首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The L1 contact-chemoreceptor sensillum on the maxillary palp of the spruce budworm larva Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae) was examined electrophysiologically for its responses to stimulation by various pyranose and furanose sugars. The results were compared to those from previous work on the sugar-sensitive neuron of the LST sensillum on the galea. We show that the L1 contact-chemoreceptor sensillum contains one sugar-sensitive neuron with furanose but no pyranose sites. It has response characteristics that differ from those of the sugar-sensitive neuron in the LST. Behavioural 2-choice feeding experiments show that, even with both known sugar-sensitive neurons disabled, larvae can still discriminate between disks treated with either distilled water or alpha-D-glucose. We conclude that the epipharyngeal sensilla must thus also contain a sugar-sensitive neuron.  相似文献   

2.
We examined the responses of some gustatory neurons in various contact-chemoreceptor sensilla of second-instar larvae of the spruce budworm. These included the L1 and L2 sensilla on the maxillary palp, and the LST and MST sensilla on the galea. Our objective was to determine whether there were differences in the physiological characteristics of individual neurons between the early and late larval instars. Changes were observed in both some sugar-sensitive and amino acid-sensitive neurons. We also confirmed the presence of a water-sensitive neuron in the L2 sensillum. Our findings are discussed in relation to changes that occur during the development of both the host plant and the insect. To our knowledge, this is the first paper to examine the responses from contact-chemoreceptor sensilla of very young second-instar caterpillar larvae.  相似文献   

3.
An electrophysiological approach was used to record the responses of maxillary styloconic sensilla of fourth- and sixth-instar larvae of the spruce budworm Choristoneura fumiferana to 14 amino acids. One cell in the lateral styloconic sensillum was identified as an amino acid-sensitive neuron. All of the amino acids tested, except l-proline and l-arginine, were detected by this cell. Arginine did not evoke a response from either the medial or lateral styloconic sensilla. Proline evoked responses from a cell in the medial styloconic sensillum. It is known from previous behavioural work that l-proline is a phagostimulant and l-valine inhibits feeding in Choristoneura; we thus further characterized the responses to these two amino acids. For both instars, l-proline was detected as low as 0.001 mmol/l and the maximal response was at 50 mmol/l. Stimulation of fourth- and sixth-instar larvae with l-valine showed that the maximum firing frequency was obtained at 1 mmol/l. Above and below this concentration, firing frequency decreases. Sensory responses to the amino acids stimuli did not correlate with known behavioral responses to similar stimuli.  相似文献   

4.
Insect olfactory receptor neurons are compartmentalized in sensilla. In a sensillum, typically two receptor neurons are in close contact and can influence each other through electrical interaction during stimulation. This interaction is passive, non-synaptic and a consequence of the electrical structure of the sensillum. It is analysed in a sensillum model and its effects on the neuron receptor potentials are investigated. The neurons in a sensillum can be both sensitive to a given odorant compound with the same sensory threshold or with different thresholds, or only one neuron be sensitive to the odorant. These three types of sensilla are compared with respect to maximum amplitude, threshold and dynamic range of the potentials. It is found that gathering neurons in the same sensillum is disadvantageous if they are identical, but can be advantageous if their thresholds differ. Application of these results to actual recordings from pheromone and food-odour olfactory sensilla is discussed.  相似文献   

5.
Each antenna of both sexes of adult Rhodnius prolixus has approximately 570 mechanosensitive neurons that innervate five morphologic types of cuticular mechanosensilla: campaniform sensilla, tapered hairs, trichobothria, and type I and type II bristle sensilla. Each campaniform sensillum and tapered hair is presumably innervated by one mechanosensitive bipolar neuron and probably functions in proprioception. The campaniform sensilla being located at the base of the scape could monitor the position of the antenna. Tapered hairs are found at the distal margin of flagellar segment I and projecting laterally from the bases of the pedicel and scape. They probably provide information about the relative positions of the antennal segments. Seven trichobothrium are located on the pedicel and three on flagellar segment I. Each trichobothrium has a long filamentous hair inserted into the base of a socket that extends inwardly as a cuticular tube and is innervated by one bipolar neuron with a tublar body, a parallel arrangement of microtubules associated with electron-dense material. The trichobothria may respond to small variations in air currents. Type I bristles occur at the base of the antenna and are the most numerous type of mechanosensillum; an average of 452 occur on each antenna of females and 440 on males. The bristle is curved toward the antennal shaft and is serrated distally. Type II bristles are located distally and are the second most numerous type of mechanosensillum; an average of 88 were counted on each antenna of females and 94 on males. The type II bristle is straight with small, longitudinal, external grooves and projects laterally from the antennal shaft. Each type I and II bristle sensillum is innervated by a bipolar neuron whose dendrite is divided into an inner and outer segment. The outer segment is encased by a dendritic sheath which may be highly convoluted and distally contains a tubular body. Two sheath cells are associated with each sensillum. Both types of bristle sensilla have a tactile function. The tubular bodies of both types of bristle sensilla have a complex structure indicating that they are very sensitive. Variations in the amount and arrangement of the electron-dense material at the tip of the tubular bodies may reflect differences in viscoelastic properties that underlie functional characteristics.  相似文献   

6.
Chemosensory information is crucial for most insects to feed and reproduce. Olfactory signals are mainly used at a distance, whereas gustatory stimuli play an important role when insects directly contact chemical substrates. In noctuid moths, although the antennae are the main olfactory organ, they also bear taste sensilla. These taste sensilla detect sugars and hence are involved in appetitive learning but could also play an important role in food evaluation by detecting salts and bitter substances. To investigate this, we measured the responses of individual taste sensilla on the antennae of Spodoptera littoralis to sugars and salts using tip recordings. We also traced the projections of their neuronal axons into the brain. In each sensillum, we found one or two neurons responding to sugars: one NaCl-responsive and one water-sensitive neuron. Responses of these neurons were dose-dependent and similar across different locations on the antenna. Responses were dependent on the sex for sucrose and on both sex and location for glucose and fructose. We did not observe a spatial map for the projections from specific regions of the antennae to the deutocerebrum or the tritocerebrum/suboesophageal ganglion complex. In accordance with physiological recordings, back-fills from individual sensilla revealed up to four axons, in most cases targeting different projection zones.  相似文献   

7.
The pattern of feeding of Eastern spruce budworm Choristoneura fumiferana (Clem.) (Lepidoptera, Tortricidae) is compared on foliage from white spruce Picea glauca (Moench) Voss. (Pinaceae) trees previously determined to be susceptible and resistant to defoliation by budworm. No differences are observed in electrophysiological responses from taste sensilla to aqueous extracts of the two foliage types, nor is there a preference for either extract type in a choice test. Acetone extracts from the two foliage types are both preferred to a control sucrose solution, although neither elicits a preference relative to the other. These results suggest that there is no difference in phagostimulatory power of internal leaf contents of the two foliage types. Longer‐term observation of feeding behaviour in a no‐choice situation shows no difference in meal duration, confirming the lack of difference in phagostimulatory power. However, on average, intermeal intervals are twice as long on the resistant foliage, leading to an overall lower food consumption during the assay. This result suggests an anti‐digestive or toxic effect of the resistant foliage that slows behaviour and limits food intake. Previous research has shown that waxes of the resistant foliage deter initiation of feeding by the spruce budworm and that this foliage contains higher levels of tannins and monoterpenes. The data suggest that the resistant foliage contains a post‐ingestive second line of defence against the spruce budworm.  相似文献   

8.
All scorpions have two mid-ventral organs called pectines. Each pecten has thousands of pore-tipped sensilla sensitive to a variety of volatile organic and water-based stimulants. However, it was previously unknown whether individual sensilla were functionally identical or different. The information enhancement hypothesis predicts that all sensilla have similar chemosensitivities such that each is a unit of a parallel processing system. The information segmentation hypothesis states that sensilla differ in their chemosensitivities, a functional arrangement akin to the glomeruli-specific chemical detection system in the moth or human olfactory sense. In this study, we tested these hypotheses by extracellularly tip-recording sensillar responses to three aqueous tastants: 0.01 M KCl, 0.1 M citric acid, and 40% ethanol by volume. We isolated stimulation to one sensillum at a time and compared the chemoresponses. Sensilla appeared to respond similarly to the same stimulant (i.e., sensillar tip-recordings revealed activity of the same cell types), although sometimes a few sensilla responded with higher spike rates than the others. We conclude that our data primarily support the information enhancement hypothesis but for future tests of sensillar function we suggest a new hybrid model, which proposes that a few specialized sensilla exist among a mostly uniform field of identical sensilla.  相似文献   

9.
东北大黑鳃金龟嗅感器超微结构   总被引:5,自引:0,他引:5  
孙凡  胡基华  王广利  彭璐 《昆虫学报》2007,50(7):675-681
利用扫描电镜和透射电镜对东北大黑鳃金龟Holotrichia diomphalia成虫触角嗅感器进行超微结构研究。结果表明: 其嗅感器集中于触角鳃片上,着生在表皮内陷形成的凹腔里。嗅感器包括锥形感器和板形感器两种,锥形感器根据锥体形状的差异可分为4种类型,板形感器根据盘体形状的不同可分为5种类型。嗅感器表皮为单壁,壁上具有微孔和孔道微管。嗅感器内神经元的数目并不一致,1~3个不等。雄性触角鳃片的长度长于雌性触角鳃片,并且雄性触角嗅感器的总数远远多于雌性,其中雄性板形感器的数目与雌性差异不大,但雄性锥形感器的数目却远远的多于雌性,几乎是雌性的9倍。由此推测锥形感器是感受性信息素的感器,而板形感器用于感受植物气味。  相似文献   

10.
Pophof B 《Chemical senses》2004,29(2):117-125
The sensilla trichodea of the silkmoth Antheraea polyphemus are innervated by three types of receptor neurons each responding specifically to one of three pheromone components. The sensillum lymph of these sensilla surrounding the sensory dendrites contains three different types of pheromone-binding proteins (PBPs) in high concentrations. The sensilla trichodea of the silkmoth Bombyx mori are supplied by two receptor neurons each tuned specifically to one of the two pheromone components bombykol and bombykal, but only one type of PBP has been found so far in these sensilla. Recombinant PBPs of both silkmoth species in various combinations with pheromone components were applied to the receptor neurons via tip-opened sensilla during electrophysiological recordings. Over a fairly broad range of pheromone concentrations the responses of the receptor neurons depended on both, the pheromone component and the type of the PBP. Therefore, the PBPs appear to contribute to the excitation of the receptor neurons. Furthermore, bombykal in combination with the expressed PBP of B. mori failed to activate the corresponding receptor neuron of B. mori, but did so if combined with one of the PBPs of A. polyphemus. Therefore, a still unknown binding protein involved in bombykal transport might be present in B. mori.  相似文献   

11.
With only approximately 50 olfactory receptor neurons (ORNs), the carrot psyllid Trioza apicalis (Homoptera: Psylloidea) may have the smallest olfactory system described in adult Neopteran insects. Using single sensillum recordings (SSR) and gas chromatograph-linked SSR, we characterized 4 olfactory sensilla forming a distinct morphological type, which together house approximately 25% of all ORNs. We recorded responses to extracts and single constituents from Daucus carota ssp. sativus, from the conifers Picea abies, Pinus sylvestris, and Juniperus communis, as well as from male and female T. apicalis. Receptor neurons were highly selective; only 9 compounds in total elicited repeatable responses, and each neuron responded to at most 3 individual compounds. Chemical profiles of carrot and conifers showed significant overlap, with 4 out of 9 electrophysiologically active compounds occurring in more than one type of extract, but a carrot-specific compound elicited the most repeated responses. We identified 4 tentative neuron classes and found a rather high degree of neuronal redundancy, with 1 neuron class present in 3 and another present in all 4 of the sensilla, respectively.  相似文献   

12.
【目的】为了筛选有效的草地贪夜蛾Spodoptera frugiperda幼虫取食激食素和抑制剂并探究其味觉感受机理,为生态防治草地贪夜蛾提供理论和实践上的依据。【方法】利用单感受器记录法测定草地贪夜蛾5龄第2天幼虫下颚外颚叶上中栓锥感器和侧栓锥感器对不同浓度的蔗糖、黑芥子苷、单宁酸和盐酸奎宁4种刺激物质的电生理反应,并采用二项叶碟法测定草地贪夜蛾幼虫对这些刺激物质的取食选择行为。【结果】草地贪夜蛾幼虫中栓锥感器和侧栓锥感器内均存在对蔗糖、黑芥子苷和单宁酸敏感的味觉受体神经元,但是神经元的活性随着刺激物的种类及浓度而变化。其中,两类感器内神经元对蔗糖和黑芥子苷的反应均呈现典型的浓度梯度反应。中栓锥感器内存在对盐酸奎宁敏感的味觉受体神经元,但是呈现逆浓度梯度的反应模式,侧栓锥感器内不存在对盐酸奎宁敏感的神经元。蔗糖显著诱导幼虫的取食行为,而盐酸奎宁、黑芥子苷和单宁酸均抑制幼虫的取食行为,且都呈现浓度梯度的抑制活性。【结论】草地贪夜蛾幼虫中栓锥感器和侧栓锥感器内均存在对取食激食素和抑制剂敏感的味觉受体神经元,但是两类感器不论在反应谱上还是敏感性上均存在差异。蔗糖可以作为取食激食素,盐酸奎宁、黑芥子苷和单宁酸可以作为取食抑制剂的有效候选物质。幼虫对蔗糖、黑芥子苷和单宁酸的味觉反应在一定程度上解释了其取食选择行为的味觉基础。本研究为草地贪夜蛾的生态防治提供了味觉信息。  相似文献   

13.
The pectines of scorpions are ventral bilateral appendages supporting 104–105 chemosensory sensilla called pegs. Each peg contains 10–18 sensory neurons, some of which show ultrastructural evidence of axo-axonic synapses with other sensory neurons in the same sensillum. In extracellular recordings from single-peg sensilla, individual sensory units can be distinguished by impulse waveform and firing frequency. Cross-correlation analysis of impulse activity showed that at least two of these units, types `A1' and `A2', are inhibited during the 100-ms period immediately following activity of a third unit, type `B'. This interaction between sensory units in a single sensillum also occurs in surgically isolated pectines, indicating that it does not involve efferent feedback from the central nervous system. Other sensillar neurons appear to have excitatory interactions. Thus, in scorpion pectine, chemosensory information undergoes some form of processing within individual sensilla prior to its relay to the CNS, making this an unusually accessible preparation for study of first-order chemosensory processing events. Accepted: 12 April 1997  相似文献   

14.
Development of adult sensilla on the wing and notum of Drosophila melanogaster   总被引:15,自引:0,他引:15  
We have investigated the temporal pattern of appearance, cell lineage, and cytodifferentiation of selected sensory organs (sensilla) of adult Drosophila. This analysis was facilitated by the discovery that the monoclonal antibody 22C10 labels not only the neuron of the developing sensillum organ, but the accessory cells as well. The precursors of the macrochaetes and the recurved (chemosensory) bristles of the wing margin divide around and shortly after puparium formation, while those of the microchaetes and the stout and slender (mechanosensory) bristles of the wing margin divide between 9 h and 18 h after puparium formation (apf). The onset of sensillum differentiation follows the terminal precursor division within a few hours. Four of the cells in an individual microchaete organ are clonally related: A single first-order precursor cell divides to produce two second-order precursors; one of these divides into the neuron and thecogen cell, the other into the trichogen cell and tormogen cell. Along the anterior wing margin, two rounds of division generate the cells of the mechanosensory sensilla; here, no strict clonal relationship seems to exist between the cells of an individual sensillum. At the time of sensillum precursor division, many other, non-sensillum-producing cells within the notum and wing proliferate as well. This mitotic activity follows a spatially non-random pattern.  相似文献   

15.
Odor coding in the Drosophila antenna   总被引:7,自引:0,他引:7  
de Bruyne M  Foster K  Carlson JR 《Neuron》2001,30(2):537-552
Odor coding in the Drosophila antenna is examined by a functional analysis of individual olfactory receptor neurons (ORNs) in vivo. Sixteen distinct classes of ORNs, each with a unique response spectrum to a panel of 47 diverse odors, are identified by extracellular recordings. ORNs exhibit multiple modes of response dynamics: an individual neuron can show either excitatory or inhibitory responses, and can exhibit different modes of termination kinetics, when stimulated with different odors. The 16 ORN classes are combined in stereotyped configurations within seven functional types of basiconic sensilla. One sensillum type contains four ORNs and the others contain two neurons, combined according to a strict pairing rule. We provide a functional map of ORNs, showing that each ORN class is restricted to a particular spatial domain on the antennal surface.  相似文献   

16.
三种夜蛾成虫口器感器的超微形态   总被引:1,自引:0,他引:1  
为确定不同种类夜蛾口器及其感器在超微结构上的差异, 采用扫描电子显微镜对棉铃虫Helicoverpa armigera (Hübner)、 烟夜蛾H. assulta (Guenée)和银纹夜蛾Argyrogramma agnata (Staudinger)3种鳞翅目(Lepidoptera)夜蛾科(Noctuidae)重要农业害虫雌、 雄成虫口器感器的超微形态进行了观察和比较。结果表明: 3种夜蛾雌、 雄成虫口器感器类型均无明显差异。棉铃虫和烟夜蛾口器感器在类型和形状上十分类似, 均具有毛形、 锥形和栓锥形感器; 喙管末端的栓锥感器粗、 密, 棱纹明显。银纹夜蛾口器感器与两种铃夜蛾区别明显, 除上述3类感器外, 还具有腔锥形感器; 其喙管末端的栓锥感器细、 疏, 棱纹不明显。结果显示口器感器可用于夜蛾的分类及亲缘关系研究。  相似文献   

17.
ABSTRACT The lateral styloconic sensillum on the galea of the eastern spruce budworm larva Choristoneura fumiferana Clem. (Lepidoptera: Tortricidae) contains a cell which responds to sucrose. The electro-physiologial threshold for response is below 0.5 mM sucrose. The Kb for the response is 1.5 mM, and the Vmax is 200 impulses/s. The physiological data are interpreted with respect to the sucrose-stimulated feeding behaviour of the larva.  相似文献   

18.
Antennae of Bombyx mori and Helicoverpa armigera larvae were immunolabelled with antisera raised against the pheromone-binding protein or the general odorant-binding protein 2 of Antheraea polyphemus to assign the expression of these proteins to individual sensilla and to compare the localization pattern with that in sensilla of adult moths. Specific labelling of antennal sensilla was only obtained with the antiserum against general odorant-binding protein 2. Among the few sensilla present on the antenna the three large sensilla basiconica, which are suspected to be olfactory in function, were labelled. These sensilla are compound sensilla consisting of several sensillum units which form a common sensory hair. The hair is single-walled and pierced by many pores. Labelling of sensillum compartments was the same as in sensilla of adults. Prominent labelling of the sensillum lymph is accompanied by labelling of secretory organelles in the two outermost auxiliary cells and of endocytotic pathways in all sensillum cells. The results suggest that general odorant-binding protein is expressed in single-walled multiporous sensilla of presumed olfactory function on the antenna of moth larvae. The overall identity of the localization pattern for general odorant-binding protein between larval and adult sensilla implies a similar role of these proteins in olfactory stimulus transduction.  相似文献   

19.
Five types of sensilla are situated on the apical area of the labial and maxillary palpi and galea of Cicidela sexguttata. Large, conical, and peg-like sensilla are in rows on the central region of each palpus. These sensilla have a hollow cuticular peg, with an apical pore and multi-innervation. This central region of palpal sensilla is surrounded by campaniform sensilla that are disc-shaped and small conical peg sensilla. A similar type of conical sensillum as the found in the palpal central region is situated around the periphery of the palpal apex and apex of the galea. This conical peg sensillum is located in a shallow depression and is structurally similar to the other peg sensilla, but it has a mechanoreceptor neuron attached to the cuticular base of the sensillum. A long, single, trichoid sensillum is situated in the center of the galea and is hollow, thick-walled, porous, and multi-innervated. The apices of the palpi and galea have a large number of dermal gland openings that actively secrete a substance during the feeding process of the tiger beetle. © 1995 Wiley-Liss, Inc.  相似文献   

20.
The cuticular sensory receptors that are found on the apex of the labium of hemipterans play an important role in their feeding behavior. In this study we describe the ultrastructure, number, and distribution of sensilla on the labium apex of the chinch bug, Blissus leucopterus leucopterus. Each apical field of sensilla on the labium contains 11 uniporous peg sensilla and one sensillum chaeticum. The uniporous peg sensilla are innervated by 4–5 bipolar neurons that send dendrites in the lumen of each peg. Three neurons are associated with each sensillum chaeticum, two neurons have dendrites in the lumen of the sensillum, and the third dendrite ends in a tubular body at the base of the sensillum. Behavioral tests that involve chemical blockage of the sensory receptors show the importance of the labial sensilla in feeding behavior. Both morphological and behavioral evidence indicate that the labial sensilla have a chemosensitive function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号