首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ischemia and reoxygenation were experimentally induced in thin liver sections. It has been shown that free iron decompartmentalization takes place 30 min after the induction of ischemia, with no lipid peroxidation activation observed. In reoxygenation, activation of lipid peroxidation and decrease in free iron concentration take place in the liver cells. It is suggested that free iron accumulation in the tissues during ischemia causes lipid peroxidation activation during reoxygenation.  相似文献   

2.
李严严  姜颖 《生物工程学报》2014,30(7):1059-1072
肝星型细胞(Hepatic stellate cells,HSCs),又叫储脂细胞(Fat-storing cells,FSCs)或脂肪细胞(lipocytes),是肝脏固有的非实质细胞类型之一,存在于狄氏腔内,以脂滴的形式储存人体维生素A总量的50%–80%。原代HSCs分离方法,目前主要集中于密度梯度离心法结合离心淘洗、HSCs高侧向角的流式分选法、紫外激发的自发荧光或特异性抗体标记的流式细胞术等,将为HSCs生理和病理研究提供坚实的基础。近年来,HSCs的研究蓬勃发展,合作领域不断拓宽。生理状态下,HSCs处于静息状态,合成细胞外基质(Extracellular matrix,ECM)并维持其稳态,同时广泛摄取和储存维生素A,并具有调节肝细胞再生的功能;而病理状态下,HSCs在肝损伤和持续性刺激条件下被激活,增殖活性明显增强,脂滴减少或消失,ECM合成也明显增加,具有收缩性,同时分泌多种促炎因子和粘附分子,并向肌成纤维细胞转变,表明HSCs的活化是肝纤维化发生发展过程中的关键环节之一。有关HSCs的分离和功能研究一直是肝脏细胞学和肝脏病理学研究的热点之一。文中我们将系统总结和探讨HSCs的分离方法和改进策略,及其功能研究进展和具有潜在价值的研究方向。  相似文献   

3.
The pathophysiological importance of reactive oxygen species has been extensively documented in the pathogenesis of hepatic ischema-reperfusion injury. Kupffer cells and neutrophils were identified as the dominant sources of the postischemic oxidant stress. To test the hypothesis that a direct free radical-mediated injury mechanism (lipid peroxidation; LPO) may be involved in the pathogenesis, highly sensitive and specific parameters of LPO, i.e., hydroxy-eicosatetraenoic acids (HETES), and F2-isoprostanes, were determined by gas chromatographic-mass spectrometric analysis in liver tissue and plasma during 45 min of hepatic ischemia and up to 24 h of reperfusion. A significant 60–250% increase of F2-isoprostane levels in plasma was found at all times during reperfusion; the HETE content increased only significantly at 1 h of reperfusion and in severely necrotic liver tissue at 24 h with increases between 90–320%. On the other hand, in a model of LPO-induced liver injury (infusion of 0.8 μmol tert-butylhydroperoxide/min/g liver), the hepatic HETE content increased two to fourfold over baseline values at 45 min, i.e., before liver injury. A further increase to 12- to 30-fold of baseline was observed during moderate liver injury. Based on these quantitative comparisons of LPO and liver injury, it seems highly unlikely that LPO is the primary mechanism of parenchymal cell injury during reperfusion, although it cannot be excluded that LPO may be important as a damaging mechanism in a limited compartment of the liver, e.g., endothelial cells, close to the sources of reactive oxygen, e.g., Kupffer cells and neutrophils.  相似文献   

4.
We studied dolichol, on account of its role in membrane fluidity and fusion, and retinol, on account of its behaviour in liver fibrosis, in isolated parenchymal and sinusoidal rat liver cells after CCl4 treatment for 3, 5 and 7 weeks. Retinol uptake was also investigated by administering a load of retinol three days before sacrifice. In hepatocytes, dolichol decreased and seemed to be the preferred target of lipid peroxidation by CCl4; indeed, retinol increased especially after vitamin A load. Two subfractions of hepatic stellate cells were obtained: in the subfraction called Ito-1, dolichol decreased, while the supplemented retinol was no longer stored; in the subfraction called Ito-2, the values were intermediate. In Kupffer and endothelial cells dolichol was higher after three weeks, in agreement with fibrogenesis. Retinol increased after retinol load, in Kupffer and endothelial cells, in agreement with their scavenger function. The different behaviour of dolichol content in parenchymal and non-parenchymal cells suggests that dolichol may have different functions in liver cells. Since it has been ascertained that, in liver fibrosis, stellate cells gradually lose retinol, the inability of HCs to send retinol to Ito-1 subfraction or the inability of Ito-1 subfraction to take up and store vitamin A might induce or contribute to the transformation of these cells into a different phenotype. This behaviour is discussed regarding the role of cellular and retinol binding proteins in intracellular retinol content. Moreover a role of dolichol in membrane fluidity and retinol traffic is hypothesised.  相似文献   

5.
The indirect effect of rat skin ultraviolet (UV) irradiation on lipid peroxidation and enzymatic systems of the liver has been studied. The processes of lipid peroxidation have been intensified after 72 hours of UV-irradiation, which is evidently due both to the activation of enzymatic system of initiation and propagation of lipid peroxidation and to the parallel decrease of the activity of enzymatic system regulation of given process in liver.  相似文献   

6.
It has been reported that myofibroblasts contain actin and that Ito cells are positive for desmin. The distribution of desmin and actin detected by immunofluorescence, of vitamin A autofluorescence and of Sudan III staining of lipid droplets has been evaluated in sequential stages of experimental liver fibrosis induced in rats by intraperitoneal injections of swine serum. In the normal rat liver Ito cells were positive for desmin and weakly positive for actin. Prior to the development of hepatic fibrosis a clearcut increase in number and desmin staining of lobular Ito cells was observed in treated rats, but the overall actin pattern was unchanged. In the fibrotic rat livers, highly cellular septa contained large numbers of strongly desmin-positive, actin-weakly positive Ito cells and strongly desmin- and actin-positive myofibroblasts. These observations indicate that both Ito cells and myofibroblasts are positive for desmin, but only myofibroblasts contain large amounts of actin. Visualization of actin and desmin using relatively simple techniques, allows the monitoring of Ito cells proliferation, the accumulation of these cells in fibrous septa and their evolution into myofibroblasts as characterized by their increased desmin and actin content; it also allows an indirect evaluation of the process of fibrogenesis.  相似文献   

7.
Oxidative stress during cold preservation has been identified as a significant cause of cell injury but the process by which injury occurs is poorly understood. We examined loss of lysosomal integrity as a possible cause of cell injury during extended cold storage of isolated rat hepatocytes. After 21 h of hypothermia, there was a marked decline in lysosomal integrity, which was correlated with an increase in lipid peroxidation. When lipid peroxidation was prevented with the antioxidant Trolox (a vitamin E analog) or the iron chelator desferrioxamine, lysosomal integrity was preserved. In contrast, increasing lysosomal iron with ferric chloride caused an increase in lipid peroxidation and decreased lysosomal integrity. Loss of lysosomal integrity during cold preservation in this experimental model was consistent with iron-initiated oxidative stress. The progressive loss of lysosomal integrity during hypothermic incubation has the potential to affect liver function after transplantation.  相似文献   

8.
The aim of this work was to evaluate the role of lipid peroxidation and glutathione on liver damage induced by 7-day biliary obstruction in the rat. Male Wistar rats were bile-duct-ligated and divided in groups of 10 animals. Groups received vitamin E (400 IU/rat, p.o., daily) or trolox (50 mg/kg, p.o., daily) or both. Lipid peroxidation increased significantly in the livers of bile-duct-ligated rats. Vitamin E and trolox prevented lipid peroxidation. GSH was oxidized in the BDL group and the GSH/GSSG ratio decreased as a consequence. However, total glutathione content increased in liver and blood indicating a possible induction in de novo synthesis of GSH. Antioxidants preserved the normal GSH/GSSG ratio. Despite the observation that antioxidants verted lipid peroxidation and oxidation of GSH, liver injury (as assessed by serum enzyme activities, bilirubin concentration, liver glycogen content and histology) was not affected by the treatments. These results suggest that drugs that inhibit lipid peroxidation and oxidation of glutathione have no effect on conventional biochemical markers of liver injury and on liver histology of bile-duct-ligated rats for 7 days. It seems more likely that the detergent action of bile salts is responsible for solubilization of plasma membranes and cell death, which in turn may lead to oxidative stress, GSH oxidation and lipid peroxidation.  相似文献   

9.
In the present study we first demonstrated that T-2 toxin markedly stimulated lipid peroxidation specifically in the liver of rats. The amount of lipid peroxides in the liver, estimated by the thiobarbituric acid (TBA) method, increased dose dependently, being proportional to the extent of its acute toxicity measured by various parameters in rats fed a commercial diet. Further, to elucidate the mechanism of lipid peroxidation and its role in hepatic injury caused by T-2 toxin, time-course studies on the correlation between lipid peroxide content and some biological and histopathological data were undertaken in rats given 4 mg of the toxin/kg perorally. The TBA reactive substances in the liver began to increase after 6 hr. However, much earlier than this there were some other alterations, which included decreases in the amount of cytochrome P-450 in the liver, of GPT (thereafter an increase) and phospholipids in the plasma, and of basophilic masses in the hepatocytes (arrayed as a rough endoplasmic reticulum in the electron micrograph). The vitamin E-deficient study showed that vitamin E markedly inhibited the stimulative effect of T-2 toxin on lipid peroxidation, but not diminish any other measured parameters of the injury. The toxin-induced stimulation of lipid peroxidation does not appear to be caused by activation of microsomal NADPH-cytochrome c reductase nor by a decrease in the level of cytosolic glutathione peroxidase. These results suggest that T-2 toxin might induce some alteration of the membrane structure and consequently might stimulate lipid peroxidation in situ.  相似文献   

10.
In both hereditary hemochromatosis and in the various forms of secondary hemochromatosis, there is a pathologic expansion of body iron stores due mainly to an increase in absorption of dietary iron. Excess deposition of iron in the parenchymal tissues of several organs (e.g. liver, heart, pancreas, joints, endocrine glands) results in cell injury and functional insufficiency. In the liver, the major pathological manifestations of chronic iron overload are fibrosis and ultimately cirrhosis. Evidence for hepatotoxicity due to iron has been provided by several clinical studies, however the specific pathophysiologic mechanisms for hepatocellular injury and hepatic fibrosis in chronic iron overload are poorly understood. The postulated mechanisms of liver injury in chronic iron overload include (a) increased lysosomal membrane fragility, perhaps mediated by iron-induced lipid peroxidation, (b) peroxidative damage to mitochondria and microsomes resulting in organelle dysfunction, (c) a direct effect of iron on collagen biosynthesis and (d) a combination of all of the above.  相似文献   

11.
The increased content of lipid peroxidation products in the liver and an associated increase in the microviscosity of lipid nuclear and microsomal liver cell membranes, as well as disturbed protein-lipid interaction in them have been determined 8 days after adrenalectomy. The addition of alpha-tocopherol into the diet (4 mg per day for 7 days after the operation) prevented the activation of lipid peroxidation and the disturbances of physico-chemical membrane properties and the decrease in the muscular working capacity in rats caused by adrenalectomy.  相似文献   

12.
A single dose of CCl4 when administered to a rat produces centrilobular necrosis and fatty degeneration of the liver. These hepatotoxic effects of CCl4 are dependent upon its metabolic activation in the liver endoplasmic reticulum to reactive intermediates, including the trichloromethyl free radical. Positive identification of the formation of this free radical in vivo, in isolated liver cells and in microsomal suspensions in vitro has been achieved by e.s.r. spin-trapping techniques. The trichloromethyl radical has been found to be relatively unreactive in comparison with the secondarily derived peroxy radical CCl3O2., although each free radical species contributes significantly to the biological disturbances that occur. Major early perturbations produced to liver endoplasmic reticulum by exposure in vivo or in vitro to CCl4 include covalent binding and lipid peroxidation; studies of these processes occurring during CCl4 intoxication have uncovered a number of concepts of general relevance to free-radical mediated tissue injury. Lipid peroxidation produces a variety of substances that have high biological activities, including effects on cell division; many liver tumours have a much reduced rate of lipid peroxidation compared with normal liver. A discussion of this rather general feature of liver tumours is given in relation to the liver cell division that follows partial hepatectomy.  相似文献   

13.
14.
Iron overload can have serious health consequences. Since humans lack an effective means to excrete excess iron, overload can result from an increased absorption of dietary iron or from parenteral administration of iron. When the iron burden exceeds the body's capacity for safe storage, the result is widespread damage to the liver, heart and joints, and the pancreas and other endocrine organs. Clear evidence is now available that iron overload leads to lipid peroxidation in experimental animals, if sufficiently high levels of iron are achieved. In contrast, there is a paucity of data regarding lipid peroxidation in patients with iron overload. Data from experiments using an animal model of dietary iron overload support the concept that iron overload results in an increase in an hepatic cytosolic pool of low molecular weight iron which is catalytically active in stimulating lipid peroxidation. Lipid peroxidation is associated with hepatic mitochondrial and microsomal dysfunction in experimental iron overload, and lipid peroxidation may underlie the increased lysosomal fragility that has been detected in homogenates of liver samples from both iron-loaded human subjects and experimental animals. Some current hypotheses focus on the possibility that the demonstrated functional abnormalities in organelles of the iron-loaded liver may play a pathogenic role in hepatocellular injury and eventual fibrosis. The recent demonstration that hepatic fibrosis is produced in animals with long-term dietary iron overload will allow this model to be used to further investigate the relationship between lipid peroxidation and hepatic injury in iron overload.  相似文献   

15.
《The Journal of cell biology》1994,127(6):2037-2048
We have examined the cell-specific expression of two fibronectin isoforms, EIIIA and EIIIB, during experimental hepatic fibrosis induced by ligation of the biliary duct. AT the mRNA level, EIIIA and EIIIB were undetectable in normal liver but expressed early injury, preceding fibrosis. The cellular sources of these changes were determined by fractionating the liver at various time points after bile duct ligation into its constituent cell populations and extracting RNA from the fresh isolates. EIIIA-containing fibronectin mRNA was undetectable in normal sinusoidal endothelial cells but increased rapidly within 12 h of injury. By contrast, the EIIIB form was restricted to hepatic lipocytes (Ito or fat-storing cells) and appeared only after a lag of 12-24 h: it was minimal in sinusoidal endothelial cells. Both forms were minimal in hepatocytes. At the protein level, EIIIA-containing fibronectin was markedly increased within two days of injury and exhibited a sinusoidal distribution. Secretion of this form by endothelial cells was confirmed in primary culture. Matrices deposited in situ by endothelial cells from injured liver accelerated the conversion ("activation") of normal lipocytes to myofibroblast-like cells, and pretreatment of matrices with monoclonal antibody to the EIIIA segment blocked this response. Finally, recombinant fibronectin peptide containing the EIIIA segment was stimulatory to lipocytes in culture. We conclude that expression of EIIIA fibronectin by sinusoidal endothelial cells is a critical early event in the liver's response to injury and that the EIIIA segment is biologically active, mediating the conversion of lipocytes to myofibroblasts.  相似文献   

16.
Clinical and experimental research findings suggest that a local burn insult produces oxidant-induced organ changes as evidenced by increased lipid peroxidation in lung, liver and gut. Adrenomedullin (AM), a potent vasodilator, was originally isolated from pheochromocytoma cells, and has been identified in other tissues. In this study, we investigated the potential role of AM in burn-induced remote organ damage in rats. Sprague-Dawley rats (250-300 g) were treated with either AM (100 ng/kg, subcutaneously) or saline 10 min before burn insult which covers 30% of total body surface area and were decapitated 24 h after the burn insult. Trunk blood was collected and analyzed for liver and kidney functions and for determination of TNF-alpha levels. The liver, lung and kidney samples were taken for histologic evaluation and for measurement of malondialdehyde (MDA) level, myeloperoxidase (MPO) activity and chemiluminescence levels. The data revealed that AM treatment resulted in a significant protection in tissues tested against burn injury via suppression of lipid peroxidation, tissue neutrophil infiltration, oxidant generation and via decreasing circulating levels of the pro-inflammatory cytokine TNF-alpha. AM treatment was also effective in attenuating hepatic and kidney dysfunction due to burn injury, suggesting that peripherally AM administration may protect the tissues against burn-induced injury.  相似文献   

17.
Reactive oxygen species and resultant lipid peroxidation (LPO) have been associated with central nervous system trauma. Acrolein (2-propenal) and 4-hydroxynonenal (HNE) are the most toxic byproducts of LPO, with detrimental effects in various types of cells. In this study, we used immunoblotting techniques to detect the accumulation of protein-bound acrolein and HNE. We report that protein-bound acrolein and HNE were significantly increased in guinea pig spinal cord following a controlled compression injury. The acrolein and HNE protein-adducts increased in the damaged spinal cord as early as 4 h after injury, reached a peak at 24 h after injury, and remained at a significantly high level up to 7 days after injury. Such increase of protein adducts was also observed in the adjacent segments of the injury site beginning at 24 h post injury. These results suggest that products of lipid peroxidation, especially acrolein, may play a critical role in the secondary neuronal degeneration, which follows mechanical insults.  相似文献   

18.
Bile duct ligation (BDL) in rats induces portal fibrosis. This process has been linked to changes in the oxidative state of the hepatic cells and in the production of nitric oxide. Our objective was to find possible temporal connections between hepatic redox state, NO synthesis and liver injury. In this work we have characterized hepatic lesions 17 and 31 days after BDL and determined changes in hepatic function, oxidative state, and NO production. We have also analyzed the expression and localization of inducible NO synthase (NOS2) and constitutive NO synthase (NOS3). After 17 and 31 days from ligature, lipid peroxidation is increased and both plasma concentration and biliary excretion of nitrite+nitrate are rised. 17 days after BDL both NOS2 and NOS3 are expressed intensely and in the same regions. 31 days after BDL, the expression of NOS2 remains elevated and is localized mostly in preserved hepatocytes in portal areas and in neighborhoods of centrolobulillar vein. NOS3 is localized in vascular regions of portal spaces and centrolobulillar veins and in preserved sinusoids and although its expression is greater than in control animals (34%), it is clearly lower (50%) than 17 days after BDL. The time after BDL is crucial in the study of NO production, intrahepatic localization of NOS isoforms expression, and cell type involved, since all these parameters change with time. BDL-induced, peroxidation and fibrosis are not ligated by a cause-effect relationship, but rather they both seem to be the consequence of common inductors.  相似文献   

19.
After a brief introduction to oxidative stress, the discovery of F(2)-isoprostanes as specific and reliable markers of oxidative stress is described. Isoprostanes are also agonists of important biological effects. Since a relation between oxidative stress and collagen hyperproduction has been previously suggested and since lipid peroxidation products have been proposed as possible mediators of liver fibrosis, we investigated whether collagen synthesis is induced by F(2)-isoprostanes the most proximal products of lipid peroxidation. In a rat model of carbon tetrachloride-induced hepatic fibrosis, plasma isoprostanes were markedly elevated for the entire experimental period; hepatic collagen content was also increased. When hepatic stellate cells from normal liver were cultured up to activation (expression of alpha-smooth muscle-alpha actin) and then treated with F(2)-isoprostanes in the concentration range found in the in vivo studies (10(-9)-10(-8)M), a striking increase in DNA synthesis, in cell proliferation and in collagen synthesis was observed. Moreover, F(2)-isoprostanes increased the production of transforming growth factor-beta1 by U937 cells, assumed as a model of Kupffer cells or liver macrophages. The data suggest the possibility that F(2)-isoprostanes generated by lipid peroxidation in hepatocytes mediate hepatic stellate cell proliferation and collagen hyperproduction seen in hepatic fibrosis.  相似文献   

20.
The contents of primary and secondary products of lipid peroxidation in rat liver mitochondria through 1, 7 and 15 days after gamma-irradiation in a dose 0.5 Gy on a background of consumption of sodium nitrate, sodium nitrite and nitrosodiethylamine was investigated. Is was shown, that gamma-irradiation on a background of sodium nitrate, sodium nitrite and nitrosodiethylamine modified effects of nitrocompounds on speed of lipid peroxidation. Besides, combine action of sodium nitrate and gamma-irradiation has more effect in comparison with influencing of separate factors. The observed changes in quantity of lipid peroxidation products are rather stable and are kept during all terms of supervision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号