首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The initial formation and further development of the intraneural blood vessel network in the tectum opticum of the chick from the 4th to the 14th incubation day have been analyzed and some quantitative data morphometrically recorded. Vessels have been filled by intracardial injection of India ink in vivo. As inferred from our previous investigations on the vasculogenesis of several districts of the central and peripheral nervous system in the chick embryo, also in the developing optic tectum growth and distribution pattern of the vessels seem to unfold step by step under the local influence of earlier occurring morpho-histogenetic processes of the corresponding neural substratum.  相似文献   

2.
3.
Retinotopic analysis of the pathways of normal and aberrant retinal axons within the tectum of developing chick embryos was performed by selective labeling of retinal axons with a fluorescent dye, rhodamine-B isothiocyanate. To produce aberrant retinal axons, the presumptive optic chiasma was surgically disorganized at the 3rd day of incubation. At the 11th and 13th days of incubation, more than half of the operated embryos exhibited several aberrant retinal axons which reached ectopic parts of the tectum. The pathways of these aberrant axons within the tectum depended on the position of their initial invasion into the tectum at the diencephalotectal junction, and not on their position of origin within the retina. The aberrant retinal axons did not show any sign of correction of their pathways toward their normal sites of innervation within the tectum. As development proceeded, elimination of the aberrant retinal axons occurred. By the 16th day of incubation, almost all operated embryos lacked aberrant retinal axons and although the total number of axons often appeared reduced, a nearly normal topography of retinotectal projections was established. These findings indicate that the initial invasion of the retinal axons into the tectum is conducted predominantly by nonspecific mechanisms and, thereafter, a selective maintenance of appropriate retinal axons occurs.  相似文献   

4.
Immunocytochemical staining of the glial fibrillary acidic protein (GFAP) was utilized to characterize the processes of the astrocytes enveloping the vessel wall in the central nervous system. The study was carried out in the mesencephalic lobes of 18 and 20 incubation-day chick embryos and of 20 day chickens. A perivascular GFAP positivity was mainly detectable in the vessel portions running within the tectum white layers, while it was scarce, or absent, in the grey ones. The perivascular GFAP negativity in the tectum cellular layers was not considered result of the absence of astrocytic endfeet since our previous electronmicroscopical studies evidenced an almost complete perivascular astrocytic ring throughout the tectum layers at hatching time. Present data rather suggest that the expression of the GFAP-made intermediate filaments in developing astrocytes might be controlled by the surrounding microenvironment.  相似文献   

5.
In the 5-day-old chick, radioactive leucine was incorporated into proteins of synaptosomal and subsynaptosomal fractions both by fast axoplasmic flow and synthesis within the optic tectum. The distribution of radioactivity in subsynaptosomal fractions suggested that both pathways contribute to the protein constituents of each fraction. The relative contributions to each fraction were similar except for the supernatant proteins, for which fast axoplasmic flow contributed less than the synthesis within the optic tectum. The qualitative contribution of fast flow and synthesis within the optic tectum to the synaptic membrane fraction was distinctive. Fast axoplasmic flow preferentially labelled the high molecular weight proteins, whereas synthesis within the optic tectum labelled a larger percentage of smaller molecular weight proteins.  相似文献   

6.
Glutamate was coupled via glutaraldehyde to bovine serum albumin. The conjugate was used for raising specific anti-glutamate antibodies. The purified antibody was used for immunostaining of chick cerebellum and optic tectum. Staining was intense in the molecular layer and in cell bodies of the granule cell layer. In the optic tectum a diffuse staining was detected in the superficial layers of stratum griseum fibrosum superficiale and in cell bodies especially in the layers a and e. Large cell bodies located in the stratum griseum centrale were also stained.  相似文献   

7.
8.
We examined relationships between healing observed during embryonic Xenopus retinal and optic nerve regeneration and resultant visuotectal pattern formation. Dorsal (D) and nasoventral (NV) 1/3 sized eye fragments were surgically created in stage 32 Xenopus laevis embryos. Gross anatomical healing modes of these fragments were examined 2 days post-surgery (stage 43). Healing was categorized according to the degree of cell movements observed. Animals were reared through metamorphosis and electrophysiologic mapping techniques were employed on those animals whose eyes regenerated. All D 1/3 fragments showed normal (non-duplicated) projections to the tectum; most (80%) of the healing observed showed little cell movements (the remaining 20% showed substantial cell movements, yet failed to show duplicated projections). Most NV 1/3 fragments (73%) formed two mirror image projections to the contralateral midbrain optic tectum (pattern duplication). Most (88%) of the healing observed among these animals showed massive cell movements in the ventral retinal region (the remaining 12% showed moderate cell movements). The remaining NV 1/3 fragments (27%) showed moderate cell displacement and failed to show duplicated projections). These data are compatible with a cell-movement:intercalary cell division hypothesis in which duplication is dependent upon specific positional confrontation and subsequent cell division. In additional studies, in adult animals, the optic nerves of eyes with duplicated projections were crushed and allowed to regenerate for 1 year. Duplicated projections were restored, indicating that developmental and maturational factors are probably not responsible for duplicative pattern formation; rather, information intrinsic to the eye, possibly created during healing interactions and/or fiber ingrowth to the tectum, underlies duplicate innervation of the tectum.  相似文献   

9.
Summary Horseradish peroxidase was injected unilaterally into the optic tectum of the channel catfish, Ictalurus punctatus. The sources of tectal afferents were thereby revealed by retrogradely labeled neurons in various brain centers. Retrogradely labeled cells were seen in both the ipsilateral and contralateral telencephalon. The superficial pretectal area was labeled on both sides of the brain. Ipsilateral projections were also observed coming from the entopeduncular nucleus. Both the anterior thalamic nucleus and the ventro-medial thalamic nucleus projected to the ipsilateral optic tectum. Cells in the ipsilateral nucleus of the posterior commissure were seen to project to the tectum. Labeled fibers were visualized in the lateral geniculate nucleus ipsilateral to the injected tectum, however, no labeled cell bodies were observed. Therefore, tectal cells project to the lateral geniculate nucleus, but this projection is not reciprocal. No labeled cells were found in the cerebellum. Labeled cells occurred in both the ipsilateral and contralateral medial reticular formation; they were also observed in the ipsilateral nucleus isthmi. A projection was seen coming from the dorsal funicular nucleus. Furthermore, labeled cells were shown in the inferior raphe nucleus.Abbreviations AP Area pretectalis - C Cerebellum - DPTN Dorsal posterior tegmental nucleus - H Habenula - IRF Inferior reticular formation - LI Inferior lobe - LGN Lateral geniculate nucleus - LR Lateral recess - MB Mammillary body - MRF Medial reticular formation - MZ Medial zone of the telencephalon - NC Nucleus corticalis - NDL-M Nucleus opticus dorsolateralis/pars medialis - NI Nucleus isthmi - NPC Nucleus of the posterior commissure - OPT Optic tectum - OT Optic tract - PC Posterior commissure - PN Pineal organ - PrOP Preoptic nucleus - PT Pretectum - TBt Tectobulbar tract - TEL Telencephalon - TL Torus longitudinalis - TS Torus semicircularis - VC Valvula cerebelli - VLTN Ventrolateral thalamic nucleus - VMTN Ventromedial thalamic nucleus  相似文献   

10.
We determined the cellular localization of an endogenous lectin at various times during the development of a well-characterized region of chick brain, the optic tectum. This lectin is a carbohydrate-binding protein that interacts with lactose and other saccharides, undergoes striking changes in specific activity with development, and has previously been purified by affinity chromatography from extracts of embryonic chick brain and muscle. Cellular localization in the tectum was done by indirect immunofluoresecent staining, using immunoglobulin G derived from an antiserum raised against pure lectin. No lectin was detectable in the optic tectum examined at 5 days of embryonic development. From approximately 7 days of development, neuronal cell bodies and fibers were labeled by the antibody; and extracts of tectum contained hemagglutination activity that could be inhibited by lactose or by the antiserum. Lectin remained present in many tectal neuronal layers after hatching; but in 2-month-old chicks it was sparse or absent in most of the tectum except for prominent labeling of fibers in the stratum album centrale. The initial appearance of lectin in the optic tectum was not dependent on innervation by optic nerve fibers since bilateral enucleation during embryogenesis did not affect it. Lectin was detectable on the surface of embryonic optic tectal neurons dissociated with a buffer containing EDTA.  相似文献   

11.
The effect of retinal ablation on qualitative and quantitative changes of calbindin D28k and GABA expression in the contralateral optic tectum was studied in young chicks. Fifteen days old chicks had unilateral retinal ablation and after 7 or 15 days, calbindin expression was analyzed by Western blot and immunocytochemistry. Neuronal degeneration was followed by the amino-cupric silver technique. After 15 days, retinal lesions produced a significant decrease in calbindin immunostaining in the neuropil of layers 5-6 and in the somata of neurons from the layers 8 and 10 of the contralateral tectum, being this effect less marked at 7 days post-lesion. Double staining revealed that 50-60% of cells in the layers 8 and 10 were calbindin and GABA positive, 30-45% were only calbindin positive and 5-10% were only GABAergic neurons. Retinal ablation also produced a decrease in the GABA expression at either 7 or 15 days after surgery. At 7 days, dense silver staining was observed in the layers 5-6 from the optic tectum contralateral to the retinal ablation, which mainly represented neuropil that would come from processes of retinal ganglion cells. Tectal neuronal bodies were not stained with silver, although some neurons were surrounded by coarse granular silver deposits. In conclusion, most of calbindin molecules are present in neurons of the tectal GABAergic inhibitory circuitry, whose functioning apparently depends on the integrity of the visual input. A possible role of calbindin in the control of intracellular Ca2+ in neurons of this circuit when the visual transmission arrives to the optic tectum remains to be studied.  相似文献   

12.
13.
14.
15.
16.
17.
The developmental profiles of acetylcholinesterase and choline acetyltransferase in chick optic tectum and retina cell aggregates, over a 30-day period, have been determined and compared with the corresponding developmental curves obtained in vivo. Both acetylcholinesterase and choline acetyltransferase activities in retina cell aggregates and the acetylcholinesterase activity in optic tectum cell aggregates usually lie between 40 and 90% of the values measured in vivo for the same cell (tissue) type and developmental age. However, the choline acetyltransferase activity in tectum aggregates increases only during the first 7 days of culture, and then decreases to reach a low value of 8% of that measured in vivo, by day 24. This fact, which is associated with widespread degeneration and cell death, could be attributed to the condition of natural deafferentiation occurring in a tectum cell aggregate. A parallel has been drawn between this behavior of a tectum cell aggregate and the effect of early embryonic eye removal on the development of the contralateral optic tectum in vivo. Thus, the tectum may have a biphasic pattern of development, with an autonomous period of growth of about 2 wk, followed by an afference-dependent phase, while the retina behaves, from a cholinergic point of view, as a relatively self-sufficient structure.Abbreviations AChE acetylcholinesterase - ChAT choline acetyltransferase - ACh acetylcholine - BW284 C51 dibromide 1,5-bis(4-allyldimethylammoniumphenyl)pentan-3-one dibromide  相似文献   

18.
19.
20.
H W Tao  L I Zhang  F Engert  M Poo 《Neuron》2001,31(4):569-580
Input specificity of activity-induced synaptic modification was examined in the developing Xenopus retinotectal connections. Early in development, long-term potentiation (LTP) induced by theta burst stimulation (TBS) at one retinal input spreads to other unstimulated converging inputs on the same tectal neuron. As the animal develops, LTP induced by the same TBS becomes input specific, a change that correlates with the increased complexity of tectal dendrites and more restricted distribution of dendritic Ca(2+) evoked by each retinal input. In contrast, LTP induced by 1 Hz correlated pre- and postsynaptic spiking is input specific throughout the same developmental period. Thus, input specificity of LTP emerges with neural development and depends on the pattern of synaptic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号