首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When rat liver cytosolic P-enolpyruvate carboxykinase is purified, its activity is no longer enhanced by incubation with 30 muM Fe2+. Ferrous ion stimulation of the purified enzyme is restored by the addition of rat liver cytosol. The agent responsible is a cytosolic protein, named P-enolpyruvate carboxykinase ferroactivator, that was readily separated from the enzyme during purification of the latter. A quantitative assay for P-enolpyruvate carboxykinase ferroactivator is described. Subcellular fractionation of livers from fasted rats shows that 98% of the combined mitochondrial and cytosolic P-enolpyruvate carboxykinase ferroactivator activity resides in the cytosol. Fasting does not produce significant change in this cytosolic activity when compared to that of fed animals. Examination of various tissue homogenates shows that the ferroactivator is found in liver, kidney, erythrocytes, adipose tissue, and brain. No activity was detected in blood serum or skeletal muscle. The ability to enhance the activity of purified rat liver cytosolic P-enolpyruvate carboxykinase in the presence of Fe2+ is not species specific. P-enolpyruvate carboxykinase ferroactivator may have an important function in regulating enzyme activity in vivo.  相似文献   

2.
The catalytic activity of phosphoenolpyruvate carboxykinase in rat liver cytosol is stimulated by incubating with Fe2+, Mn2+, Co2+, and Cd2+. When purified, the enzyme no longer responds to Fe2+, Co2+, or Cd2+ but retains a response to Mn2+. Low concentrations of SO4(2-) in the incubation medium with enzyme and divalent transition metal allow stimulation by Fe2+ and Co2+ and enhance the response to Mn2+. Under identical conditions, orthophosphate with Fe2+ is a potent inhibitor of the enzyme (half-maximal inhibition at 50 muM). A thiol is required in the incubation medium for the effects of Fe2+ plus sulfate or orthophosphate to be expressed. The magnitude of these effects depends on the thiol concentration. Dithiothreitol is more effective than GSH and activation by sulfate plus Fe2+ appears to require the reduced form of dithiothreitol. Sulfate ion is not considered to be the physiological Fe2+-activator of P-enolpyruvate carboxykinase in rat liver cytosol, as this function is fulfilled by a newly discovered liver protein. Knowledge concerning the interaction of Fe2+ and sulfate with the enzyme may be useful in examining their interaction between the enzyme, ferrous ion, and this activator protein.  相似文献   

3.
Catabolite inactivation of phosphoenolpyruvate carboxykinase was studied in yeast spheroplasts using 0.9 M mannitol or 0.6 M potassium chloride as the osmotic support. In the presence of potassium chloride the rate of catabolite inactivation was nearly the same as that occurring in intact yeast cells under different conditions of incubation. However, in the presence of mannitol, catabolite inactivation in spheroplasts was prevented. The mannitol inhibition of catabolite inactivation was released by addition of ammonium or phosphate ions. At a concentration of 0.3 M ammonium or 0.06 M phosphate ions, the maximum rate of catabolite inactivation in spheroplasts suspended in mannitol was achieved and was comparable with that observed in spheroplasts incubated in 0.6 M potassium chloride as the osmotic stabilizer. Sodium sulfate (0.04 and 0.4 M) or potassium chloride (0.06 and 0.6 M) did not release the mannitol inhibition of catabolite inactivation in spheroplasts. In intact yeast cells, 0.9 M mannitol, 0.08 M ammonium or 0.1 M phosphate ions did not influence the rate of catabolite inactivation. The nature of the effect of mannitol, ammonium and phosphate ions on catabolite inactivation in yeast spheroplasts is discussed.  相似文献   

4.
Preincubation with acetaldehyde at 37°C inactivates rat liver phosphoenolpyruvate carboxykinase. The inactivation is dependent upon the acetaldehyde concentration and the pH and duration of preincubation, and is prevented but not reversed by glutathione. The binding of the substrate ITP appears to be affected in the inactivation process. This effect of acetaldehyde might contribute to inhibition of gluconeogenesis resulting from ethanol metabolism.  相似文献   

5.
Kinetic experiments are reported showing that mammalian tyrosinase from B16 mouse melanoma is significantly activated by catalytic amounts of ferrous ions. Monitoring of tyrosine oxidation by both dopachrome formation and oxygen consumption showed that ferrous ions at micromolar concentrations induce a marked enzymatic activity with 0.01 U/ml of highly purified tyrosinase, whereas no detectable reaction occurs in the absence of metal over a sufficiently prolonged period of time. The extent of the activating effect, which is specific for the reduced form of iron, is proportional to the concentration of the added metal with a typical saturation profile, no further effect being observed beyond a threshold value. Changing the buffer system from phosphate to hepes or tris results in a marked decrease of the Fe2(+)-induced activation. Scavengers of active oxygen species, such as superoxide dismutase, catalase, formate and mannitol have no detectable effect on the tyrosinase activity. These results are accounted for in terms of an activation mechanism involving reduction of the cupric ions at the active site of the resting enzyme.  相似文献   

6.
7.
S H Hwang  T Nowak 《Biochemistry》1986,25(19):5590-5595
The stereochemistry of the carboxylation of phosphoenolpyruvate to yield oxalacetate, catalyzed by chicken liver phosphoenolpyruvate carboxykinase and by Ascaris muscle phosphoenolpyruvate carboxykinase, was determined. The substrate (Z)-3-fluorophosphoenolpyruvate was used for the stereochemical analysis. The carboxylation reaction was coupled to malate dehydrogenase to yield 3-fluoromalate, and the stereochemistry of the products was identified by 19F NMR. In separate experiments, the enantiomeric tautomers of 3-fluorooxalacetate were shown to be utilized by malate dehydrogenase to yield (2R,3R)- and (2R,3S)-3-fluoromalate in nearly identical amounts. The products were identified by 19F NMR. When (Z)-3-fluorophosphoenolpyruvate was used as a substrate for phosphoenolpyruvate carboxykinase from avian liver and from Ascaris, and malate dehydrogenase was used to trap the product, only a single diastereomer was observed. This product was shown to be (2R,3R)-3-fluoromalate in each case. The assignments were based on coupling constants taken from Keck et al. [Keck, R., Hess, H., & Rétey, J. (1980) FEBS Lett. 114, 287]. These results indicate that the stereochemistry of carboxylation, catalyzed by chicken phosphoenolpyruvate carboxykinase and by Ascaris phosphoenolpyruvate carboxykinase, is identical and takes place from the si side of the enzyme-bound phosphoenolpyruvate. The carboxylation reaction was run both in H2O and in D2O. No deuterium incorporation into fluoromalate was shown to occur. The product 3-fluorooxalacetate is thus released from phosphoenolpyruvate carboxykinase as the keto form and is reduced more rapidly by reduced nicotinamide adenine dinucleotide with malate dehydrogenase than by the occurrence of tautomerization.  相似文献   

8.
The effect of cobalt ions (Co2+) on horseradish peroxidase (HRP) was studied in vitro by enzymatic activity assay, electronic absorption spectra, intrinsic fluorescence spectra and 8-anilo-1-naphthalenesulfonate(ANS)-binding fluorescence spectra. Co2+ at concentrations below 0.1 mM mildly increased the HRP activity, whereas higher concentrations of Co2+ significantly inactivated HRP in a time and concentration-dependent manner. Steady-state kinetic studies show that Co2+ was a noncompetitive inhibitor of o-dianisidine oxidation by HRP. The Ki value dropped as the incubation time increased. Furthermore, Co2+ was found to be an uncompetitive inhibitor of H2O2. These results suggested that Co2+ would slowly bind to the enzyme and progressively induce conformational changes. Spectroscopic analysis showed that even for high Co2+ concentrations, the structure of HRP as a whole only changed slightly; however, there were significant conformational changes near or in the active site of HRP. Based on the above results, we suggest that Co2+ may bind with some amino acids near or in the active site of HRP and the conformational changes of HRP induced by such binding should be the main reason for activation and inactivation effect of Co2+. The potential binding sites of Co2+ were also proposed.  相似文献   

9.
Y P Chao  J C Liao 《Applied microbiology》1993,59(12):4261-4265
Phosphoenolpyruvate and oxaloacetate are key intermediates at the junction between catabolism and biosynthesis. Alteration of carbon flow at these branch points will affect the growth yield and the formation of products. We attempted to modulate the metabolic flow between phosphoenolpyruvate and oxaloacetate by overexpressing phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase from a multicopy plasmid under the control of the tac promoter. It was found that overexpression of phosphoenolpyruvate carboxylase decreased the rates of glucose consumption and organic acid excretion, but the growth and respiration rates remained unchanged. Consequently, the growth yield on glucose was improved. This result indicates that the wild-type level of phosphoenolpyruvate carboxylase is not optimal for the most efficient glucose utilization in batch cultures. On the other hand, overexpression of phosphoenolpyruvate carboxykinase increased glucose consumption and decreased oxygen consumption relative to those levels required for growth. Therefore, the growth yield on glucose was reduced because of a higher rate of fermentation product excretion. These data provide useful insights into the regulation of central metabolism and facilitate further manipulation of pathways for metabolite production.  相似文献   

10.
11.
Chicken liver mitochondrial phosphoenolpyruvate carboxykinase is inactivated by o-phthalaldehyde. The inactivation followed pseudo first-order kinetics, and the second-order rate constant for the inactivation process was 29 M-1 s-1 at pH 7.5 and 25 degrees C. The modified enzyme showed maximal fluorescence at 427 nm upon excitation at 337 nm, consistent with the formation of isoindole derivatives by the cross-linking of proximal cysteine and lysine residues. Activities in the physiologic reaction and in the oxaloacetate decarboxylase reaction were lost in parallel upon modification with o-phthalaldehyde. Plots of (percent of residual activity) versus (mol of isoindole incorporated/mol of enzyme) were biphasic, with the initial loss of enzymatic activity corresponding to the incorporation of one isoindole derivative/enzyme molecule. Complete inactivation of the enzyme was accompanied by the incorporation of 3 mol of isoindole/mol of enzyme. beta-Sulfopyruvate, an isoelectronic analogue of oxaloacetate, completely protected the enzyme from reacting with o-phthalaldehyde. Other substrates provided protection from inactivation, in decreasing order of protection: oxaloacetate greater than phosphoenolpyruvate greater than MgGDP, MgGTP greater than oxalate. Cysteine 31 and lysine 39 have been identified as the rapidly reacting pair in isoindole formation and enzyme inactivation. Lysine 56 and cysteine 60 are also involved in isoindole formation in the completely inactivated enzyme. These reactive cysteine residues do not correspond to the reactive cysteine residue identified in previous iodoacetate labeling studies with the chicken mitochondrial enzyme (Makinen, A. L., and Nowak, T. (1989) J. Biol. Chem. 264, 12148-12157). Protection experiments suggest that the sites of o-phthalaldehyde modification become inaccessible when the oxaloacetate/phosphoenolpyruvate binding site is saturated, and sequence analyses indicate that cysteine 31 is located in the putative phosphoenolpyruvate binding site.  相似文献   

12.
13.
Phosphoenolpyruvate carboxykinase showed high activity in Saccharomyces cerevisiae grown on gluconeogenic carbon sources. Addition of glucose to such cultures caused a rapid loss of the phosphoenolpyruvate carboxykinase activity. Fructose or mannose had the same effect as glucose, while 2-deoxyglucose or galactose were without effect. The inactivation was an irreversible process, since the regain of the activity was dependent of de novo protein synthesis. Cycloheximide did not prevent inactivation. All strains of the genus Saccharomyces tested showed inactivation of their phosphoenolpyruvate carboxykinase upon addition of glucose; this behaviour was not restricted to this genus.Non-Standard Abbreviations FbPase fructose bisphosphatase [EC 3.1.3.11 fructose-1,6-bisphosphate hydrolase] - PEPCK phosphoenolpyruvate carboxykinase [EC 4.1.49 ATP: oxalacetate carboxylase (transphosphorylating)] - YPE yeast-peptone-ethanol A preliminary account of these results was presented at the Fourth International Symposium on Yeasts, Vienna, Austria, July 1974  相似文献   

14.
Calcium has no known direct effect on phosphoenolpyruvate carboxykinase from rat liver cytosol. However, addition of calcium salts to liver postnuclear supernatant led to an increase in assayable enzyme activity in cytosols. This indicates that mitochondria and microsomes present in postnuclear supernatant can participate in observed enzyme activation. The stimulation of phosphoenolpyruvate carboxykinase was prevented by the manganese complexion 1-(2-pyridylazo)-2-naphthol, was not additive with activation by MnCl2 and was inhibited by La3+, Sr2+ and ruthenium red. These data indicate that manganese and mitochondrial or microsomal calcium carriers participate in the mechanism of indirect calcium effect. Measuring of manganese content in cytosols directly, by atomic absorption spectrometry, has provided evidence that there is a pool of manganese associated with mitochondrial and microsomal fraction of rat liver that can be mobilized to the cytosol by calcium ions. The direct addition of this pool of manganese to the cytosol caused the stimulation of phosphoenolpyruvate carboxykinase activity to the same levels as did calcium ions in the postnuclear supernatant. It is postulated that calcium can effect enzyme activity indirectly by releasing manganese from specific cellular compartments into the cytosol.  相似文献   

15.
3-Mercaptopicolinic acid, a non-competitive inhibitor of phosphoenolpyruvate carboxykinase (EC 4.1.1.19) was used to study the control of gluconeogenesis by this enzyme in germinating marrow (Cucurbita pepo) cotyledons. In vitro, phosphoenolpyruvate carboxykinase was inhibited by 3-mercaptopicolinic acid, with aKi of 5.9 M. At 25°C the inhibitor caused an increase in the label incorporated from [2-14C]acetate into CO2, and a decrease in the label incorporated into the insoluble and neutral fractions. Phosphoenolpyruvate carboxykinase had a flux control coefficient for gluconeogenesis (C PEPCK J ) of between 0.7 and 1.0. 3-Mercaptopicolinic acid was a less effective inhibitor of phosphoenolpyruvate carboxykinase at lower temperatures (Ki = 8.6 M at 17°C, 13.3 M at 10°C) and had similar effects on the metabolism of [2-14C]acetate by marrow cotyledons when the temperature was reduced to 17°C and 10°C. The control coefficient for this enzyme did not change with temperature, indicating that phosphoenolpyruvate carboxykinase exerts a high degree of control over gluconeogenesis at all temperatures examined.Abbreviations PEP Phosphoenolpyruvate - PEPCK PEP carboxykinase The authors thank Dr. Ian Woodrow (University of Melbourne, Australia) for helpful discussions. This work was supported by a grant from the Science and Engineering Research Council, U.K. (GR/F 50978).  相似文献   

16.
The applicability of a spectrophotometric assay of phosphoenolpyruvate car?ykinase to crude yeast extracts has been studied. The assay measured oxalacetate production by coupling to the malate dehydrogenase reaction (phosphoenolpyruvate + ADP + bicarbonate → oxalacetate + ATP; oxalacetate + NADH → malate + NAD). Disappearance of NADH depended strictly on the presence of phosphoenolpyruvate, bicarbonate, ADP, and Mn2+. Furthermore, the disappearance of NADH was shown to be accompanied by stoichiometric accumulation of malate. Addition of 10 mm quinolinate, which is a known inhibitor of liver phosphoenolpyruvate car?ykinase, completely prevented phosphoenolpyruvate-dependent NADH disappearance. These observations demonstrated that the assay provides a quantitative measure of phosphoenolpyruvate car?ykinase activity in crude extracts. The assay could be applied to crude extracts from yeast cells grown under laboratory conditions but not to extracts from commercially produced baker's yeast, because of an extremely high rate of endogeneous oxidation of NADH in the latter extracts. With the spectrophotometric assay, optimal activity was observed at pH 7.0 with both crude extracts and a 15-fold-purified preparation.  相似文献   

17.
18.
Phosphoenolpyruvate carboxykinase, which has been isolated from chicken liver mitochondria in essentially homogenous form, carries out the irreversible decarboxylation of oxalacetate to pyruvate in the presence of catalytic amounts of GDP or IDP, as well as the reversible decarboxylation of oxalacetate to phosphoenolpyruvate in the presence of substrate amounts of GTP or ITP. The pyruvate- and phosphoenolpyruvate-forming reactions are similar in their nucleoside specificity and appear to be carried out by the same protein. However, the two activities vary markedly in their response to added metal ions and sulfhydryl reagents. Phosphoenolpyruvate formation is completely dependent on the presence of a divalent metal ion, with Mn2+ the most effective species. This reaction is also stimulated by sulfhydryl reagents such as 2-mercaptoethanol. In contrast, the pyruvate-forming reaction is strongly inhibited by divalent metal ions, including Mn2+, and also by moderate concentrations of sulfhydryl reagents. These observations and the demonstration that pyruvate kinase-like activity is very low or absent make it unlikely that pyruvate formation proceeds via phosphoenolpyruvate as an intermediate. Although the pyruvate-forming reaction is inhibited by added metal ions, the reaction is also inhibited by metal-chelating agents such as 8-hydroxyquinoline and o-phenanthroline, suggesting that the reaction is dependent on the presence of a metal ion. It has not been possible, however, to demonstrate that the enzyme is a metalloprotein.  相似文献   

19.
20.
Incubation of isolated hepatocytes from fasted rats with 20 mM LiCl for 1 h decreased glucose production from lactate, pyruvate, and alanine. In addition, phosphoenolpyruvate carboxykinase (PEPCK) gene expression in FTO-2B rat hepatoma cells was inhibited by treatment with LiCl. Lithium was also able to counteract the increased PEPCK mRNA levels caused by both Bt2cAMP and dexamethasone, in a concentration-dependent manner. A chimeric gene containing the PEPCK promoter (-550 to +73) linked to the amino-3-glycosyl phosphotransferase (neo) structural gene was transduced into FTO-2B cells using a Moloney murine leukemia virus-based retrovirus. In these infected cells, 20 mM LiCl decreased both the concentration of neo mRNA transcribed from the PEPCK-neo chimeric gene and mRNA from the endogenous PEPCK gene. Lithium also inhibited the stimulatory effect of Bt2cAMP and dexamethasone on both genes. The stability of neo mRNA was not altered by lithium, since in cells infected with retrovirus containing only the neo gene transcribed via the retroviral 5'-LTR and treated with 20 mM LiCl, no change in neo mRNA levels was observed. The intraperitoneal administration of LiCl to rats caused a decrease in hepatic PEPCK mRNA, indicating that lithium could also modify gene expression in vivo. The effects of lithium were not due to an increase in the concentration of insulin in the blood but were correlated with an increase in hepatic glycogen and fructose 2,6-bisphosphate levels. These results indicate that lithium ions, at concentrations normally used therapeutically for depression in humans, can inhibit glucose synthesis in the liver by a mechanism which can selectively modify the expression of hepatic phosphoenolpyruvate carboxykinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号