首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conversion of forewings into hardened covers, elytra, was a ground-breaking morphological adaptation that has contributed to the extraordinary evolutionary success of beetles. Nevertheless, the knowledge of the functional aspects of these structures is still fragmentary and scattered across a large number of studies. Here, we have synthesized the presently available information on the evolution, development, modifications and biological functions of this crucial evolutionary novelty. The formation of elytra took place in the earliest evolution of Coleoptera, very likely already in the Carboniferous, and was achieved through the gradual process of progressive forewing sclerotization and the formation of inward directed epipleura and a secluded sub-elytral space. In many lineages of modern beetles, the elytra have been distinctly modified. This includes multiple surface modifications, a rigid connection or fusion of the elytra, or partial or complete reduction. Beetle elytra can be involved in a very broad spectrum of functions: mechanical protection of hind wings and body, anti-predator strategies, thermoregulation and water saving, water harvesting, flight, hind wing folding, diving and swimming, self-cleaning and burrow cleaning, phoresy of symbiotic organisms, mating and courtship, and acoustic communication. We postulate that the potential of the elytra to take over multiple tasks has enormously contributed to the unparalleled diversification of beetles.  相似文献   

2.
Loss of the flight ability and wing reduction has been reported for many taxa of Coleoptera. If elytra are closed, their roots are clenched between the tergum and the pleuron, forces applied to the elytra can not be transmitted to the field of campaniform sensilla situated on the root. That is why it is plausible to assume that the field becomes redundant in non-flying beetles. We examined the relationships between the hind wing reduction and characters of this mechanosensory field in beetles of six families. We measured the size of the elytron, that of the hind wing and counted the number of sensilla in the sensory field. Mesopterous non-flying beetles retain one half to one third of sensilla present in macropterous species of the same body size. Further reduction of the sensory field in brachypterous species is obvious, but sensilla are still present in insects with strongly reduced wings, as long as their elytra are separable and mesothoracic axillaries are present. Complete loss of sensilla coincides with the existence of a permanent sutural lock. However, some beetles with permanently locked elytra and absence of axillaries still retain few campaniform sensilla. A very special case of an extreme wing modification in feather-wing beetles is considered. No sensilla were revealed either on the root of the elytron or on the basal segment of such fringed wings in flying ptiliid species.  相似文献   

3.
Aerodynamic characteristics of the beetle,Trypoxylus dichotomus,which has a pair of elytra (forewings) and flexible hind wings,are investigated.Visualization experiments were conducted for various flight conditions of a beetle,Trypoxylus dichotomus:free,tethered,hovering,forward and climbing flights.Leading edge,trailing edge and tip vortices on both wings were observed clearly.The leading edge vortex was stable and remained on the top surface of the elytron for a wide interval during the downstroke of free forward flight.Hence,the elytron may have a considerable role in lift force generation of the beetle.In addition,we reveal a suction phenomenon between the gaps of the hind wing and the elytron in upstroke that may improve the positive lift force on the hind wing.We also found the reverse clap-fling mechanism of the T.dichotomus beetle in hovering flight.The hind wings touch together at the beginning of the upstroke.The vortex generation,shedding and interaction give a better understanding of the detailed aerodynamic mechanism of beetle flight.  相似文献   

4.
To examine how the major elements of global change affect herbivory in agroecosystems, a multifactorial experiment was conducted where soybeans were grown at two levels of carbon dioxide and temperature, including those predicted for 2050, under otherwise normal field conditions. Japanese beetles (Popillia japonica Newman) were enclosed on foliage for 24 h, after which the beetle survivorship, total and per capita leaf consumption, and leaf protease inhibitor activity were measured. The direct effect of temperature on beetle consumption and survivorship also was measured under controlled environmental conditions. No differences in total foliage consumption were observed; however, beetles forced to feed at elevated temperature in the field demonstrated greater per capita consumption and reduced survivorship compared to beetles feeding at ambient temperature. Survivorship was also greater for beetles that consumed foliage grown under elevated CO2, but there were no interactive effects of CO2 and temperature, and no differences in leaf chemistry were resolved. Leaf consumption by beetles increased strongly with increasing temperature up to ~37° C, above which increased mortality caused a precipitous decrease in consumption. An empirical model based on the temperature dependence of leaf consumption and flight suggests that the 3.5°C increase in temperature predicted for 2050 will increase the optimal feeding window for the Japanese beetle by 290%. Elevated temperature and CO2 operating independently have the potential to greatly increase foliage damage to soybean by chewing insects, such as Popillia japonica, potentially affecting crop yields.  相似文献   

5.
Some flying beetles have peculiar functional properties of their elytra, if compared with the vast majority of beetles. A “typical” beetle covers its pterothorax and the abdomen from above with closed elytra and links closed elytra together along the sutural edges. In the open state during flight, the sutural edges diverge much more than by 90°. Several beetles of unrelated taxa spread wings through lateral incisions on the elytra and turn the elytron during opening about 10–12° (Cetoniini, Scarabaeus, Gymnopleurus) or elevate their elytra without partition (Sisyphus, Tragocerus). The number of campaniform sensilla in their elytral sensory field is diminished in comparison with beetles of closely related taxa lacking that incision. Elytra are very short in rove beetles and in long-horn beetles Necydalini. The abundance of sensilla in brachyelytrous long-horn beetles Necydalini does not decrease in comparison with macroelytrous Cerambycinae. Strong reduction of the sensory field was found in brachyelytrous Staphylinidae. Lastly, there are beetles lacking the linkage of the elytra down the sutural edge (stenoelytry). Effects of stenoelytry were also not uniform: Oedemera and flying Meloidae have the normal amount of sensilla with respect to their body size, whereas the sensory field in the stenoelytrous Eulosia bombyliformis is 5–6 times less than in chafers of the same size but with normally linking broad elytra.  相似文献   

6.
Detailed 3-Dimensional (3D) wing kinematics was experimentally presented in free flight of a beetle,Trypoxylus dichotomus,which has a pair of elytra (forewings) and flexible hind wings.The kinematic parameters such as the wing tip trajectory,angle of attack and camber deformation were obtained from a 3D reconstruction technique that involves the use of two synchronized high-speed cameras to digitize various points marked on the wings.Our data showed outstanding characteristics of deformation and flexibility of the beetle's hind wing compared with other measured insects,especially in the chordwise and spanwise directions during flapping motion.The hind wing produced 16% maximum positive camber deformation during the downstroke.It also experienced twisted shape showing large variation of the angle of attack from the root to the tip during the upstroke.  相似文献   

7.
Survival and fecundity of Colorado potato beetle adults, Leptinotarsa decemlineata (Say), that had or had not fed previously on non-transgenic potato before exposure to transgenic potato containing the Bacillus thuringiensis subsp. tenebrionis Cry3A toxin (Bt) was investigated. In the laboratory, < 5% of first-generation adults survived after two weeks when restricted to Bt foliage since eclosion, but over 85% of adults that had fed initially on non-Bt potato survived exposure to Bt potato for two weeks. In field experiments, less than 0.5% of adults that were exclusively provided Bt potato plants survived overwinter, whereas 44% to 57% survived overwinter when fed non-Bt potato plants for two weeks before being provided Bt potato as a final pre-overwintering host. Survival through the winter increased as the duration of initial feeding on non-Bt potato increased and was similar for beetles provided either tubers or Bt potato plants as a final pre-overwintering host. Only overwintered beetles that fed initially on non-Bt potato before encountering either tubers or Bt potato as a final pre-overwintering host laid eggs the following spring. Survival and reproduction of potato beetle adults after colonizing Bt potato fields should not be adversely affected as long as they have had sufficient time to feed initially on non-Bt potato. Implications for how potato production practices in the Mid-Atlantic US may affect the utility of general resistance management plans for Bt potato are discussed.  相似文献   

8.
Aerodynamic characteristic of the beetle, Trypoxylus dichotomus, which has a pair of elytra (forewings) and hind wings, is numerically investigated. Based on the experimental results of wing kinematics, two-dimensional (2D) and three-dimensional (3D) computational fluid dynamic simulations were carried out to reveal aerodynamic performance of the hind wing. The roles of the spiral Leading Edge Vortex (LEV) and the spanwise flow were clarified by comparing 2D and 3D simulations. Mainly due to pitching down of chord line during downstroke in highly inclined stroke plane, relatively high averaged thrust was produced in the free forward flight of the beetle. The effects of the local corrugation and the camber variation were also investigated for the beetle's hind wings. Our results show that the camber variation plays a significant role in improving both lift and thrust in the flapping. On the other hand, the local corrugation pattern has no significant effect on the aerodynamic force due to large angle of attack during flapping.  相似文献   

9.
The aerodynamic role of the elytra during a beetle's flapping motion is not well-elucidated, although it is well-recognized that the evolution of elytra has been a key in the success of coleopteran insects due to their protective function. An experimental study on wing kinematics reveals that for almost concurrent flapping with the hind wings, the flapping angle of the elytra is 5 times smaller than that of the hind wings. Then, we explore the aerodynamic forces on elytra in free forward flight with and without an effect of elytron-hind wing interaction by three-dimensional numerical simulation. The numerical results show that vertical force generated by the elytra without interaction is not sufficient to support even its own weight. However, the elytron-hind wing interaction improves the vertical force on the elytra up to 80%; thus, the total vertical force could fully support its own weight. The interaction slightly increases the vertical force on the hind wind by 6% as well.  相似文献   

10.
The aerodynamic characteristics of the Coleopteran beetle species Epilachna quadricollis, a species with flexible hind wings and stiff elytra (fore wings), are investigated in terms of hovering flight. The flapping wing kinematics of the Coleopteran insect are modeled through experimental observations with a digital high-speed camera and curve fitting from an ideal harmonic kinematics model. This model numerically simulates flight by estimating a cross section of the wing as a two-dimensional elliptical plane. There is currently no detailed study on the role of the elytron or how the elytron-hind wing interaction affects aerodynamic performance. In the case of hovering flight, the relatively small vertical or horizontal forces generated by the elytron suggest that the elytron makes no significant contribution to aerodynamic force.  相似文献   

11.
In this study a Brazilian granulovirus strain, PhopGV, isolated from the potato tuber moth (PTM) Phthorimaea operculella, was investigated regarding its potential for biological control and in vivo production. The relationship between mortality of P. operculella larvae and virus concentration was determined at different temperatures on potato tubers and susceptibility of P. operculella to PhopGV was also determined on potato leaves. Virulence of PhopGV to P. operculella was not affected by temperatures from 18 to 30°C. The median lethal concentration (LC50) of larvae fed on potato foliage treated with PhopGV was not higher than that verified with larvae fed on treated tubers. Optimal conditions for production of virus-infected larvae were obtained by using the virus suspensions of 41 × 105, 6.3 × 105 and 62 × 105 OBs ml−1 at 18, 24 and 30°C, which resulted in 32.0, 31.4 and 34.8% of infected larvae collected, respectively. The maximum percentage of infected larvae recovered from tubers was not affected by temperature. However, time for production of virus-infected larvae was longer at 18°C and shorter at 30°C. Persistence of PhopGV was determined on stored tubers and we observed that the virus remained effective for at least two months, causing up to 84.2% mortality of P. operculella at 1 × 107 OBs ml−1. The pathogen was also highly virulent to tomato pinworm, Tuta absoluta, inflicting high percentage of mortality, delaying larval growth and inhibiting pupation. This Brazilian PhopGV strain has potential to control PTM larvae on potato tubers at a broad range of temperature and can be produced in vivo using virus-treated tubers.  相似文献   

12.
The relationship between the rate of in vitro growth of bacterial isolates of Pectobacterium atrosepticum, P. carotovorum subsp. carotovorum and Dickeya solani and their pathogenicity was investigated in tubers of two potato cultivars at four temperatures ranging from 18°C to 30°C. The rate of in vitro growth was highly positively correlated with the number of rotted tubers (r ranged from 0.91 to 0.93) and with the weight of macerated potato tissue, which, however, was only found for P. carotovorum and D. solani (r = 0.76; r = 0.91, respectively) and not for P. atrosepticum. The weight of macerated tissue increased with the temperature, but significant differences between species of bacteria were observed only at 26°C and above, at which temperatures D. solani was the most aggressive, followed by P. carotovorum and P. atrosepticum. Almost all potato tubers inoculated with bacteria showed symptoms of soft rot at 26°C and 30°C, but the number of rotting tubers at lower temperatures (22°C and 18°C) decreased significantly. The lowest disease incidence, 11% of tubers with symptoms, was observed for the D. solani and cultivar Sonda at 18°C, what was also confirmed in a separate experiment with tubers from four potato cultivars inoculated with the highly aggressive isolate of D. solani. At temperatures from 18°C to 30°C, the differences in disease severity between potato cultivars with various resistance to bacteria increased in line with temperature, while the differences in disease incidence decreased.  相似文献   

13.
A study of nematodes associated with the large larch bark beetle Ips cembrae (Heer 1836) was carried out at three locations in the Czech Republic. The proportion of beetles infested by endoparasitic nematodes (representatives of genera Contortylenchus, Parasitylenchus, Cryptaphelenchus and Parasitorhabditis) ranged from 29.9 to 50.9%. Significant differences were determined in nematode infestation levels among locations, generations and sampling methods. No differences were found in infestation rates between males and females. The percentage of bark beetles with phoretic nematodes ranged from 18 to 42.9%. Phoretic nematodes directly found under elytra, on wings and between body segments of the bark beetles belong to the genus Micoletzkya. However, adults and juveniles of other two phoretic species Laimaphelenchus penardi and Bursaphelenchus sp. were found in the gallery frass of I. cembrae. Infestation by phoretic nematodes positively correlated with the presence of mites under elytra.  相似文献   

14.
Wing shape has been shown in a variety of species to be influenced by natural and sexual selection. In damselflies, front- and hind wings can beat independently, and functional differentiation may occur. Males of Calopteryx damselflies show species-specific nuptial flights that differ in colour signalling with the hind wings. Therefore, hind wing shape and colour may evolve in concert to improve colour display, independent of the front wings. We predicted that male hind wing shape evolves faster than front wing shape, due to sexual selection. Females do not engage in sexual displays, so we predicted that females do not show differences in divergence between front- and hind wing shape. We analysed the non-allometric component of wing shape of five European Calopteryx taxa using geometric morphometrics. We found a higher evolutionary divergence of hind wing shape in both sexes. Indeed, we found no significant differences in rate of evolution between the sexes, despite clear sex-specific differences in wing shape. We suggest that evolution of hind wing shape in males is accelerated by sexual selection on pre-copulatory displays and that this acceleration is reflected in females due to genetic correlations that somehow link the rates of wing shape evolution in the two sexes, but not the wing shapes themselves.  相似文献   

15.
In this work, we develop an artificial foldable wing that mimics the hind wing of a beetle (Allomyrina dichotoma). In real flight, the beetle unfolds forewings and hind wings, and maintains the unfolded configuration unless it is exhausted. The artificial wing has to be able to maintain a fully unfolded configuration while flapping at a desirable flapping frequency. The artificial foldable hind wing developed in this work is based on two four-bar linkages which adapt the behaviors of the beetle's hind wing. The four-bar-linkages are designed to mimic rotational motion of the wing base and the vein folding/unfolding motion of the beetle's hind wing. The behavior of the artificial wings, which are installed in a flapping-wing system, is observed using a high-speed camera. The observation shows that the wing could maintain a fully unfolded configuration during flapping motion. A series of thrust measurements are also conducted to estimate the force generated by the flapping-wing system with foldable artificial wings. Although the artificial foldable wings give added burden to the flapping-wing system because of its weight, the thrust measurement results show that the flapping-wing system could still generate reasonable thrust.  相似文献   

16.
The shape of wings can be a good predictor of adaptations to different selective pressures and the value of wing features in taxonomy and phylogeny has long been recognized. In our investigation of the hind wing evolution of dung beetles (Scarabaeinae) we use geometric morphometrics combined with a cladistic approach. The variations of entire hind wings and of three specific regions of 80 dung beetle species were investigated using 19 landmarks and outline data. Extensive evidence indicates that the wing as a whole and the three separate regions were under different selective pressures. The detailed evolutionary patterns of the three regions and the reconstruction of the ancestral forms were computed by mapping the geometric morphometrics data onto a tree based on a cladistic character analysis.  相似文献   

17.
Voluntary movements of the prothorax and the elytra in tethered flying beetles and manually induced movements of these parts in fresh dead beetles were recorded in 30 species representing 14 families. Participation of prothoracic elevation in the closing of the elytra was demonstrated in three ways. (i) The elevation was always simultaneous with elytral closing, in contrast to depression and elytral opening; a rare exception occurred in Lucanus cervus, whose elytra sometimes started to close before the cessation of wing strokes and the elevation of the prothorax. (ii) The manipulated elevation always induced closing of the spread elytra; the mechanical interaction between the hind edge of the pronotum and the roots of the elytra is a universal mechanism of closing the elytra in beetles. (iii) The prevention of pronoto-elytral contact in live beetles by the excision of the hind edge of the pronotum in front of the root prevented elytral closing after normal flight. Exceptions to this rule included some beetles that were able to close their elytra after such an excision: tiger beetles and diving beetles (seldomly) and rose chafers (always). This ability in Adephaga may be explained by attachments of the muscle actuating the 4th axillary plate, which differ from the attachments in Polyphaga. Cetoniinae open their elytra only by a small amount. It is proposed that their small direct adductors in combination with the elasticity of the sclerites are enough to achieve elytral closing without additional help from the prothorax.  相似文献   

18.
Laboratory strains of Colorado potato beetle, Leptinotarsa decemlineata (Say), physiologically resistant and susceptible to Bacillus thuringiensis (Berliner) subsp. tenebrionis Cry3A toxin were reared to adults on caged potato plants. Influence of three different diets (transgenic potatoes, regular potatoes, and regular potatoes followed by the transgenic potatoes) on beetle mortality, fecundity, and flight behavior were tested under laboratory conditions. A computer-linked flight mill system was used to quantify beetle flight, and dissections were performed to determine the level of flight muscle development. Susceptible beetles continuously fed on transgenic foliage suffered heavy mortality, did not develop flight muscles, and did not produce any eggs. Resistant beetles continuously fed on transgenic foliage were capable of flight and reproduction; however, it took them longer to initiate flight behavior, and their fecundity was lower than fecundity of other treatments. In both strains, detrimental effects became significantly less severe when the beetles were allowed to feed on regular foliage prior to toxin ingestion. In the resistant strain, ingestion of Cry3A toxin significantly increased flight activity, indicating that physiological resistance was probably reinforced by the behavioral escape from toxic environments. No such response was observed for susceptible beetles. When fed on regular foliage, resistant Colorado potato beetles engaged in significantly fewer flights than susceptible beetles. Behavioral differences between resistant and susceptible beetles observed in the present study are likely to affect gene flow between transgenic crops and adjacent refugia, and should be taken in consideration when designing resistance management plans for transgenic potato crops.  相似文献   

19.
Research data of the microstructure and surface morphology of insect wings have been used to help design micro air vehicles (MAV) and coating materials. The present study aimed to examine the microstructure and morphology of the hind wings of Cyrtotrachelus buqueti using inverted fluorescence microscopy (IFM), scanning electron microscopy (SEM), and a mechanical testing system. IFM was used to investigate the distribution of resilin in the hind wing, and SEM was performed to assess the functional characteristics and cross-sectional microstructure of the wings. Moreover, mechanical properties regarding the intersecting location of folding lines and the bending zone (BZ) were examined. Resilin, a rubber-like protein, was found in several mobile joints and in veins walls that are connected to the wing membranes. Taken together, structural data, unfolding motions, and results of tensile testing suggest two conclusions on resilin in the hind wing of C. buqueti: firstly, the resilin distribution is likely associated with specific folding mechanisms of the hind wings, and secondly, resilin occurs at positions where additional elasticity is needed, such as in the bending zone, in order to prevent structural damage during repeated folding and unfolding of the hind wings. The functional significance of resilin joints may shed light on the evolutionary relationship between morphological and structural hind wing properties.  相似文献   

20.
Augmentative biological control by predaceous ladybird beetles can be improved by using flightless morphs, which have longer residence times on the host plants. The two‐spot ladybird beetle, Adalia bipunctata (L.) (Coleoptera: Coccinellidae), is used for the biological control of aphids in greenhouses and on urban trees. Flightlessness due to truncated wings occurs at very low frequency in some natural populations of A. bipunctata. Pure‐breeding strains of this 'wingless' genotype of A. bipunctata can easily be obtained in the laboratory. Such strains have not been commercialized yet due to concerns about their reduced fitness compared to wild‐type strains, which renders mass production more expensive. Wingless strains exhibit, however, wide intra‐population phenotypic variation in the extent of wing truncation which is related to fitness traits. We here use classical quantitative genetic techniques to study the heritability and genetic architecture of variation in wing truncation in a wingless strain of A. bipunctata. Split‐families reared at one of two temperatures revealed strong family‐by‐temperature interaction: heritability was estimated as 0.64 ± 0.09 at 19 °C and 0.29 ± 0.06 at 29 °C. Artificial selection in opposite directions at 21 °C demonstrated that the degree of wing truncation can be altered within a few generations resulting in wingless phenotypes without any wing tissue (realized h2 = 0.72), as well as those with minimal truncations (realized h2 = 0.61) in two replicates. The latter lines produced more than twice as many individuals. This indicates that selective breeding of wing truncation may be exploited to improve mass rearing of flightless strains of A. bipunctata for commercial biological control. Our work illustrates that cryptic variation can also be a source for the selective breeding of natural enemies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号