首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Whereas other organisms utilize type I or type II synthases to make fatty acids, trypanosomatid parasites such as Trypanosoma brucei are unique in their use of a microsomal elongase pathway (ELO) for de novo fatty acid synthesis (FAS). Because of the unusual lipid metabolism of the trypanosome, it was important to study a second FAS pathway predicted by the genome to be a type II synthase. We localized this pathway to the mitochondrion, and RNA interference (RNAi) or genomic deletion of acyl carrier protein (ACP) and beta-ketoacyl-ACP synthase indicated that this pathway is likely essential for bloodstream and procyclic life cycle stages of the parasite. In vitro assays show that the largest major fatty acid product of the pathway is C16, whereas the ELO pathway, utilizing ELOs 1, 2, and 3, synthesizes up to C18. To demonstrate mitochondrial FAS in vivo, we radio-labeled fatty acids in cultured procyclic parasites with [(14)C]pyruvate or [(14)C]threonine, either of which is catabolized to [(14)C]acetyl-CoA in the mitochondrion. Although some of the [(14)C]acetyl-CoA may be utilized by the ELO pathway, a striking reduction in radiolabeled fatty acids following ACP RNAi confirmed that it is also consumed by mitochondrial FAS. ACP depletion by RNAi or gene knockout also reduces lipoic acid levels and drastically decreases protein lipoylation. Thus, octanoate (C8), the precursor for lipoic acid synthesis, must also be a product of mitochondrial FAS. Trypanosomes employ two FAS systems: the unconventional ELO pathway that synthesizes bulk fatty acids and a mitochondrial pathway that synthesizes specialized fatty acids that are likely utilized intramitochondrially.  相似文献   

2.
Most cells use either a type I or type II synthase to make fatty acids. Trypanosoma brucei, the sleeping sickness parasite, provides the first example of a third mechanism for this process. Trypanosomes use microsomal elongases to synthesize fatty acids de novo, whereas other cells use elongases to make long-chain fatty acids even longer. The modular nature of the pathway allows synthesis of different fatty-acid end products, which have important roles in trypanosome biology. Indeed, this newly discovered mechanism seems ideally suited for the parasitic lifestyle.  相似文献   

3.
While de novo fatty acid synthesis uses acetyl-CoA, fatty acid elongation uses longer-chain acyl-CoAs as primers. Several mutations that interfere with fatty acid elongation in yeast have already been described, suggesting that there may be different elongases for medium- and long-chain acyl-CoA primers. In the present study, an experimental approach is described that allows differential characterization of the various yeast elongases in vitro. Based on their characteristic primer specificities and product patterns, at least three different yeast elongases are defined. Elongase I extends C12-C16 fatty acyl-CoAs to C16-C18 fatty acids. Elongase II elongates palmitoyl-CoA and stearoyl-CoA up to C22 fatty acids, and elongase III synthesizes 20-26-carbon fatty acids from C18-CoA primers. Elongases I, II and III are specifically inactivated in, respectively, elo1, elo2 and elo3 mutants. Elongases II and III share the same 3-ketoacyl reductase, which is encoded by the YBR159w gene. Inactivation of YBR159w inhibits in vitro fatty acid elongation after the first condensation reaction. Although in vitro elongase activity is absent, the mutant nevertheless contains 10-30% of normal VLCFA levels. On the basis of this finding, an additional elongating activity is inferred to be present in vivo. ybr159Delta cells show synthetic lethality in the presence of cerulenin, which inactivates fatty acid synthase. An involvement of FAS in VLCFA synthesis may account for these findings, but remains to be demonstrated directly. Alternatively, a vital role for C18 and C20 hydroxyacids, which are dramatically overproduced in ybr159Delta cells, may be postulated.  相似文献   

4.
Apicomplexan parasites are responsible for high impact human diseases such as malaria, toxoplasmosis, and cryptosporidiosis. These obligate intracellular pathogens are dependent on both de novo lipid biosynthesis as well as the uptake of host lipids for biogenesis of parasite membranes. Genome annotations and biochemical studies indicate that apicomplexan parasites can synthesize fatty acids via a number of different biosynthetic pathways that are differentially compartmentalized. However, the relative contribution of each of these biosynthetic pathways to total fatty acid composition of intracellular parasite stages remains poorly defined. Here, we use a combination of genetic, biochemical, and metabolomic approaches to delineate the contribution of fatty acid biosynthetic pathways in Toxoplasma gondii. Metabolic labeling studies with [(13)C]glucose showed that intracellular tachyzoites synthesized a range of long and very long chain fatty acids (C14:0-26:1). Genetic disruption of the apicoplast-localized type II fatty-acid synthase resulted in greatly reduced synthesis of saturated fatty acids up to 18 carbons long. Ablation of type II fatty-acid synthase activity resulted in reduced intracellular growth that was partially restored by addition of long chain fatty acids. In contrast, synthesis of very long chain fatty acids was primarily dependent on a fatty acid elongation system comprising three elongases, two reductases, and a dehydratase that were localized to the endoplasmic reticulum. The function of these enzymes was confirmed by heterologous expression in yeast. This elongase pathway appears to have a unique role in generating very long unsaturated fatty acids (C26:1) that cannot be salvaged from the host.  相似文献   

5.
Trypanosoma brucei use microsomal elongases for de novo synthesis of most of its fatty acids. In addition, this parasite utilizes an essential mitochondrial type II synthase for production of octanoate (a lipoic acid precursor) as well as longer fatty acids such as palmitate. Evidence from other organisms suggests that mitochondrially synthesized fatty acids are required for efficient respiration but the exact relationship remains unclear. In procyclic form trypanosomes, we also found that RNAi depletion of the mitochondrial acyl carrier protein, an important component of the fatty acid synthesis machinery, significantly reduces cytochrome-mediated respiration. This reduction was explained by RNAi-mediated inhibition of respiratory complexes II, III and IV, but not complex I. Other effects of RNAi, such as changes in mitochondrial morphology and alterations in membrane potential, raised the possibility of a change in mitochondrial membrane composition. Using mass spectrometry, we observed a decrease in total and mitochondrial phosphatidylinositol and mitochondrial phosphatidylethanolamine. Thus, we conclude that the mitochondrial synthase produces fatty acids needed for maintaining local phospholipid levels that are required for activity of respiratory complexes and preservation of mitochondrial morphology and function.  相似文献   

6.
Trypanosoma brucei genes encoding putative fatty acid synthesis enzymes are homologous to those encoding type II enzymes found in bacteria and organelles such as chloroplasts and mitochondria. It was therefore not surprising that triclosan, an inhibitor of type II enoyl-acyl carrier protein (enoyl-ACP) reductase, killed both procyclic forms and bloodstream forms of T. brucei in culture with 50% effective concentrations (EC(50)s) of 10 and 13 microM, respectively. Triclosan also inhibited cell-free fatty acid synthesis, though much higher concentrations were required (EC(50)s of 100 to 200 microM). Unexpectedly, 100 microM triclosan did not affect the elongation of [(3)H]laurate (C(12:0)) to myristate (C(14:0)) in cultured bloodstream form parasites, suggesting that triclosan killing of trypanosomes may not be through specific inhibition of enoyl-ACP reductase but through some other mechanism. Interestingly, 100 microM triclosan did reduce the level of incorporation of [(3)H]myristate into glycosyl phosphatidylinositol species (GPIs). Furthermore, we found that triclosan inhibited fatty acid remodeling in a cell-free assay in the same concentration range required for killing T. brucei in culture. In addition, we found that a similar concentration of triclosan also inhibited the myristate exchange pathway, which resides in a distinct subcellular compartment. However, GPI myristoylation and myristate exchange are specific to the bloodstream form parasite, yet triclosan kills both the bloodstream and procyclic forms. Therefore, triclosan killing may be due to a nonspecific perturbation of subcellular membrane structure leading to dysfunction in sensitive membrane-resident biochemical pathways.  相似文献   

7.
Leishmania major synthesizes polyunsaturated fatty acids by using Delta6, Delta5 and Delta4 front-end desaturases, which have recently been characterized [Tripodi KE, Buttigliero LV, Altabe SG & Uttaro AD (2006) FEBS J273, 271-280], and two predicted elongases specific for C18 Delta6 and C20 Delta5 polyunsaturated fatty acids, respectively. Trypanosoma brucei and Trypanosoma cruzi lack Delta6 and Delta5 desaturases but contain Delta4 desaturases, implying that trypanosomes use exogenous polyunsaturated fatty acids to produce C22 Delta4 fatty acids. In order to identify putative precursors of these C22 fatty acids and to completely describe the pathways for polyunsaturated fatty acid biosynthesis in trypanosomatids, we have performed a search in the three genomes and identified four different elongase genes in T. brucei, five in T. cruzi and 14 in L. major. After a phylogenetic analysis of the encoded proteins together with elongases from a variety of other organisms, we selected four candidate polyunsaturated fatty acid elongases. Leishmania major CAJ02037, T. brucei AAX69821 and T. cruzi XP_808770 share 57-52% identity, and group together with C20 Delta5 polyunsaturated fatty acid elongases from algae. The predicted activity was corroborated by functional characterization after expression in yeast. T. brucei elongase was also able to elongate Delta8 and Delta11 C20 polyunsaturated fatty acids. L. major CAJ08636, which shares 33% identity with Mortierella alpinaDelta6 elongase, showed a high specificity for C18 Delta6 polyunsaturated fatty acids. In all cases, a preference for n6 polyunsaturated fatty acids was observed. This indicates that L. major has, as predicted, Delta6 and Delta5 elongases and a complete pathway for polyunsaturated fatty acid biosynthesis. Trypanosomes contain only Delta5 elongases, which, together with Delta4 desaturases, allow them to use eicosapentaenoic acid and arachidonic acid, a precursor that is relatively abundant in the host, for C22 polyunsaturated fatty acid biosynthesis.  相似文献   

8.
The transgenic aerobic synthesis of long‐chain polyunsaturated fatty acids (LC‐PUFA) will in most land plants commence with either a Δ6‐desaturation or a Δ9‐elongation. Numerous Δ6‐desaturases have been characterized, but only one Δ9‐elongase has been reported in peer‐reviewed literature. In the present study, we describe the isolation of three additional Δ9‐elongases from the class Haptophyceae and demonstrate that the Δ9‐elongase group contains highly conserved regions, which differentiate them from other ELO‐type elongases. One such important difference is the presence of an LQxFHH motif instead of the usual LHxYHH motif, a feature that should simplify further gene discovery efforts in this group of enzymes. Moreover, the identification of the Pavlova salina (N. Carter) J. C. Green Δ9‐elongase completes the isolation of the entire P. salina docosahexaenoic acid (DHA) pathway, and we describe the assembly of this pathway in Nicotiana benthamiana. Finally, we comment on possible explanations for the widespread presence of the Δ6‐desaturated fatty acid stearidonic acid (SDA, 18:4Δ6,9,12,15) in the plastidial lipids of organisms using the Δ9‐elongase pathway.  相似文献   

9.
10.
Enzymes that lengthen the carbon chain of polyunsaturated fatty acids are key to the biosynthesis of the highly unsaturated fatty acids, arachidonic, eicosapentaenoic and docosahexaenoic acids from linoleic and alpha-linolenic acids. A Mortierella alpina cDNA polyunsaturated fatty acid elongase sequence identified mammalian, amphibian, zebrafish and insect expressed sequence tags (ESTs) in GenBank. Consensus primers were designed in conserved motifs and used to isolate full length cDNA from livers of several fish species by Rapid Amplification of cDNA Ends (RACE). The amplified cDNAs encoded putative open reading frames (ORFs) of 288-294 amino acids that were highly conserved among the fish species. Heterologous expression in yeast, Saccharomyces cerevisiae, demonstrated that all of the ORFs encoded elongases with the ability to lengthen polyunsaturated fatty acid substrates with chain lengths from C18 to C22 and also monounsaturated fatty acids, but not saturated fatty acids. There were differences in the functional competence of the elongases from different fish species. Most of the fish elongases showed a pattern of activity towards different fatty acid substrates in the rank order C18>C20>C22, although the tilapia and turbot elongases had similar activity towards 18:4n-3 and 20:5n-3. The fish elongases generally showed greater activity or similar activities with n-3 than with n-6 homologues, with the exception of the cod enzyme which was more active towards n-6 fatty acids.  相似文献   

11.
An acyl coenzyme A hydrolase (thioesterase II) has been purified to near homogeneity from lactating rat mammary gland. The enzyme is a monomer of molecular weight 33,000 and contains a single active site residue. The enzyme is specific for acyl groups, as acyl-CoA thioesters, containing eight or more carbon atoms and can also hydrolyze oxygen esters. Thioesterase II is capable of shifting the product specificity of rat mammary gland fatty acid synthetase from predominately long chain fatty acids (C14, C16, and C18) to mainly medium chain fatty acids (C8, C10, and C12). Thioesterase II can restore the capacity for fatty acid synthesis to fatty acid synthetase in which the thioesterase component (thioesterase I) has been inactivated with phenylmethanesulfonyl fluoride or removed by trypsinization. No evidence was found of significant levels of thioesterase II in lactating rat liver. The presence of thioesterase II in the lactating mammary gland and the ability of the enzyme to hydrolyze acyl-fatty acid synthetase thioesters of intermediate chain length, are indicative of a major role for this enzyme in the synthesis of the medium chain fatty acids characteristic of milk fat.  相似文献   

12.
13.
《FEBS letters》1985,187(2):314-320
The effects of n-octyl-β-D-glucopyranoside, Triton X-100 and deoxycholate on acyl-CoA elongation by Allium porrum L. epidermal cell microsomes showed that the Triton X-100 specifically stimulated the synthesis of C22–C26 acids using C18-CoA as primer, whereas the fatty acid elongation products of C20-CoA remained essentially unchanged. n-Octyl-β-D-glucopyranoside increased the C20 and C22 fatty acid syntheses to the same extent and deoxycholate inhibited C18-CoA and C20-CoA elongation. The presence of two different elongation systems, as suggested by these results, has been demonstrated. After solubilization by Triton X-100, the C18-CoA and C20-CoA elongases were separated by sucrose density centrifugation. The fractions corresponding to sucrose concentrations of 0.51 and 0.62 M presented the maximal activities for C18-CoA and C20-CoA elongases, respectively. In addition, by gel filtration on a Sephacryl S-300 column, the C20-CoA and the C18-CoA elongases have estimated apparent molecular masses under detergent conditions of 600 and 350 kDa, respectively.  相似文献   

14.
Substrate specificity of condensing enzymes is a predominant factor determining the nature of fatty acyl chains synthesized by type II fatty acid synthase (FAS) enzyme complexes composed of discrete enzymes. The gene (mtKAS) encoding the condensing enzyme, beta-ketoacyl-[acyl carrier protein] (ACP) synthase (KAS), constituent of the mitochondrial FAS was cloned from Arabidopsis thaliana, and its product was purified and characterized. The mtKAS cDNA complemented the KAS II defect in the E. coli CY244 strain mutated in both fabB and fabF encoding KAS I and KAS II, respectively, demonstrating its ability to catalyze the condensation reaction in fatty acid synthesis. In vitro assays using extracts of CY244 containing all E. coli FAS components, except that KAS I and II were replaced by mtKAS, gave C(4)-C(18) fatty acids exhibiting a bimodal distribution with peaks at C(8) and C(14)-C(16). Previously observed bimodal distributions obtained using mitochondrial extracts appear attributable to the mtKAS enzyme in the extracts. Although the mtKAS sequence is most similar to that of bacterial KAS IIs, sensitivity of mtKAS to the antibiotic cerulenin resembles that of E. coli KAS I. In the first or priming condensation reaction of de novo fatty acid synthesis, purified His-tagged mtKAS efficiently utilized malonyl-ACP, but not acetyl-CoA as primer substrate. Intracellular targeting using green fluorescent protein, Western blot, and deletion analyses identified an N-terminal signal conveying mtKAS into mitochondria. Thus, mtKAS with its broad chain length specificity accomplishes all condensation steps in mitochondrial fatty acid synthesis, whereas in plastids three KAS enzymes are required.  相似文献   

15.
The effects of temperature and salinity on fatty acid synthetic activities in the oyster protozoan parasite, Perkinsus marinus, were tested in vitro at 10, 18 and 28 °C in a salinity of 28 psu and 14, 20 and 28 psu at a temperature of 28 °C using 13C sodium acetate as a substrate. Salinity treatments exhibited few treatment effects, but temperature significantly affected cell proliferation, fatty acid content and fatty acid synthesis rates. Fatty acid synthesis rates increased approximately two-fold for every 10 °C increase in temperature; however, the predominant fatty acid synthesized differed between treatments. At 10 °C, the synthesis rate for 18:1(n−9) was not significantly different from the 18 °C treatment and weight percent of 18:1(n−9) was higher at 10 than 18 and 28 °C. In contrast, the synthesis rate for 20:4(n−6) was over five times lower at 10 than at 18 and 28 °C, and the percent fatty acid content of 20:4(n−6) was over two-fold lower at 10 than at 18 and 28 °C. Results suggest that further elongation and desaturation of 18:1(n−9) to 20 carbon polyunsaturated fatty acids may be inhibited at low temperatures. These findings may be relevant to field observations that disease progression and virulence of this parasite are correlated to high water temperatures.  相似文献   

16.
Saccharomyces cerevisiae medium-chain acyl elongase (ELO1) mutants have previously been isolated in screens for fatty acid synthetase (FAS) mutants that fail to grow on myristic acid (C14:0)-supplemented media. Here we report that wild-type cells cultivated in myristoleic acid (C14:1Delta(9))-supplemented media synthesized a novel unsaturated fatty acid that was identified as C16:1Delta(11) fatty acid by gas chromatography-mass spectroscopy. Synthesis of C16:1Delta(11) was dependent on a functional ELO1 gene, indicating that Elo1p catalyzes carboxy-terminal elongation of unsaturated fatty acids (alpha-elongation). In wild-type cells, the C16:1Delta(11) elongation product accounted for approximately 12% of the total fatty acids. This increased to 18% in cells that lacked a functional acyl chain desaturase (ole1Delta mutants) and hence were fully dependent on uptake and elongation of C14:1. The observation that ole1Delta mutant cells grew almost like wild type on medium supplemented with C14:1 indicated that uptake and elongation of unsaturated fatty acids were efficient. Interestingly, wild-type cells supplemented with either C14:1 or C16:1 fatty acids displayed dramatic alterations in their phospholipid composition, suggesting that the availability of acyl chains is a dominant determinant of the phospholipid class composition of cellular membranes. In particular, the relative content of the two major phospholipid classes, phosphatidylethanolamine and phosphatidylcholine, was strongly dependent on the chain length of the supplemented fatty acid. Moreover, analysis of the acyl chain composition of individual phospholipid classes in cells supplemented with C14:1 revealed that the relative degree of acyl chain saturation characteristic for each phospholipid class appeared to be conserved, despite the gross alteration in the cellular acyl chain pool. Comparison of the distribution of fatty acids that were taken up and elongated (C16:1Delta(11)) to those that were endogenously synthesized by fatty acid synthetase and then desaturated by Ole1p (C16:1Delta(9)) in individual phospholipid classes finally suggested the presence of two different pools of diacylglycerol species. These results will be discussed in terms of biosynthesis of different phospholipid classes via either the de novo or the Kennedy pathway.  相似文献   

17.
Saturated phosphatidylcholine and phosphatidylglycerol are important components of pulmonary surface active material, but the relative contributions of different pathways for the synthesis of these two classes of phospholipids by alveolar type II cells are not established. We purified freshly isolated rat type II cells by centrifugal elutriation and incubated them with [1-14C]palmitate as the sole exogenous fatty acid in one series of experiments or with [9,10-3H]palmitate, mixed fatty acids (16:0, 18:1 and 18:2), and [U-14C]glucose in another series of experiments. Type II cells readily incorporated [1-14C]palmitate into saturated phosphatidic acid (55-59% of total phosphatidic acid), saturated diacylglycerol (82-87% of total diacylglycerol), saturated phosphatidylcholine (69-76% of total phosphatidylcholine), and saturated phosphatidylglycerol (55-59% of total phosphatidylglycerol). Saturated phosphatidic acid, diacylglycerol and phosphatidylglycerol were nearly equally labeled in the sn-1 and sn-2 positions, whereas saturated phosphatidylcholine was preferentially labeled in the sn-2 position. With [9,10-3H]palmitate and [U-14C]glucose, the labeling patterns of phosphatidic acid, diacylglycerol and phosphatidylglycerol were similar to each other but different from that of phosphatidylcholine. The glucose label was found predominantly in the unsaturated phosphatidylcholines at early times (3-10 min) and in the saturated phosphatidylcholines at later times (30-90 min). Similarly, the 3H/14C ratio was very high in saturated phosphatidylcholine and always above that in saturated diacylglycerol. We conclude that freshly isolated type II cells synthesize saturated phosphatidic acid, diacylglycerol, phosphatidylcholine and phosphatidylglycerol and that under our in vitro conditions the deacylation-reacylation pathway is important for the synthesis of saturated phosphatidylcholine but is less important for the synthesis of saturated phosphatidylglycerol. By the assumptions stated in the text during the pulse chase experiment de novo synthesis of saturated phosphatidylcholine from saturated diacylglycerol accounted for 25% of the total synthesis of saturated phosphatidylcholine.  相似文献   

18.
The synthesis of fatty acids de novo from acetate and the elongation of exogenous satuated fatty acids (C12-C18) by the psychrophilic bacterium Micrococcus cryophilus (A.T.C.C. 15174) grown at 1 or 20 degrees C was investigated. M. cryophilus normally contains only C16 and C18 acyl chains in its phospholipids, and the C18/C16 ratio is altered by changes in growth temperature. The bacterium was shown to regulate strictly its phospholipid acyl chain length and to be capable of directly elongating myristate and palmitate, and possibly laurate, to a mixture of C16 and C18 acyl chains. Retroconversion of stearate into palmitate also occurred. Fatty acid elongation could be distinguished from fatty acid synthesis de novo by the greater sensitivity of fatty acid elongation to inhibition by NaAsO2 under conditions when the supply of ATP and reduced nicotinamide nucleotides was not limiting. It is suggested that phospholipid acyl chain length may be controlled by a membrane-bound elongase enzyme, which interconverts C16 and C18 fatty acids via a C14 intermediate; the activity of the enzyme could be regulated by membrane lipid fluidity.  相似文献   

19.
When individual enzyme activities of the fatty acid synthetase (FAS) system were assayed in extracts from five different plant tissues, acetyl-CoA:acyl carrier protein (ACP) transacylase and beta-ketoacyl-ACP synthetases I and II had consistently low specific activities in comparison with the other enzymes of the system. However, two of these extracts synthesized significant levels of medium chain fatty acids (rather than C16 and C18 acid) from [14C]malonyl-CoA; these extracts had elevated levels of acetyl-CoA:ACP transacylase. To explore the role of the acetyl transacylase more carefully, this enzyme was purified some 180-fold from spinach leaf extracts. Varying concentrations of the transacylase were then added either to spinach leaf extracts or to a completely reconstituted FAS system consisting of highly purified enzymes. The results suggested that: (a) acetyl-CoA:ACP transacylase was the enzyme catalyzing the rate-limiting step in the plant FAS system; (b) increasing concentration of this enzyme markedly increased the levels of the medium chain fatty acids, whereas increase of the other enzymes of the FAS system led to increased levels of stearic acid synthesis; and (c) beta-ketoacyl-ACP synthetase I was not involved in the rate-limiting step. It is suggested that modulation of the activity of acetyl-CoA:ACP transacylase may have important implications in the type of fatty acid synthesized, as well as the amount of fatty acids formed.  相似文献   

20.
Very long chain polyunsaturated fatty acids (VLCPUFAs) such as docosahexaenoic acid (DHA, 22:6n-3), arachidonic acid (ARA, 20:4n-6) and eicosapentaenoic acid (EPA, 20:5-n3) are nutritionally important for humans and animals. De novo biosynthesis of these fatty acids mainly occurs in microorganisms and goes through either an aerobic pathway catalyzed by type I/II fatty acid synthase, desaturases and elongases or an anaerobic pathway catalyzed by a polyunsaturated fatty acid synthase. After synthesis, VLCPUFAs must be incorporated into glycerolipids for storage through acyl assembly processes. Understanding the mechanisms for the biosynthesis of VLCPUFAs and their incorporation into glycerolipids is important not only for developing a renewable, sustainable and environment-friendly source of these fatty acids in microorganisms, but also, for designing effective strategies for metabolic engineering of these fatty acids in heterologous systems. This review highlights recent findings which have increased our understanding of biosynthesis of VLCPUFAs and their incorporation into glycerolipids in microorganisms. Future directions in improving the production of VLCPUFAs in native microbial producers are also discussed along with transgenic production of these fatty acids in oleaginous microorganisms and oilseed crops for food and feed uses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号