首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synechococcus sp. PCC 7002 and all other cyanobacteria that synthesize phycocyanin have a gene, cpcT, that is paralogous to cpeT, a gene of unknown function affecting phycoerythrin synthesis in Fremyella diplosiphon. A cpcT null mutant contains 40% less phycocyanin than wild type and produces smaller phycobilisomes with red-shifted absorbance and fluorescence emission maxima. Phycocyanin from the cpcT mutant has an absorbance maximum at 634 nm compared with 626 nm for the wild type. The phycocyanin beta-subunit from the cpcT mutant has slightly smaller apparent molecular weight on SDS-PAGE. Purified phycocyanins from the cpcT mutant and wild type were cleaved with formic acid, and the products were analyzed by SDS-PAGE. No phycocyanobilin chromophore was bound to the peptide containing Cys-153 derived from the phycocyanin beta-subunit of the cpcT mutant. Recombinant CpcT was used to perform in vitro bilin addition assays with apophycocyanin (CpcA/CpcB) and phycocyanobilin. Depending on the source of phycocyanobilin, reaction products with CpcT had absorbance maxima between 597 and 603 nm as compared with 638 nm for the control reactions, in which mesobiliverdin becomes covalently bound. After trypsin digestion and reverse phase high performance liquid chromatography, the CpcT reaction product produced one major phycocyanobilin-containing peptide. This peptide had a retention time identical to that of the tryptic peptide that includes phycocyanobilin-bound, cysteine 153 of wild-type phycocyanin. The results from characterization of the cpcT mutant as well as the in vitro biochemical assays demonstrate that CpcT is a new phycocyanobilin lyase that specifically attaches phycocyanobilin to Cys-153 of the phycocyanin beta-subunit.  相似文献   

2.
A procedure was developed whereby haem was taken up by dark-grown cells of the unicellular rhodophyte Cyanidium caldarium. These cells were subsequently incubated either in the dark with 5-aminolaevulinate, which results in excretion of phycocyanobilin into the suspending medium or incubated in the light, which results in synthesis and accumulation of phycocyanin and chlorophyll a within the cells. Phycocyanobilin was isolated from phycocyanin by cleavage from apoprotein in methanol. Phycocyanobilin prepared from phycocyanin or excreted from cells given 5-aminolaevulinate was methylated and purified by t.l.c. By using 14C labelling either in the haem or in 5-aminolaevulinate administered, haem incorporation into phycocyanobilin was demonstrated in both dark and light systems. Since chlorophyll a synthesized in the light in the presence of labelled haem contained no radioactivity, it was clear that haem was directly incorporated into phycocyanobilin and not first converted into protoporphyrin IX. These results clearly demonstrate phycocyanobilin synthesis via haem and not via magnesium protoporphyrin IX as has also been postulated.  相似文献   

3.
C-phycocyanin: a potent peroxyl radical scavenger in vivo and in vitro   总被引:6,自引:0,他引:6  
C-Phycocyanin (from Spirulina platensis) effectively inhibited CCl(4)-induced lipid peroxidation in rat liver in vivo. Both native and reduced phycocyanin significantly inhibited peroxyl radical-induced lipid peroxidation in rat liver microsomes and the inhibition was concentration dependent with an IC(50) of 11.35 and 12.7 microM, respectively. The radical scavenging property of phycocyanin was established by studying its reactivity with peroxyl and hydroxyl radicals and also by competition kinetics of crocin bleaching. These studies have demonstrated that phycocyanin is a potent peroxyl radical scavenger with an IC(50) of 5.0 microM and the rate constant ratios obtained for phycocyanin and uric acid (a known peroxyl radical scavenger) were 1.54 and 3.5, respectively. These studies clearly suggest that the covalently linked chromophore, phycocyanobilin, is involved in the antioxidant and radical scavenging activity of phycocyanin.  相似文献   

4.
Many cyanobacteria use brilliantly pigmented, multisubunit macromolecular structures known as phycobilisomes as antenna to enhance light harvesting for photosynthesis. Recent studies have defined the enzymes that synthesize phycobilin chromophores as well as many of the phycobilin lyase enzymes that attach these chromophores to their cognate apoproteins. The ability of the phycocyanin α-subunit (CpcA) to bind alternative linear tetrapyrrole chromophores was examined through the use of a heterologous expression system in Escherichia coli. E. coli strains produced phycocyanobilin, phytochromobilin, or phycoerythrobilin when they expressed 3Z-phycocyanobilin:ferredoxin oxidoreductase (PcyA), 3Z-phytochromobilin:ferredoxin oxidoreductase (HY2) from Arabidopsis thaliana, or phycoerythrobilin synthase (PebS) from the myovirus P-SSM4, respectively. CpcA from Synechocystis sp. PCC 6803 or Synechococcus sp. PCC 7002 was coexpressed in these strains with the phycocyanin α-subunit phycocyanobilin lyase, CpcE/CpcF, or the phycoerythrocyanin α-subunit phycocyanobilin isomerizing lyase, PecE/PecF, from Noctoc sp. PCC 7120. Both lyases were capable of attaching three different linear tetrapyrrole chromophores to CpcA; thus, up to six different CpcA variants, each with a unique chromophore, could be produced with this system. One of these chromophores, denoted phytoviolobilin, has not yet been observed naturally. The recombinant proteins had unexpected and potentially useful properties, which included very high fluorescence quantum yields and photochemical activity. Chimeric lyases PecE/CpcF and CpcE/PecF were used to show that the isomerizing activity that converts phycocyanobilin to phycoviolobilin resides with PecF and not PecE. Finally, spectroscopic properties of recombinant phycocyanin R-PCIII, in which the CpcA subunits carry a phycoerythrobilin chromophore, are described.  相似文献   

5.
Cell-free extracts of the unicellular red alga Cyanidium caldarium catalyze the transformation of biliverdin to a product indistinguishable from phycocyanobilin, the free bilin derived from phycocyanin by methanolysis. Crude cell-free extract requires biliverdin as the only substrate, but after removal of low molecular weight components by gel filtration, the reaction shows an additional requirement for a reduced pyridine nucleotide. Boiled extract is enzymically inactive, activity is not sedimented by high-speed centrifugation, and mesobiliverdin cannot serve as a substrate.

Incubation of cell extracts with biliverdin yields two products with very similar spectrophotometric properties in acidic methanol, but which are separable by reverse-phase high pressure liquid chromatography. The same two products are formed by methanolysis of protein-bound phycocyanin chromophore, with the late-eluting one predominating. The two products derived from either phycocyanin methanolysis or cell extract incubation with biliverdin are partially interconvertible and they form the same ethylidine-free isomeric derivative, mesobiliverdin. Their absorption spectra correspond to those of the Z- and E-ethylidine isomers of phycocyanobilin. Based on previous work showing that the major methanolysis product has the E-ethylidine configuration, the other product of methanolysis and enzymic biliverdin transformation is therefore the Z-ethylidine isomer. The time course for formation of the two products during incubation suggests that the early-eluting product is the precursor of the late-eluting one. These results suggest that Z-ethylidine phycocyanobilin is the precursor of the E-ethylidine isomer, and that the latter may be a normal cellular precursor to protein-bound phycocyanin chromophore.

  相似文献   

6.
A series of experiments on the light-harvesting properties of the cryptomonad biliprotein phycoerythrin 566 has been carried out on purified protein isolated from Cryptomonas ovata. Although this pigment has an absorption maximum at 566 nm, a property very close to that of other phycoerythrins, it was found to have a totally unique set of chromophores. The chromophores (bilins) responsible for its absorption spectrum were analyzed by a number of approaches. Chromophore-containing peptides were produced by trypsin treatment and purified in order to isolate the individual peptide-bound bilins free of overlapping absorption. These chromopeptides, after comparison with appropriate controls, showed that three spectrally distinct bilins occurred on the purified oligomeric protein. Two of the bilins were the well-known phycoerythrobilin and cryptoviolin, but the third was previously undiscovered and had an absorption spectrum between that of cryptoviolin and phycocyanobilin. Since the spectral diversity of the three bilins was fully maintained in solvents that minimize the effects of apoprotein on the spectra of the bilins, it is likely that the three bilins are also structurally dissimilar. The alpha and beta subunits, which constitute the protein, were separated by ion-exchange chromatography, and the new bilin was found to be the sole chromophore on the alpha subunit. It was also found that at least two alpha subunits could be separated and they both had this unusual bilin (cryptobilin 596). The beta subunit, therefore, contained both phycoerythrobilin and cryptoviolin. On the basis of the spectra of the three chromopeptides, the absorption spectrum of the protein was modeled using the known absorptivities of cryptoviolin and phycoerythrobilin.  相似文献   

7.
Pigments released from phycoerythrins and phycocyanins by treatment with hot methanol are currently regarded as equivalent to the native chromophores phycoerythrobilin and phycocyanobilin. However, evidence presented here confirms the original view of O'Carra & O'hEocha [(1966 Phytochemistry 5, 993-997] that these methanol-released pigments are artefacts differing in their chromophoric conjugated systems from the native protein-bound prosthetic groups. By contrast, the native spectral properties are retained in pigments released by careful acid treatment of the biliproteins and these acid-released phycobilins, rather than the methanol-released pigments, are therefore regarded as the protein-free forms of the native chromophores. The conclusion reached by Chapman, Cole & Siegelman [(1968) J. Am. Chem. Soc. 89, 3643-3645], that all the algal biliproteins contain only phycoerythrobilin and phycocyanobilin, is shown to be incorrect. The identification of a urobilinoid chromophore, phycourobilin, accompanying phycoerythrobilin in B- and R- phycoerythrins is confirmed and supported by more extensive evidence. The cryptomonad phycocyanins are shown to contain a phycobilin chromophore accompanying phycocyanobilin. This further phycobilin has the spectral properties of the class of bilins known as violins and the provisional name "cryptoviolin" is proposed pending elucidation of its structure.  相似文献   

8.
The possible roles of mesohaem and mesobiliverdin as metabolic precursors of phycocyanobilin, the chromophore of phycocyanin, were studied in the unicellular rhodophyte Cyanidium caldarium. Dark-grown cells of this organism, which had been exposed to mesohaem, were either incubated in the dark with 5-aminolaevulinate, which results in excretion of bilins into the suspending medium, or incubated in the light, which results in synthesis of phycocyanin within the cells. By using 14C-labelling, either in the mesohaem or in the 5-aminolaevulinate administered, it was shown that mesohaem is not a precursor of phycocyanobilin in either dark or light systems. However, mesohaem was converted into mesobiliverdin in both systems, a phenomenon that is further evidence for the existence of an algal haem oxygenase. The data also showed that mesobiliverdin is not a precursor of phycocyanobilin. These results suggest that algal bilins are formed via haem degradation to biliverdin in the same way as mammalian bile pigments.  相似文献   

9.
To study the assembly of phycocyanin β subunit, the gene cpcT was first cloned from Arthrospira platensis FACHB314. To explore the function of cpcT, the DNA of phycocyanin β subunit and cpcT were transformed into Escherichia coli BL21 with the plasmid pET-hox1-pcyA, which contained the genes hemeoxygenase 1 (Hox1) and ferredoxin oxidoreductase (PcyA) needed to produce phycocyanobilin. The transformed strains showed specific phycocyanin fluorescence, and the fluorescence intensity was stronger than the strains with only phycocyanin β subunit, indicating that CpcT can promote the assembly of phycocyanin to generate fluorescence. To study the possible binding sites of apo-phycocyanin and phycocyanobilin, the Cys-82 and Cys-153 of the β subunit were individually mutated, giving two kinds of mutants. The results show that Cys-153 maybe the active site for β subunit binding to phycocyanobilins, which is catalyzed by CpcT in A. platensis FACHB314.  相似文献   

10.
The antioxidative activity of phycocyanobilin fromSpirulina platensis was evaluated againstoxidation of methyl linoleate in a hydrophobic systemor with phosphatidylcholine liposomes. Phycocyanobilin as well as phytochemicals including-tocopherol, caffeic acid and zeaxanthin,effectively inhibited the peroxidation of methyllinoleate and produced a prolonged induction period.Oxidation of phosphatidylcholine liposomes was alsocontrolled markedly by adding phycocyanobilin or-tocopherol. Phycocyanobilin was distributedoutside in the liposomes to scavenge radicals fromAAPH and to prevent initiation of radical chainreactions. When the concentrations of phycocyanin andphycocyanobilin in the reaction mixture were adjustedequally on a phycocyanobilin basis, the activity ofphycocyanobilin was almost the same as that ofphycocyanin in the AAPH-containing reaction mixture.The antioxidizing action of phycocyanin prepared fromspray-dried Spirulina almost agreed with thatfrom fresh Spirulina in the AAPH-containingreaction mixture. These results suggest thatphycocyanobilin is responsible for the majority of theantioxidative activity of phycocyanin and may act asan effective antioxidant in a living human body.  相似文献   

11.
Phycocyanin, a high value pigment was purified from diazotrophic cyanobacteria Anabaena variabilis CCC421 using a strategy involving ammonium sulfate precipitation, dialysis and anion exchange chromatography using DEAE-cellulose column. 36% phycocyanin with a purity of 2.75 was recovered finally after anion exchange chromatography. Purified phycocyanin was found to contain 2 subunits of 17 and 18 kDa which were identified as α and (β subunits by SDS-PAGE and MALDI-TOF. HPLC method using a C5 column coupled with fluorescence or photodiode-based detection was also developed to separate and detect the A. variabilis CCC421 phycocyanin subunits. The fluorescence method was more sensitive than photodiode one. The purified phycocyanin from A. variabilis CCC421 as well as its subunits was characterized with respect to absorption and IR spectra. Spectral characterization of the subunits revealed that α and β-subunits contained one and two phycocyanobilin groups as chromophores, respectively.  相似文献   

12.
Derks AK  Vasiliev S  Bruce D 《Biochemistry》2008,47(45):11877-11884
Phycobilisomes are the major light-harvesting complexes for cyanobacteria, and phycocyanin is the primary phycobiliprotein of the phycobilisome rod. Phycocyanobilin chromophores are covalently bonded to the phycocyanin beta subunit (CpcB) by specific lyases which have been recently identified in the cyanobacterium Synechococcus sp. PCC 7002. Surprisingly, we found that mutants missing the CpcB lyases were nevertheless capable of producing pigmented phycocyanin when grown under low-light conditions. Absorbance measurements at 10 K revealed the energy states of the beta phycocyanin chromophores to be slightly shifted, and 77 K steady state fluorescence emission spectroscopy showed that excitation energy transfer involving the targeted chromophores was disrupted. This evidence indicates that the position of the phycocyanobilin chromophore within the binding domain of the phycocyanin beta subunit had been modified. We hypothesize that alternate, less specific lyases are able to add chromophores, with varying effectiveness, to the beta binding sites.  相似文献   

13.
14.
An enzyme extract from the phycocyanin-containing unicellular rhodophyte, Cyanidium caldarium, reductively transforms biliverdin IX alpha to phycocyanobilin, the chromophore of phycocyanin, in the presence of NADPH. Unpurified cell extract forms both 3(E)-phycocyanobilin, which is identical to the major pigment that is released from phycocyanin by methanolysis, and 3(Z)-phycocyanobilin, which is obtained as a minor methanolysis product. After removal of low molecular weight material from the cell extract, only 3(Z)-phycocyanobilin is formed. 3(E)-Phycocyanobilin formation from biliverdin IX alpha, and the ability to isomerize 3(Z)-phycocyanobilin to 3(E)-phycocyanobilin, are reconstituted by the addition of glutathione to the incubation mixture. Partially purified protein fractions derived from the initial enzyme extract form 3(Z)-phycocyanobilin plus two additional, violet colored bilins, upon incubation with NADPH and biliverdin IX alpha. Further purified protein fractions produce only the violet colored bilins from biliverdin IX alpha. One of these bilins was identified as 3(Z)-phycoerythrobilin by comparative spectrophotometry, reverse-phase high pressure liquid chromatography, and 1H NMR spectroscopy. A C. caldarium protein fraction catalyzes the conversion of 3(Z)-phycoerythrobilin to 3(Z)-phycocyanobilin. This fraction also catalyzes the conversion of 3(E)-phycoerythrobilin to 3(E)-phycocyanobilin. The conversion of phycoerythrobilins to phycocyanobilins requires neither biliverdin nor NADPH. The synthesis of phycoerythrobilin and its conversion to phycocyanobilin by extracts of C. caldarium, a species that does not contain phycoerythrin, indicates that phycoerythrobilin is a biosynthetic precursor to phycocyanobilin. The enzymatic conversion of the ethylidine group from the Z to the E configuration suggests that the E-isomer is the precursor to the protein-bound chromophore.  相似文献   

15.
Nonenzymatic decarboxylation of pyruvate   总被引:2,自引:0,他引:2  
Triton X-100, retinol, retinoic acid, retinal, hexane, dithiothreitol, mercaptoethanol, and some other commercially available chemicals caused nonenzymatic decarboxylation of pyruvate and alpha-ketoglutarate. "Lipids" obtained from human or pigeon liver homogenates using isopropanol/hexane also had very high nonenzymatic decarboxylating activity on these two alpha-ketoacids; most of this activity could be traced to the hexane (Eastman) used in the extraction. Optimum pH of the reaction with dithiothreitol and mercaptoethanol was 7-8 and with the other chemicals around 10, but considerable activity was present at pH 7-8. Liver homogenates had a scavenger effect on the decarboxylating activity of Triton X-100 and of dithiothreitol. Dithiothreitol and mercaptoethanol at high concentrations (greater than 1 mM) also had a scavenger effect on the decarboxylating activity of the "lipids." Pretreatment of Triton X-100, dithiothreitol, retinol, and the "lipids" with catalase markedly decreased the decarboxylating activity, while treatment with boiled catalase failed to do so. The results suggest that these compounds contain oxidizing contaminants, perhaps peroxide derivatives. Powerful oxidizing impurities have been reported in Triton X-100 from various sources by Y. Ashani and G. N. Catravas (1980, Anal. Biochem 109, 55-62). Such peroxide derivatives may cause nonenzymatic decarboxylation of pyruvate and alpha-ketoglutarate, presumably by a mechanism similar to the well-known nonenzymatic decarboxylation of alpha-ketoacids by hydrogen peroxide. In the absence of catalase and/or other protective agents against reactive oxygen derivatives, these chemicals would interfere in the assays of pyruvate dehydrogenase, pyruvate dehydrogenase complex, and alpha-ketoglutarate dehydrogenase complex which depend on the release of 14CO2 from alpha[1-14C]ketoacids.  相似文献   

16.
17.
We report data from two related assay systems (isolated enzyme assays and whole blood assays) that C-phycocyanin a biliprotein from Spirulina platensis is a selective inhibitor of cyclooxygenase-2 (COX-2) with a very low IC(50) COX-2/IC(50) COX-1 ratio (0.04). The extent of inhibition depends on the period of preincubation of phycocyanin with COX-2, but without any effect on the period of preincubation with COX-1. The IC(50) value obtained for the inhibition of COX-2 by phycocyanin is much lower (180 nM) as compared to those of celecoxib (255 nM) and rofecoxib (401 nM), the well-known selective COX-2 inhibitors. In the human whole blood assay, phycocyanin very efficiently inhibited COX-2 with an IC(50) value of 80 nM. Reduced phycocyanin and phycocyanobilin, the chromophore of phycocyanin are poor inhibitors of COX-2 without COX-2 selectivity. This suggests that apoprotein in phycocyanin plays a key role in the selective inhibition of COX-2. The present study points out that the hepatoprotective, anti-inflammatory, and anti-arthritic properties of phycocyanin reported in the literature may be due, in part, to its selective COX-2 inhibitory property, although its ability to efficiently scavenge free radicals and effectively inhibit lipid peroxidation may also be involved.  相似文献   

18.
The absorption spectrum of allophycocyanin of Anabaena cylindrica was studied. The extinctions of the main absorption bands (650 and 620 nm) varied depending on the protein concentration, ionic strength, and pH. At higher protein concentrations or higher ionic strength, the 650 nm band became stronger and the 620 nm band became weaker. At pH values lower than 6.0, reverse changes occurred in association with protein dissociation into monomer. Similar spectral variation was also induced by sugars and polyols. Glucose, sucrose, or glycerol (1-5 M) induced an increase in the 650 nm band and a decrease in the 620 nm band without causing any changes in protein conformation. Propylene glycol and ethylene glycol showed a reverse effect and caused protein dissociation into monomer. The difference spectra of all spectral changes were identical, consisting of a sharp and strong peak at 650 nm and a broad and weak one in the reverse direction at a wavelength below 620 nm. The spectral variation probably results from shifts of the electronic state of phycocyanobilin. We postulated that a protein field favorable to the state producing the 650 nm band is established around phycocyanobilin when the protein takes a "tight state" through protein association or by the action of sugar in aqueous environment; in a "relaxed state" in the monomer, the state of phycocyanobilin similar to that in phycocyanin becomes dominant.  相似文献   

19.
Peroxynitrite (ONOO(-)) is known to inactivate important cellular targets and also mediate oxidative damage in DNA. The present study has demonstrated that phycocyanin, a biliprotein from spirulina platensis and its chromophore, phycocyanobilin (PCB), efficiently scavenge ONOO(-), a potent physiological inorganic toxin. Scavenging of ONOO(-) by phycocyanin and PCB was established by studying their interaction with ONOO(-) and quantified by using competition kinetics of pyrogallol red bleaching assay. The relative antioxidant ratio and IC(50) value clearly indicate that phycocyanin is a more efficient ONOO(-) scavenger than PCB. The present study has also shown that PCB significantly inhibits the ONOO(-)-mediated single-strand breaks in supercoiled plasmid DNA in a dose-dependent manner with an IC(50) value of 2.9 +/- 0.6 microM. These results suggest that phycocyanin, has the ability to inhibit the ONOO(-)-mediated deleterious biological effects and hence has the potential to be used as a therapeutic agent.  相似文献   

20.
藻蓝蛋白是一种重要的光合辅助色素,包含一个开链的藻蓝素发色团,首先在螺旋藻中被发现。藻蓝蛋白由于具有抗癌、抗氧化等多种生物活性,成为近年天然海洋药物研究的热点。本文对近几年来有代表性的中英文文献进行分析、归纳,介绍关于藻蓝蛋白的最新药理活性的研究状况及可能的机制,为进一步研究其各种生物学功能提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号