatives of sorghum (except S. halepense ) were not preferred for oviposition, and they were also less attractive to the sorghum midge females. Thus, wild relatives of sorghum can prove to be an alternative source of genes for resistance to sorghum midge.  相似文献   

3.
Sorghum [Sorghum bicolor (L.) Moench] is one of four herbaceous dedicated bioenergy crops the U.S. Department of Energy identified as critical to annually produce one billion tons of dry biomass. Of these four crops, sorghum is unique as it is a drought-tolerant, annual crop established from seed that is readily tractable to genetic improvement. The purpose of this study was to assess the yield potential and stability of sorghums grown across diverse production environments in the USA. For this study, six sorghum genotypes (one cultivar, five hybrids) were grown in yield trials in seven locations in six states for 5 years (2008–2012). Variation in dry and fresh yield was attributable to not only genotypes, but also to the effects of year, location, and year × location. Even with the highest yielding genotype, environmental conditions were a major factor in determining the yield in a given year. This variability affects the consistency of the biomass supply for ethanol production. In general, the southeastern USA had the highest mean yields for fresh weight and dry weight, indicating that this area may be the most reliable for biomass production. A significant variation was detected among genotypes for fresh weight, dry weight, moisture content, and brix, revealing that sufficient variation within sorghum exists for continued improvement and that certain hybrids are more tractable for biomass/bioenergy production. With dedicated bioenergy sorghum germplasm and proper production environments, sorghum will be a valuable tool in the goal of the sustainable production of one billion tons of dry biomass each year in the USA.  相似文献   

4.
Significant genetic variation in leaf photosynthetic rate has been reported in grain sorghum [Sorghum biocolor (L.) Moench]. The relationships between leaf photosynthetic rates and total biomass production and grain yield remain to be established and formed the purpose of this experiment. Twenty two grain sorghum parent lines were tested in the field during the 1988 growing season under well-watered and water-limited conditions. Net carbon assimilation rates were measured at mid-day during the 30 day period from panicle initiation to head exertion on upper-most fully expanded leaves using a portable photosynthesis system (LI-6200). Total biomass and grain production were determined at physiological maturity. The lines exhibited significant genetic variation in leaf photosynthetic rate, total biomass production and grain yield. Significant positive correlations existed between leaf photosynthesis and total biomass and grain production under both well-watered and water-limited conditions. The results suggest that leaf photosynthetic rate measured prior to flowering is a good indicator of productivity in grain sorghum.  相似文献   

5.
Sorghum, the fifth largest cereal crop, has high value as a staple food and raw material for liquor and vinegar brewing. Due to its high biomass and quality, it is also used as the second most planted silage resource. No fragrant sorghums are currently on the market. Through CRISPR/Cas9-mediated knockout of SbBADH2, we obtained sorghum lines with extraordinary aromatic smell in both seeds and leaves. Animal feeding experiments showed that fragrant sorghum leaves were attractable. We believe this advantage will produce great value in the sorghum market for both grain and whole biomass forage.  相似文献   

6.
Sweet sorghum (Sorghum bicolor L. Moench) is a promising bioenergy crop for the production of ethanol and bio-based products. Sugarcane billet harvesters can be used to harvest sweet sorghum. Multiple extractor fan speed settings of these harvesters allow for separating the extraneous matter in the feedstock, which has been associated with increased milling throughput and better juice quality at the processing facility. This removal is not completely selective, and some stalk material is also lost. These losses can be higher for sweet sorghum than sugarcane due its lower weight. This paper presents an assessment of how the speed of the primary extractor fan of a sugarcane billet combine used for harvesting sweet sorghum affects the biomass yield, biomass losses, and quality at delivery for the production of ethanol from extracted juice and fiber. Three primary extractor fan speeds (0, 800, and 1100 rpm) were evaluated. Higher fan speeds decreased fresh biomass yields by up to 28.3 Mg ha?1. Juice quality was not significantly different among treatments. Ethanol yield calculated from sweet sorghum harvested at 0 rpm was 6075 L ha?1. This value decreased by about half for material harvested at 1100 rpm due to the differences in biomass yield.  相似文献   

7.
Cereal yield increases in legume rotations on west African soils were the subject of much recent research aiming at the development of more productive cropping systems for the mainly subsistence-oriented agriculture in this region. However, little has been done to elucidate the possible contribution of soil microbiological factors to these rotation effects. Therefore a pot trial was conducted using legume rotation and continuous cereal soils each from one site in Burkina Faso and two sites in Togo where cropping system experiments had been conducted over 4 yrs. All soils were planted with seedlings of sorghum (Sorghum bicolor L. Moench). From 21 days after sowing onwards relative growth rates in rotation soils were higher than in the continuous cereal soils, resulting in between 69 and 500% higher shoot dry matter of rotation sorghum compared to sorghum growing in continuous cereal soils. Across sites rotation soils were characterized by higher pH, higher microbial N and a lower microbial biomass C/N ratio and, with the exception of one site, a higher fungal biomass in the rhizosphere. The bacterial and eukaryal community structure in the soil, assessed by denaturing gradient gel electrophoresis (DGGE), differed between sites. However, only at one site differed the bacterial and the eukaryal community structure in the rotation soil significantly from that in the continuous cereal soil. Although the results of this study confirmed the marked plant-growth differences between sub-Saharan legume-rotation soils and their continuous cereal counterparts they also showed the difficulties to differentiate possible microbiological causes from their effects.  相似文献   

8.
《Biomass》1988,15(3):155-164
The presence and inhibitory activity of phenolic compounds in sorghum biomass were determined. Sorghum contains phenolic compounds at all stages of growth, with higher levels in leaves and glumes compared to stalks and caryopses. The phenolic compounds inhibited alpha- and gluco-amylase activity. Storage of sorghum resulted in increased levels of some phenolic acids. Levels of free phenolic compounds in ensiled sorghum leachate were sufficient to inhibit the hydrolysis of carbohydrates. The phenolic compounds from sorghum appeared to be detoxified during anaerobic digestion.  相似文献   

9.
10.
Sorghum (Sorghum bicolor L. Moench) is a rapidly emerging high biomass feedstock for bioethanol and lignocellulosic biomass production. The robust varietal germplasm of sorghum and its completed genome sequence provide the necessary genetic and molecular tools to study and engineer the biotic/abiotic stress tolerance. Traditional proteomics approaches for outlining the sorghum proteome have many limitations like, demand for high protein amounts, reproducibility and identification of only few differential proteins. In this study, we report a gel-free, quantitative proteomic method for in-depth coverage of the sorghum proteome. This novel method combining phenol extraction and methanol chloroform precipitation gives high total protein yields for both mature sorghum root and leaf tissues. We demonstrate successful application of this method in comparing proteomes of contrasting cultivars of sorghum, at two different phenological stages. Protein identification and relative quantification analyses were performed by a label-free liquid chromatography tandem mass spectrometry (LC/MS-MS) analyses. Several unique proteins were identified respectively from sorghum tissues, specifically 271 from leaf and 774 from root tissues, with 193 proteins common in both tissues. Using gene ontology analysis, the differential proteins identified were finely corroborated with their leaf/root tissue specific functions. This method of protein extraction and analysis would contribute substantially to generate in-depth differential protein data in sorghum as well as related species. It would also increase the repertoire of methods uniquely suited for gel-free plant proteomics that are increasingly being developed for studying abiotic and biotic stress responses.  相似文献   

11.
本研究以四倍体高粱与约翰逊草为材料,利用SSR分子标记和细胞遗传学方法分析了高粱与约翰逊草间的亲缘关系,SSR分析结果表明,高粱与约翰逊草的遗传背景差异较大,SSR差异位点和相似位点在连锁群上的分布具不平衡性;按照差异引物出现频率高低,将连锁群分为两类:高度差异区和低度差异区。细胞学分析结果表明:(1)双亲及杂交种都是不规则的四倍体遗传群体。(2)花粉母细胞减数分裂中期I,双亲及杂交种染色体配对以二价体和四价体为主,杂交种平均每个细胞二价体数为17.00,四倍体高粱为15.23、约翰逊草为15.83,四价体数分别为0.95,2.15和1.60个。但杂交种减数分裂过程中也出现一定数量的单价体,减数分裂会形成一定比例的非整倍配子。SSR检测结果与细胞学分析结果具有一致性,约翰逊草与高粱的染色体组间存在一定程度的同源性。二者杂交不能形成稳定遗传的双二倍体。  相似文献   

12.
Biomass sorghums [Sorghum bicolor (L.) Moench] are short-day photoperiod sensitive (PS) types, meaning that the crop will grow vegetatively late into the fall season in subtropical and temperate environments. This feature results in high biomass yield potential and mitigates drought susceptibility. The objective of this study is to assess biomass growth patterns and associated changes in composition over a growing season for PS sorghum. The experiment had a split-plot design with two replications, six PS sorghum genotypes, and 13 harvest dates. Harvest started at 60 days after planting (DAP) and continued every 15 days thereafter in both College Station (CS) and Corpus Christi (CC) in Texas, 2010. At each harvest, dry biomass yield, plant height and biomass composition (percent lignin and cellulose) were measured. For all genotypes, biomass accumulation followed a standard growth pattern which included an early lag phase, followed by a log phase of growth and finally, a general reduction in the rate of accumulation. The early lag phase ended at approximately 70 DAP, the log phase of growth ended at approximately 125 DAP, and biomass yields maximized between 180 and 225 DAP. The highest yielding genotype produced 24 Mg ha?1. Plant heights up to 400 cm were also measured between 180 and 225 DAP. Plant height and biomass yield patterns were similar, indicating that height is important to increase yield. Lignin and cellulose concentrations increased with time; at the highest yields (between 180 and 225 DAP), maximum lignin content were 14.5 to 15.5 % and maximum cellulose content was 31 to 32 %. As with yield potential, significant differences were detected for composition as well. The growth curves indicate that PS biomass sorghum yields sufficiently and can be harvested as early as 130 DAP with maximum sorghum biomass accumulation occurring between 180 and 225 days. Thus, with careful selection and deployment of biomass sorghum hybrids, the harvest season of biomass sorghum can be extended over a 3-month period in southern regions of the US  相似文献   

13.
The Physiology of Heterosis in Sorghum with Respect to Environmental Stress   总被引:1,自引:0,他引:1  
The hypothesis that heterosis in biomass production of sorghum(Sorghum bicolor L. Moench) may be ascribed to stability incarbon exchange rate (CER) over a wide range of environmentalconditions was evaluated. This hypothesis was based on previousresults from detached leaves that hybrids sustained greaterCER over a wider temperture range than their parents. Two grain sorghum hybrids (ATx378/RTx430 and ATx378/RTx434)and their parental lines were grown in the greenhouse in a gradientof ambient temperatures under two water regimes (well-irrigatedand drought up to heading). Plant water-use (estimated by weighingpots), leaf area, leaf gas exchange, grain yield, and above-groundbiomass were determined. Significant heterosis was found for biomass, grain yield perplant, and grain number per panicle. No heterosis occurred forharvest index, indicating that heterosis in grain yield wasdue to heterosis in biomass. Neither growth duration nor leafarea could explain heterosis in biomass. CER and stomatal conductancefor hybrid ATx378/RTx430 in the controls were greater than forboth its parents at leaf temperatures above 38 °C. This,however, was not observed in the other hybrid which was lessheterotic for biomass and grain yield in the controls. WhenCER data were subjected to a stability analysis by joint linearregression, the two hybrids had greater CER than their respectiveparents especially under conditions favouring high CER. Whenextreme stress conditions developed, the hybrid's performancedepended on its genetic background more than on heterosis. Sorghum, Sorghum bicolor L. Moench., heterosis, hybrids, photosynthesis, transpiration, stomata, drought, heat, temperature  相似文献   

14.
Biomass production of fodder sorghum (Sorghum sp.) has been tested in a field trial over two harvesting periods under natural meteorological conditions using ammoxidized kraft lignin (AKL) as a slow-release fertilizer and urea as conventional reference. In the course of the first growth cycle, plants treated with urea gave higher biomass yields because of the better solubility of urea in the initial phase. However, during the second cycle AKL treated plants performed better than urea treated sorghum, indicating that nitrogen from AKL became readily available.  相似文献   

15.
Sorghum halepense L. (johnsongrass) is one of the world's most noxious weeds, and a paradigm for the potential dangers of crop-weed hybridization. Introduced into the southeastern United States about 200 years ago, S. halepense is a close relative of cultivated sorghum (Sorghum bicolor). Both artificial crossing and experimental field studies have demonstrated the potential for S. halepensex S. bicolor hybrid formation, but no prior study has addressed the long-term persistence of sorghum genes in johnsongrass populations. We surveyed 283 loci (on all 10 sorghum linkage groups) to identify 77 alleles at 69 loci that are found in US sorghum cultivars but are absent from a worldwide sampling of johnsongrass genotypes. These putatively cultivar-specific alleles were present in up to 32.3% of individuals in johnsongrass populations adjacent to long-term sorghum production fields in Texas and Nebraska. Lower frequencies of cultivar-specific alleles at smaller numbers of loci are found in johnsongrass populations from New Jersey and Georgia with no recent exposure to cultivated sorghum, suggesting that introgressed sorghum alleles may be dispersed across long distances. The number of cultivar-specific alleles and extensive multilocus patterns of cultivar-specific allelic composition observed at both linked and unlinked loci in the johnsongrass populations, are inconsistent with alternatives to introgression such as convergence, or joint retention of ancestral polymorphisms. Naturalized johnsongrass populations appear to provide a conduit by which transgenes from sorghum could become widely disseminated.  相似文献   

16.
Maize and sorghum: genetic resources for bioenergy grasses   总被引:1,自引:0,他引:1  
The highly photosynthetic-efficient C4 grasses, such as switchgrass (Panicum virgatum), Miscanthus (Miscanthusxgiganteus), sorghum (Sorghum bicolor) and maize (Zea mays), are expected to provide abundant and sustainable resources of lignocellulosic biomass for the production of biofuels. A deeper understanding of the synthesis, deposition and hydrolysis of the distinctive cell walls of grasses is crucial to gain genetic control of traits that contribute to biomass yield and quality. With a century of genetic investigations and breeding success, recently completed genome sequences, well-characterized cell wall compositions, and a close evolutionary relationship with future bioenergy perennial grasses, we propose that maize and sorghum are key model systems for gene discovery relating to biomass yield and quality in the bioenergy grasses.  相似文献   

17.
18.
Sweet sorghum (Sorghum bicolor L.) is a type of cultivated sorghums and has been recognized widely as potential alternative source of bio-fuel because of its high fermentable sugar content in the stalk. A substantial variation of sugar content and related traits is known to exist in US sweet sorghum. The objectives of the study were to assess the genetic diversity and relationship among the US sweet sorghum cultivars and lines using SSR markers and to examine the genetic variability within sweet sorghum accessions for sugar content. Sixty-eight sweet sorghum and four grain sorghum cultivars and lines were genotyped with 41 SSR markers that generated 132 alleles with an average of 3.22 alleles per locus. Polymorphism information content (PIC) value, a measure of gene diversity, was 0.40 with a range of 0.03–0.87. The genetic similarity co-efficient was estimated based on the segregation of the 132 SSR alleles. Clustering analysis based on the genetic similarity (GS) grouped the 72 sorghum accessions into 10 distinct clusters. Grouping based on clustering analysis was in good agreement with available pedigree and genetic background information. The study has revealed the genetic relationship of cultivars with unknown parentage to those with known parentage. A number of diverse pairs of sweet sorghum accessions were identified which were polymorphic at many SSR loci and significantly different for sugar content as well. Information generated from this study can be used to select parents for hybrid development to maximize the sugar content and total biomass, and development of segregating populations to map genes controlling sugar content in sweet sorghum.  相似文献   

19.
Maximum yield from any cellulosic bioenergy crop is largely dependent upon total dry weight at harvest and process-specific bioconversion rates. Using enzymatic hydrolysis rate as a bioconversion metric, we have investigated the relationship between the biomass crystallinity index (CI) and hydrolysis yield potential (HYP) among ??20 Sorghum bicolor varieties grown in two environments. The comparison of HYP to CI revealed a significant negative correlation in both environments indicating that high cellulose crystallinity in sorghum can have an impact on conversion yield. Interestingly, no correlation was seen between CI and HYP after pretreatment. Compositional analysis revealed a significant positive correlation between lignin content and CI, as well as a significant negative correlation between lignin content and HYP. Additionally, CI and HYP were found to be significantly correlated only after 24?h of hydrolysis. These results suggest that when a sorghum cultivar is being considered for industrial scale production, the inclusion of cellulose crystallinity should be factored into the decision along with total biomass yield and lignin composition.  相似文献   

20.
Molecular-genetic analysis of soriz genotypes (Sorghum oryzoidum), its paternal form Sorghum bicolor (L.) Moench (grain sorghum), possible parents (Sorghum sudanense (Piper.) Stapf. (Sudan grass) and Oryza sativa L. (rice planting)) and the nearest relatives has been carried out using microsatellite (MS) loci of sorghum and rice. Based on these data genetic distances have been calculated. It was shown that soriz do not bear DNA fragments of rice, but contains in its genome DNA fragments belonging to the Sudanese grass indicating that the origin of soriz is associated with Sorghum sudanense.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号