首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We had previously shown that the signal of activation delivered via CD2 varies according to the mitogenic pair of CD2 mAb used. We had selected two typical mAb pairs, D66 + T11(1) and GT2 + T11(1), the former delivering the "richest" signal, the latter the poorest. Here we analyzed the cytolytic activities generated within PBL-stimulated by these two pairs. When purified CD2+,3- cells were cultured with either one of these two pairs, no significant lymphokine-activated killer (LAK) activity--namely the activity exerted on NK-resistant malignant cell lines or fresh tumor cells--was detected, thereby demonstrating the inability of CD2 mAb pairs to directly trigger the LAK precursors. By contrast, when purified CD2+,3+ cells were cultured, only D66 + T11(1) was able to trigger a potent CTL activity, as judged by targeting their activity, at the effector phase, with a bridging CD3 mAb on a FcR+ target cell or by using heteroaggregates on FcR- malignant cells. When whole PBL were used, a similar and moderate LAK activity was generated after culture with either one of the 2 CD2 mAb pairs. This, in fact, masked quite different events. The amounts of endogeneous IL-2 released in PBL cultures with GT2 + T11(1) was rather low, although it was sufficiently high in PBL cultures with D66 + T11(1) to generate a potent LAK activity. Yet, PBL stimulated with D66 + T11(1) released concomitantly a high amount of IL-4 which inhibited the development of the LAK activity, as demonstrated by unmasking this activity with an anti-IL4 antiserum and which did not inhibit the T CTL activity; this IL-4 secretion was not seen with GT2 + T11(1). Therefore, stimulation by these two typical CD2 mAb pairs induce a striking different pattern of IL synthesis.  相似文献   

2.
The mAb 131 to a determinant preferentially expressed on the gene products of the HLA-A locus, the mAb Q6/64 and 4E to determinants preferentially expressed on the gene products of the HLA-B locus, the anti-HLA-A2,A28 mAb CR11-351, HO-2, HO-3, HO-4, and KS1, and the anti-HLA-B7 cross-reacting group mAb KS4 enhanced proliferation of T cells in most, if not all, the PBMC preparations stimulated with the anti-CD2 mAb 9-1 + 9.6. The mAb CR10-215, W6/32, and 6/31 to distinct monomorphic determinants of HLA class I antigens enhanced CD2-induced T cell proliferation in at most 30% of the PBMC preparations tested. The anti human beta 2-microglobulin (beta 2-mu) mAb NAMB-1 displayed no detectable effect on the proliferation of T cells stimulated with the mAb 9-1 + 9.6. The enhancing effect of anti-HLA class I mAb is specific, is dose dependent, is not abrogated by the addition of exogenous IL-1 and IL-2 to the cultures, and reflects the interaction of anti-HLA class I mAb with T cells. Enhancement of CD2 mediated proliferation of T cells is not a unique property of anti-HLA class I mAb, since the anti-HLA class II mAb Q5/6 and Q5/13 also had a similar effect. Analysis of the kinetics of the enhancing effect of anti-HLA class I mAb suggests that they modulate an early event of T cell activation and may affect the interaction of T cells with mAb 9-1. Phenotyping of T lymphocytes activated by mAb 9-1 + 9.6 in the presence of anti-HLA class I mAb suggests that the enhancing effect of anti-HLA class I mAb may reflect the recruitment of a higher percentage of T cells. The present study has shown for the first time that certain, but not all, the determinants of the HLA class I molecular complex are involved in the proliferation of T cells stimulated with the anti-CD2 mAb 9-1 + 9.6. Furthermore, the inhibitory effect of mAb CR11-351, KS1, Q6/64, and W6/32 on the proliferation of T cells stimulated with mAb OKT3 or with mAb BMA 031 indicates that the same determinants of HLA class I antigens play a differential regulatory role in T cell proliferation induced via the CD2 and CD3 pathway.  相似文献   

3.
Monoclonal antibody (MAb) GT2 defines a unique epitope on the CD2 molecule. GT2 triggers T cell mitosis in combination with any MAb directed against 9.6/T11(1) or D66, two previously defined CD2 epitopes. We have shown already that accessory cells (AC) are required for plenary T-PBL activation by any pair of Ab directed against D66 + 9.6/T11(1). In this study, we further investigated their role and found it to vary with the anti-CD2 pair used. When purified T-PBL preparation is used, the level of [3H]TdR incorporation observed with anti-(GT2 + 9.6/T11(1)) Ab was not significant; however, it did prove significant, although greatly reduced, with the other anti-CD2 pairs tested. This was due to qualitative differences in the process of T-PBL activation, and the role of AC, because: anti-(GT2 + 9.6/T11(1)) did not induce IL 2-R expression on purified T-PBL, whereas the other anti-CD2 pairs tested did; anti-(GT2 + 9.6/T11(1)) did not induce detectable IL 2 secretion from purified T-PBL, whereas the other anti-CD2 pairs tested induced a low amount; and anti-CDw18 Ab inhibited the mitogenic effect of anti-(GT2 + 9.6/T11(1)) on PBMC by preventing both IL 2-R expression and IL 2 secretion, whereas anti-CDw18 Ab enhanced the mitogenic effect of the other anti-CD2 pairs tested. Paraformaldehyde-fixed AC fully restored, and recombinant IL 1 partially restored purified T-PBL mitosis triggered by all anti-CD2 pairs tested. To induce IL 2 synthesis, the necessity to cross-link anti-CD2 Ab was demonstrated by coupling one Ab on Sepharose beads and adding the second Ab in the soluble phase: under these circumstances, anti-CD2 pairs were mitogenic solely in the presence of AC. These data can be interpreted as follows. Most anti-CD2 pairs require minimal contact between AC and T-PBL to induce plenary levels of IL 2 synthesis. When anti-(GT2 + 9.6/T11(1)) are used, additional contact is necessary, both for IL 2-R expression and IL 2 synthesis, which would include CDw18 for stabilization. We believe these differences could be related to different conformational changes on the CD2 molecule, depending on the epitope on which the antibodies bind, and could account for different signaling to T cells.  相似文献   

4.
The role of leukocyte function-associated Ag-1 (LFA-1, CD11a/CD18) and intercellular adhesion molecule 1 (ICAM-1, CD54) interactions in human T cell and B cell collaboration was examined by studying the effect of mAb to these determinants on B cell proliferation and differentiation stimulated by culturing resting B cells with CD4+ T cells activated with immobilized mAb to the CD3 molecular complex. In this model system, mAb to either the alpha (CD11a) or beta (CD18) chain of LFA-1 or ICAM-1 (CD54) inhibited B cell responses significantly. The mAb did not directly inhibit B cell function, inasmuch as T cell-independent activation induced by formalinized Staphylococcus aureus and IL-2 was not suppressed. Moreover, DNA synthesis and IL-2 production by immobilized anti-CD3-stimulated CD4+ T cells were not suppressed by the mAb to LFA-1 or ICAM-1. Although the mAb to LFA-1 inhibited enhancement of IL-2 production by co-culture of immobilized anti-CD3-stimulated CD4+ T cells with B cells, addition of exogenous IL-2 or supernatants of mitogen-activated T cells could not abrogate the inhibitory effects of the mAb to LFA-1 or ICAM-1 on B cell responses. Inhibition was most marked when the mAb were present during the initial 24 h in culture. Immobilized anti-CD3-stimulated LFA-1-negative CD4+ T cell clones from a child with leukocyte adhesion deficiency could induce B cell responses, which were inhibited by mAb to LFA-1 or ICAM-1. These results indicate that the interactions between LFA-1 and ICAM-1 play an important role in mediating the collaboration between activated CD4+ T cells and B cells necessary for the induction of B cell proliferation and differentiation, and for enhancement of IL-2 production by CD4+ T cells. Moreover, the data are consistent with a model of T cell-B cell collaboration in which interactions between LFA-1 on resting B cells and ICAM-1 on activated CD4+ T cells play a critical role in initial T cell-dependent B cell activation.  相似文献   

5.
Resting murine T cell activation induced by either CD3 complexes or Thy1 molecules was investigated in vitro, using surface-bound anti-CD3 mAb as the stimulus. One mitogenic anti-Thy 1 mAb (G7) lost mitogenicity when presented to T cells immobilized on a plastic surface, even in the presence of phorbol ester. Moreover, T cell activation induced by immobilized anti-CD3 was potently blocked by coimmobilized anti-Thy 1 mAb. Nonmitogenic anti-Thy 1 mAb also blocked CD3-induced activation when coimmobilized with anti-CD3. Control experiments showed that anti-Thy 1 specifically blocked T cell activation, even in the presence of measurable and functional concentrations of plastic-bound anti-CD3. Coimmobilized anti-Thy 1 potently blocked IL2 secretion stimulated by anti-CD3. Addition of exogenous rIL2 completely prevented anti-Thy 1-mediated blockade. On the other hand, while completely blocking T cell proliferation, immobilized anti-Thy 1 only partially blocked secretion of IL3-like activity by the T cells. One IgM anti-Thy 1 mAb (2A3) induced secretion of IL3-like activity by T cells when immobilized in the absence of bound anti-CD3. These results indicate that extensive aggregation of Thy 1 molecules delivers a potent negative signal which antagonizes CD3-mediated T cell activation and growth.  相似文献   

6.
The CD44 molecule, also known as Hermes lymphocyte homing receptor, human Pgp-1, and extracellular matrix receptor III, has been shown to play a role in T cell adhesion and activation. Specifically, anti-CD44 mAb block binding of lymphocytes to high endothelial venules, inhibit T cell-E rosetting, and augment T cell proliferation induced by the CD2 or CD3-TCR pathways. We have characterized an anti-CD44 mAb (212.3) which immunoprecipitates a 90-kDa protein and is specific for CD44 as shown by peptide mapping and antibody competition studies. Interestingly, our studies with 212.3 demonstrate that this CD44-specific mAb completely inhibits T cell proliferation stimulated by the anti-CD3 mAb, OKT3. Inhibition is not a result of reduced cell viability, but is associated with 1) inhibition of IL-2 production, 2) inhibition of IL-2R expression, and 3) inhibition of OKT3-mediated increases in intracellular Ca2+ levels. In addition, 212.3 does not inhibit proliferation by the T cell mitogens PHA or PWM nor does it inhibit proliferation in a mixed lymphocyte reaction. Similar to other anti-CD44 mAb, 212.3 also augments T cell proliferation induced by mAb directed against the T11(2) and T11(3) epitopes of CD2. Thus, these studies describe a novel CD44-specific mAb (212.3) that inhibits T cell activation by OKT3 by blocking early signal transduction. Furthermore, these studies suggest that "receptor cross-talk" between the CD3-TCR complex and CD44 may regulate T cell activation.  相似文献   

7.
Requirements for stimulating autocrine proliferation of human T cell clones expressing either alpha/beta or gamma/delta antigen receptors via the "alternative" CD2 pathway have been examined using a large set of monoclonal antibodies (mAb). In the presence of autologous accessory cells (AC, B-lymphoblastoid cell lines) 2 of 13 single CD2 mAb (CLB-T11.1/1 and 6F10.3) stimulated proliferation of gamma/delta but not alpha/beta cells. Interleukin (IL) 1 or IL 6 did not substitute for AC in stimulating gamma/delta clones. Addition of CD28 mAb YTH 913.12 with the CD2 mAb did not result in stimulation of any alpha/beta clones. In the absence of AC, none of the CD2 mAb singly could stimulate any T cell clones, but pairs of mAb directed to different epitopes of CD2 (CLB-T11.1/1 + CLB- T11.2/1 or 6F10.3 + 39C1.5) stimulated both alpha/beta and gamma/delta clones. In both cases, stimulation was reduced by the presence of CD3 mAb. These results confirm that the established AC-independent alternative pathway of T cell activation, which requires binding of two separate epitopes of CD2, operates in both gamma/delta and alpha/beta T cells, and further suggest that an additional pathway initiated by binding of a single CD2 epitope in the presence of AC is exclusively operational in gamma/delta cells.  相似文献   

8.
CD44 contributes to T cell activation   总被引:43,自引:0,他引:43  
We demonstrate here that the CD44 molecule, which mediates lymphocyte adhesion to high endothelial venules (HEV), is also involved in the delivery of an activation signal to the T cell. We have produced a CD44 mAb (H90) which is able to block the binding of lymphocytes to high endothelial venules. H90 had no effect on [3H]TdR incorporation of whole PBL stimulated by lectins, allogeneic cells, or CD3 mAb in the soluble phase; in contrast, it strongly increased [3H]TdR incorporation of PBL stimulated by CD2 pairs of mAb or by CD3 mAb linked to the plastic culture plates, when purified T cells were used, H90 mAb could efficiently induce them to proliferate after a primary signal of activation delivered via cross-linked CD3 or via CD2, an effect mediated by Il-2 synthesis and Il-2R expression. Thus, the effect of H90 mAb resembles the mitogenic effect of CD28 "9.3" mAb. However, several results show that CD28 and CD44 mediate different signals to the T cells: i) in contrast to CD28 mAb, CD44 mAb cannot complement the signal delivered by a soluble CD3 mAb, lectins, or PMA; ii) CD44 mAb, at the difference of CD28 mAb, cannot induce CD3+ thymocytes to proliferate in conjunction with a first signal provided via cross-linked CD3 or via CD2; iii) F(ab) fragments of H90 were efficient, whereas divalent fragments of CD29 9.3 mAb are required to produce activation signals; and iv) CD44 and CD28 mAb produce a very strong synergistic effect on T cell proliferation. These results fit with previous ones showing that endothelial cells can play the role of accessory cell in T cell activation and that a hierarchy of signaling can be delivered to T cells via CD3 and CD2.  相似文献   

9.
The signal requirements for activation and proliferation of CD1+ thymocytes have been studied in order to define whether this immature cell population could function as mature T cells do. We found that CD1+ cells expressed high levels of CD25 antigen upon triggering with specific monoclonal antibodies (mAbs) (anti-CD3, anti-CD2, anti-CD28) in association with low doses of Phorbol-13-myristate-12-acetate (PMA). More interestingly, we described that in the presence of PMA CD1+ thymocytes proliferate upon stimulation with anti-CD28 mAb as well as with a pair of anti-CD2 mAbs, without the need of exogenous interleukin-2 (IL2), whereas they respond to anti-CD3 mAb only if exogenous IL2 was provided. Furthermore, CD1+ cells stimulated under optimal proliferative conditions, gave rise to cell populations capable of lysing natural killer (NK)-sensitive (K562) and NK-resistant (MEL 10, Daudi, EPA1) tumor target cells. These data strongly support the idea that CD1+ thymocytes, under appropriate stimulations, display some of the functional capabilities of mature T cells.  相似文献   

10.
CD5 is a 67-kDa antigen that is expressed on the membrane of the majority of human T cells, and on a subset of B cells. Previous studies have demonstrated that anti-CD5 monoclonal antibodies (mAb) can provide a helper signal for T cell activation through the TCR/CD3 complex. We now demonstrate that when CD5 is crosslinked by immobilized anti-CD5 mAb in the absence of other activating stimuli, the T cells proliferate in response to recombinant interleukin 2 (rIL2) (but not to rIL4). Four different anti-CD5 mAb (anti-Leu1, 10.2, anti-T1, and OKT1) had a similar effect. IL2 responsiveness could be induced with immobilized anti-CD5 mAb in cultures of purified T cells, but was enhanced by the addition of monocytes, by monocyte culture supernatant, or by the combination of IL1 and IL6. Staining with an anti-IL2 receptor (p55) mAb demonstrated expression of IL2 receptors on about 10% of the anti-CD5-stimulated T cells. Both virgin (CD45RA+) and memory (CD45RO+) T cells were responsive. Our data provide further evidence for the involvement of CD5 in T cell activation.  相似文献   

11.
CD2 is a differentiation marker present on T cells and NK cells. Cytotoxic T lymphocytes (CTL) can be activated by antibodies directed against the CD3/T-cell receptor complex and CD2 structures; however, the role of CD2 in regulation of CD3- large granular lymphocyte (LGL) functions has only recently been studied. Anti-CD2 monoclonal antibodies (mAbs) may be either augmenting or inhibitory and T-cell activation via the CD2 molecule occurs only when mAb binds defined combinations of the CD2 epitopes. Since LGL can be activated by a single stimulus (e.g., IL-2) to proliferate, produce IFN gamma, and increase their cytolytic potential, these functions were chosen to examine the effects of the anti-CD2 mAb and its combinations. Anti-CD2 mAb (D66, GT2, and X11-1) were incubated with LGL for various times in the absence or presence of IL2 and IFN gamma production was monitored. Single anti-CD2 mAb treatment demonstrated minimal augmentation of IFN gamma production. However, combinations of anti-CD2 (9.6) and the other anti-CD2 mAb resulted in a significant, synergistic enhancement of the IFN gamma production. Anti-CD2 mAb treatment appeared to inhibit production generated by optimal doses of IL-2 (1,000 U/ml). The effect of anti-CD2 mAb on IFN gamma production parallel their effects on LGL NK and LAK activity. These data suggested that mAb against the CD2 molecule were important in regulating LGL functions in the absence of a functional CD3 receptor in LGL.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
4-1BB (CD137), a member of the tumor necrosis factor receptor superfamily, is expressed on activated T-cells, and 4-1BB signaling due to interaction with 4-1BB ligand or ligation with anti-4-1BB monoclonal antibody (mAb) costimulates T cells. It has been shown that administration of anti-4-1BB mAb induces anti-tumor immunity in mice, but the nature of the cellular subsets responsible for this immunity is uncertain. In this study we found that anti-4-1BB mAb administration to B16F10 melanoma-bearing mice induced marked expansion of CD11c+CD8+ T-cells in parallel with suppression of pulmonary tumors. The mAb-treated mice produced higher levels of IFN- in their tumor tissues, spleen and lymph nodes than mice exposed to control antibody. When the CD11c+CD8+ T-cells were purified and re-stimulated in vitro, they produced high levels of the Th1 cytokines, IFN- and IL-2, but low levels of the Th2 cytokines, IL-4 and IL-10. Furthermore, they expressed high levels of 4-1BB and CD107a, a marker of activated cytotoxic T-lymphocytes. Our results suggest that CD11c+CD8+ T-cells play a role in the anti-tumor immunity induced by anti-4-1BB mAb.  相似文献   

13.
Interaction of the glycosyl phosphatidylinositol-linked differentiation Ag CD73 (ecto-5'-nucleotidase) with the CD73-specific mAb 1E9 generates agonistic signals that strongly synergize with T cell activation induced by CD3 and CD2 mAb. This synergy is observed only when 1E9 is immobilized on plastic and occurs in the absence of accessory cells or exogenous lymphokines. 1E9 induces a rapid (though transient) increase in [Ca2+]i in a minor proportion (20 to 30%) of unfractionated T lymphocytes (presumably CD73+ cells). However, this [Ca2+]i mobilization is not sufficient to fully activate CD73+ T cells, as shown by the requirement of additional signals such as CD3 or CD2 stimulation to initiate T cell proliferation. These signals cannot be substituted by the exogenous lymphokines, rIL-1, rIL-2, or rIL-4, or PMA (when T cells are rigorously depleted of monocytes). These data indicate that CD73 may behave as an accessory molecule regulating interactions between T cells and antigens or APC. A comparison was carried out with mAb 9.3 to the differentiation Ag CD28, another agonistic molecule with activating properties similar to CD73. Despite their lower percentage, the ability of CD73+ T cells to amplify the proliferation induced by CD3 or CD2 mAb was equivalent or even greater than that of CD28+ T cells. Once activated, CD73+ cells may recruit the remaining (CD73-) cells primed by CD3 or CD2 stimulation. Based on these data, we suggest that CD73+ T lymphocytes may be a specialized subset to amplify immune responses originated by the CD3 and CD2 activation pathways. Finally, the functional association between CD73 and integral membrane molecules like CD3 and CD2 suggests that GPI-anchored molecules may play a role in transmembrane signaling mediated by conventional second messenger systems.  相似文献   

14.
Activation of T cells often requires both activation signals delivered by ligation of the TCR and those resulting from costimulatory interactions between certain T cell surface accessory molecules and their respective counter-receptors on APC. CD11a/CD18 complex on T cells modulate the activation of T cells by interacting with its counter-receptors intracellular adhesion molecule (ICAM-1) (CD54) and/or ICAM-2 on the surface of APC. The costimulatory ability of ICAM-1 has been demonstrated. Using a soluble ICAM-2 Ig fusion protein (receptor globulin, Rg) we demonstrate the costimulatory effect of ICAM-2 during the activation of CD4+ T cells. When coimmobilized with anti-TCR-1 mAb ICAM-2 Rg induced vigorous proliferative response of CD4+ T cells. This costimulatory effect of ICAM-2 was dependent on its coimmobilization with mAb directed at the CD3/TCR complex but not those directed at CD2 or CD28. Both resting as well as Ag-primed CD4+ T cells responded to the costimulatory effects of ICAM-2. The addition of mAb directed at the CD11a or CD18 molecules almost completely inhibited the responses to ICAM-2 Rg. These results are consistent with the role of CD11a/CD18 complex as a receptor for ICAM-2 mediating its costimulatory effects. Stimulation of T cells with coimmobilized anti-TCR-1 and ICAM-2 resulted in the induction of IL-2R (CD25), and anti-Tac (CD25) mAb inhibited this response suggesting the contribution of endogenously synthesized IL-2 during this stimulation. These results demonstrate that like its homologue ICAM-1, ICAM-2 also exerts a strong costimulatory effect during the TCR-initiated activation of T cells. The costimulatory effects generated by the CD11a/CD18:ICAM-2 interaction may be critical during the initiation of T cell activation by ICAM-1low APC.  相似文献   

15.
Inflammasomes are multi-protein complexes that control the production of pro-inflammatory cytokines such as IL-1β. Inflammasomes play an important role in the control of immunity to tumors and infections, and also in autoimmune diseases, but the mechanisms controlling the activation of human inflammasomes are largely unknown. We found that human activated CD4+CD45RO+ memory T-cells specifically suppress P2X7R-mediated NLRP3 inflammasome activation, without affecting P2X7R-independent NLRP3 or NLRP1 inflammasome activation. The concomitant increase in pro-IL-1β production induced by activated memory T-cells concealed this effect. Priming with IFNβ decreased pro-IL-1β production in addition to NLRP3 inflammasome inhibition and thus unmasked the inhibitory effect on NLRP3 inflammasome activation. IFNβ suppresses NLRP3 inflammasome activation through an indirect mechanism involving decreased P2X7R signaling. The inhibition of pro-IL-1β production and suppression of NLRP3 inflammasome activation by IFNβ-primed human CD4+CD45RO+ memory T-cells is partly mediated by soluble FasL and is associated with down-regulated P2X7R mRNA expression and reduced response to ATP in monocytes. CD4+CD45RO+ memory T-cells from multiple sclerosis (MS) patients showed a reduced ability to suppress NLRP3 inflammasome activation, however their suppressive ability was recovered following in vivo treatment with IFNβ. Thus, our data demonstrate that human P2X7R-mediated NLRP3 inflammasome activation is regulated by activated CD4+CD45RO+ memory T cells, and provide new information on the mechanisms mediating the therapeutic effects of IFNβ in MS.  相似文献   

16.
Although both IL-2 and IL-4 can promote the growth of activated T cells, IL-4 appears to selectively promote the growth of those helper/inducer and cytolytic T cells which have been activated via their CD3/TCR complex. The present study examines the participation of CD28 and certain other T cell-surface molecules in inducing T cell responsiveness to IL-4. Purified small high density T cells were cultured in the absence of accessory cells with various soluble anti-human T cell mAb with or without soluble anti-CD3 mAb and their responsiveness to IL-4 was studied. None of the soluble anti-T cell mAb alone was able to induce T cell proliferation in response to IL-4. A combination of soluble anti-CD3 with anti-CD28 mAb but not with mAb directed at the CD2, CD5, CD7, CD11a/CD18, or class I MHC molecules induced T cell proliferation in response to IL-4. Anti-CD2 and anti-CD5 mAb enhanced and anti-CD18 mAb inhibited this anti-CD3 + anti-CD28 mAb-induced T cell response to IL-4. In addition, anti-CD2 in combination with anti-CD3 and anti-CD28 mAb induced modest levels of T cell proliferation even in the absence of exogenous cytokines. IL-1, IL-6, and TNF were each unable to replace either anti-CD3 or anti-CD28 mAb in the induction of T cell responsiveness to IL-4, but both IL-1 and TNF enhanced this response. The anti-CD3 + anti-CD28 mAb-induced response to IL-4 was exhibited only by cells within the CD4+CD29+CD45R- memory T subpopulation, and not by CD8+ or CD4+CD45R+ naive T cells. When individually cross-linked with goat anti-mouse IgG antibody immobilized on plastic surface, only anti-CD3 and anti-CD28 mAb were able to induce T cell proliferation. These results indicate that the CD3 and CD28 molecules play a crucial role in inducing T cell responsiveness to IL-4 and that the CD2, CD5, and CD11a/CD18 molecules influence this process.  相似文献   

17.
Previous studies have shown that human CD8-positive T cells activated by immobilized mAb to the CD3 complex have the capacity to support the generation of Ig secreting cells (ISC). The experiments reported here were undertaken to examine the nature of CD8+ T cell helper function in greater detail. CD8+ T cells that had been treated with mitomycin C (CD8+ mito) and stimulated by immobilized mAb to CD3 (64.1) provided help for the generation of ISC from resting B cells. By contrast, CD8+ mito did not support the generation of ISC in cultures stimulated by pokeweed mitogen (PWM). This could not be explained by differences in the production of IL2, since PWM and anti-CD3 induced comparable amounts of IL2 from CD8+ mito. In anti-CD3-stimulated cultures, CD8+ mito supported the generation of larger numbers of ISC when B cells were also activated with Staphylococcus aureus (SA). By contrast, in PWM-stimulated cultures, CD8+ mito did not provide help for SA-activated B cells. Rather, PWM-stimulated CD8+ mito appeared to suppress the generation of ISC induced by PWM-activated CD4+ mito or by SA + IL2, whereas anti-CD3-stimulated CD8+ mito did not. Only control CD8+ T cells, which were able to proliferate, exerted suppressive effects in anti-CD3-stimulated cultures. Examination of the functional capacities of a battery of CD8+ T cell clones indicated that the same clonal population of CD8+ cells could provide help or suppress responses when stimulated with anti-CD3 or PWM, respectively. The functional activities of CD8+ clones differed from those of fresh CD8+ cells. Thus, anti-CD3-stimulated CD8+ clones provided help for B cells regardless of whether they were treated with mitomycin C. Moreover, PWM stimulated suppression by CD8+ clones was abrogated by treating the clones with radiation or mitomycin C. These results indicate that helper T cell function is not limited to the CD4+ T cell population, but that help can also be provided by appropriately stimulated CD8+ T cells. Taken together, these results indicate that CD8+ T cells are not limited in their capacity to regulate B cell responses, but rather can provide positive or negative influences depending on the nature of the activating stimulus.  相似文献   

18.
Binding monoclonal antibodies (MAb) both to D66 and 9.6/T11(1) epitopes on the CD2 [T,gp50]-defined molecule produces a high level of T cell mitosis. This was observed with a battery of MAb of different isotypes. In contrast, none of the anti-D66 or anti-9.6/T11(1)Ab could trigger T cell proliferation in combination with anti-T11(3). Moreover, all anti-D66-9.6/T11(1) pairs of MAb tested required monocytes to activate T cells which were recruited through their Fc receptors. Variations among normal individuals were observed in the level of response to anti-D66-9.6/T11(1) pairs of Ab, 75% of a population of French Caucasians giving a high response. The level of response of a given individual was determined by his accessory cells. However, the level of response of an individual appeared to be minimally influenced by the isotype of a peculiar anti-D66 or anti-9.6/T11(1) Ab. The addition of exogeneous IL 2 could overcome the removal of accessory cells or the modulation of CD3 molecules. In contrast, IL 2 receptor appearance was not overcome by removal of monocytes. Thus, T cell activation via CD2 seems to be produced by "touching" several definite regions of this molecule which trigger a cascade of events similar to those produced by mitogenic lectins. One can assume that the appropriate conformational changes of the CD2 molecule induced by anti-D66-9.6/T11(1) pairs of Ab are solely produced when they are presented by accessory cells. This leaves open the question of whether accessory cells would also play a more active role.  相似文献   

19.
Anti-CD3 mAb can activate T cells to help in B cell activation as detected by late events, such as maturation of B cells into Ig-secreting cells (IgSC), or by early events, such as B cell surface expression of the activation marker CD23. Two different anti-CD2 mAb each inhibited anti-CD3-induced T cell-dependent B cell activation in a dose-dependent fashion. Neither irradiation of the T cells prior to culture nor depletion of CD8+ cells abrogated the inhibitory effects of anti-CD2 mAb. Despite the ability of these anti-CD2 mAb to inhibit anti-CD3-induced IL2 production, addition of exogenous IL2 to anti-CD2 mAb-containing cultures could not fully reverse the inhibitory effects on IgSC generation. Furthermore, addition of various combinations of IL1, IL2, IL4, and IL6 or crude PBMC or monocyte culture supernatants also could not reverse anti-CD2-driven inhibition. In T cell-depleted cultures, anti-CD2 mAb had no effect on the ability of IL4 to induce B cell CD23 expression, confirming that anti-CD2 mAb had no direct effect on B cells. However, in cultures containing T+ non-T cells, anti-CD2 mAb did partially inhibit IL4-induced B cell CD23 expression. Taken together, these observations demonstrate that certain CD2 ligands can modulate T cell-dependent B cell activation by a mechanism which, at least in part, involves a direct effect by the CD2 ligand on the T cell itself.  相似文献   

20.
Previous studies indicated that, unlike peripheral T-cells, freshly isolated thymocytes show little or no proliferation to activation signals via either the antigen/MHC receptor complex (CD3Ti) or the CD2 structure, unless exogenous IL-2 or phorbol esters are added. To investigate these differences in more detail, we have studied the response of clonal populations of mature thymocyte subsets as well as peripheral T-cell clones to activation via either CD3Ti or CD2. Here we report the characterization of three clones belonging to different subsets of mature thymocytes: CD3+ CD4+ (Ti alpha/beta), CD3+ CD8+ (Ti alpha/beta), and CD3+ CD4- CD8- (Ti gamma/delta). All three clones could be induced to proliferate to insolubilized anti-CD3 mAb. In contrast, activating anti-CD2 mAbs, which induced proliferation in all peripheral T-cell clones tested, did not induce an appreciable proliferation of the thymocyte clones. The latter required additional signals provided by the phorbol ester PMA. However, anti-CD2 mAbs were able to induce early activation events such as phosphoinositide turnover and [Ca2+]i increase to an extent similar to the ones elicited by anti-CD3 mAb. These results further support previous findings suggesting that mature thymocytes are not functionally identical to peripheral T-cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号