首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Inflammatory chemokines recruit various populations of immune cells that initiate and maintain the inflammatory response against foreign Ags. Although such a response is necessary for the elimination of the Ag, the inflammation has to be eventually resolved in a healthy organism. Neuropeptides such as vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP), released after antigenic stimulation, contribute to the termination of an inflammatory response primarily by inhibiting the production of proinflammatory cytokines. Here we investigated the effects of VIP and PACAP on chemokine production. We report that VIP and PACAP inhibit the expression of the macrophage-derived CXC chemokines macrophage inflammatory protein-2 and KC (IL-8), and of the CC chemokines MIP-1alpha, MIP-1beta, monocyte chemoattractant protein 1, and RANTES in vivo and in vitro. The inhibition of chemokine gene expression correlates with an inhibitory effect of VIP/PACAP on NF-kappaB binding and transactivating activity. The VIP/PACAP inhibition of both chemokine production and of NF-kappaB binding and transactivating activity is mediated through the specific VIP receptor VPAC1, and involves both cAMP-dependent and -independent intracellular pathways. In an in vivo model of acute peritonitis, the inhibition of chemokine production by VIP/PACAP leads to a significant reduction in the recruitment of polymorphonuclear cells, macrophages, and lymphocytes into the peritoneal cavity. These findings support the proposed role of VIP and PACAP as key endogenous anti-inflammatory agents and describe a novel mechanism, i.e., the inhibition of the production of macrophage-derived chemokines.  相似文献   

2.
The host response to Gram-negative LPS is characterized by an influx of inflammatory cells into host tissues, which is mediated, in part, by localized production of chemokines. The expression and function of chemokines in vivo appears to be highly selective, though the molecular mechanisms responsible are not well understood. All CXC (IFN-gamma-inducible protein (IP-10), macrophage inflammatory protein (MIP)-2, and KC) and CC (JE/monocyte chemoattractant protein (MCP)-1, MCP-5, MIP-1alpha, MIP-1beta, and RANTES) chemokine genes evaluated were sensitive to stimulation by LPS in vitro and in vivo. While IL-10 suppressed the expression of all LPS-induced chemokine genes evaluated in vitro, treatment with IFN-gamma selectively induced IP-10 and MCP-5 mRNAs, but inhibited LPS-induced MIP-2, KC, JE/MCP-1, MIP-1alpha, and MIP-1beta mRNA and/or protein. Like the response to IFN-gamma, LPS-mediated induction of IP-10 and MCP-5 was Stat1 dependent. Interestingly, only the IFN-gamma-mediated suppression of LPS-induced KC gene expression was IFN regulatory factor-2 dependent. Treatment of mice with LPS in vivo also induced high levels of chemokine mRNA in the liver and lung, with a concomitant increase in circulating protein. Hepatic expression of MIP-1alpha, MIP-1beta, RANTES, and MCP-5 mRNAs were dramatically reduced in Kupffer cell-depleted mice, while IP-10, KC, MIP-2, and MCP-1 were unaffected or enhanced. These findings indicate that selective regulation of chemokine expression in vivo may result from differential response of macrophages to pro- and antiinflammatory stimuli and to cell type-specific patterns of stimulus sensitivity. Moreover, the data suggest that individual chemokine genes are differentially regulated in response to LPS, suggesting unique roles during the sepsis cascade.  相似文献   

3.
The present study was conducted to investigate the functional implication of the pituitary adenylate cyclase-activating polypeptide (PACAP) type I (PAC(1)) receptor in the adrenal catecholamine (CA) secretion induced by either PACAP-27 or vasoactive intestinal polypeptide (VIP) in anesthetized dogs. PACAP-27, VIP, and their respective antagonists were locally infused to the left adrenal gland via the left adrenolumbar artery. Plasma CA concentrations in adrenal venous and aortic blood were determined by means of a high-performance liquid chromatograph coupled with an electrochemical detector. Adrenal venous blood flow was measured by gravimetry. The administration of PACAP-27 (50 ng) resulted in a significant increase in adrenal CA output. VIP (5 microg) also increased the basal CA secretion to an extent comparable to that observed with PACAP-27. In the presence of PACAP partial sequence 6--27 [PACAP-(6--27); a PAC(1) receptor antagonist] at the doses of 7.5 and 15 microg, the CA response to PACAP-27 was attenuated by approximately 50 and approximately 95%, respectively. Although the CA secretagogue effect of VIP was blocked by approximately 85% in the presence of PACAP-(6--27) (15 microg), it remained unaffected by VIP partial sequence 10--28 [VIP-(10--28); a VIP receptor antagonist] at the dose of 15 microg. Furthermore, the CA response to PACAP-27 did not change in the presence of the same dose of VIP--(10--28). The results indicate that PACAP-(6--27) diminished, in a dose-dependent manner, the increase in adrenal CA secretion induced by PACAP-27. The results also indicate that the CA response to either PACAP-27 or VIP was selectively inhibited by PACAP-(6--27) but not by VIP-(10--28). It is concluded that PAC(1) receptor is primarily involved in the CA secretion induced by both PACAP-27 and VIP in the canine adrenal medulla in vivo.  相似文献   

4.
Winzell MS  Ahrén B 《Peptides》2007,28(9):1805-1813
Vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) are two closely related neuropeptides that are expressed in islets and in islet parasympathetic nerves. Both peptides bind to their common G-protein-coupled receptors, VPAC1 and VPAC2, and PACAP, in addition to the specific receptor PAC1, all three of which are expressed in islets. VIP and PACAP stimulate insulin secretion in a glucose-dependent manner and they both also stimulate glucagon secretion. This action is achieved through increased formation of cAMP after activation of adenylate cyclase and stimulation of extracellular calcium uptake. Deletion of PAC1 receptors or VPAC2 receptors results in glucose intolerance. These peptides may be of importance in mediating prandial insulin secretion and the glucagon response to hypoglycemia. Animal studies have also suggested that activation of the receptors, in particular VPAC2 receptors, may be used as a therapeutic approach for the treatment of type 2 diabetes. This review summarizes the current knowledge of the potential role of VIP and PACAP in islet function.  相似文献   

5.
Astrocytes represent at least 50% of the volume of the human brain. Besides their roles in various supportive functions, astrocytes are involved in the regulation of stem cell proliferation, synaptic plasticity and neuroprotection. Astrocytes also influence neuronal physiology by responding to neurotransmitters and neuropeptides and by releasing regulatory factors termed gliotransmitters. In particular, astrocytes express the PACAP-specific receptor PAC1-R and the PACAP/VIP mutual receptors VPAC1-R and VPAC2-R during development and/or in the adult. There is now clear evidence that PACAP and VIP modulate a number of astrocyte activities such as proliferation, plasticity, glycogen production, and biosynthesis of neurotrophic factors and gliotransmitters.  相似文献   

6.
Vasoactive intestinal peptide (VIP) is secreted from many cancer lines and VIP binding was observed in many tumors. We have shown before that VIP antagonists are potent inhibitors of neoplastic growth of neuroblastoma, lung and breast cancer cells in vitro. Here, the cultured colon cancer cell line HCT-15 that exhibited VIP receptor expression was treated with the VIP hybrid antagonist neurotensin(6-11)VIP(7-28). The antineoplastic activity was assessed by thymidine incorporation. Neurotensin(6-11)VIP(7-28) efficiently inhibited cancer growth with a maximal effect at nanomolar concentrations. Once the inhibitory properties of the VIP antagonist on colon cancer cells were established, the in vivo curative effects were analyzed. Sprague-Dawley rats were injected with azoxymethane (AOM) (15 mg/kg/week) for 2 weeks, providing artificial induction of colon tumors. The rats were then allocated into four experimental groups: (1) receiving no treatment; (2) receiving treatment with saline; (3, 4) receiving treatment with 10 or 20 microg of neurotensin(6-11)VIP(7-28), respectively. After 10 weeks of daily injections, rats were sacrificed and tumors assessed for stage, volume, location, differentiation and lymphocytic infiltrate. Embedded mucosa was assessed for dysplastic crypts. Results showed that the antagonist treatment reduced the tumor volume, staging, lymphocyte infiltrate and the number of dysplastic crypts. Thus, neurotensin(6-11)VIP(7-28) could serve as an effective cancer treatment and a preventing agent.  相似文献   

7.
8.
We examined whether inhibitors of the arachidonic acid cascade inhibited nitric oxide (NO) production, as measured by nitrite concentration, either in macrophages or by their cytosolic fractions. Nitrite production by peritoneal macrophages from mice receiving OK-432 treatment was significantly inhibited by phospholipase A2 inhibitors [dexamethasone and 4-bromophenacyl bromide (4-BPB)], lipoxygenase inhibitors [nordihydroguaiaretic acid (NDGA) and ketoconazole] and a glutathioneS-transferase (leukotrienes LTA4-LTC4) inhibitor (ethacrynic acid). However, caffeic acid and esculetin, inhibitors of 5- and 12-lipoxygenase respectively, were not inhibitory. On the other hand, indomethacin, a cyclooxygenase inhibitor, slightly inhibited whereas another inhibitor, ibuprofen, did not. Inhibition of the nitrite production by dexamethasone, 4-BPB, NDGA and ethacrynic acid was also demonstrated when the macrophages were restimulated ex vivo with OK-432 or with lipopolysaccharide. The inhibitory activity of dexamethasone, NDGA and ethacrynic acid was significantly reduced by ex vivo restimulation with OK-432, whereas that of 4-BPB was hardly affected. Furthermore, the inhibitory activity of dexamethasone, NDGA and ethacrynic acid was much higher when the macrophages were continuously exposed to the agents than when they were pulsed. Meanwhile, inhibition by 4-BPB was almost the same with either treatment. In addition, the inhibitory activity of these agents was not blocked withl-arginine, a substrate of NO synthases, or with arachidonate metabolites (LTB4, LTC4 and LTE4). Ethacrynic acid and 4-BPB, but not dexamethasone and NDGA, also inhibited nitrite production by the cytosolic fractions from OK-432-restimulated peritoneal macrophages, and the inhibitory activity of 4-BPB was superior to that of ethacrynic acid. These agents, however, did not inhibit nitrite production from sodium nitroprusside, a spontaneous NO-releasing compound. These results indicate that dexamethasone, 4-BPB, NDGA and ethacrynic acid inhibited the production of NO by macrophages through at least two different mechanisms: one was inhibited by dexamethasone, NDGA and ethacrynic acid and the other by 4-BPB. Furthermore, 4-BPB and ethacrynic acid directly inhibited the activity of the NO synthase in macrophages, suggesting that the agents work by binding to the active site(s) of the enzyme.  相似文献   

9.
Yeh CC  Kao SJ  Lin CC  Wang SD  Liu CJ  Kao ST 《Life sciences》2007,80(20):1821-1831
To investigate the modulation of lung local immune responses of hesperidin (HES) on the acute lung inflammation induced by LPS in vivo. Mice were challenged with intratracheal lipopolysaccharide (100 μg) 30 min before with treatment hesperidin (200 mg/kg oral administration) or vehicle. After 4 and 24 h, bronchoalveolar lavage fluid was obtained to measure proinflammatory (TNF-α, IL-1β, IL-6), anti-inflammatory (IL-10, IL-4, IL-12) cytokines, chemokines (KC, MCP-1 and MIP-2), total cell counts, nitric oxide production, and proteins. Lung histology was performed in inflated-fixed lungs. Hesperidin downregulate the LPS-induced expression of TNF-α, IL-1β, IL-6, KC, MIP-2, MCP-1, and IL-12. It also enhanced the production of IL-4, IL-10. Total leukocyte counts; nitric oxide production, iNOS expression, and proteins were significantly decreased by hesperidin. In vitro, HES suppressed the expression of IL-8 on A549 cells and THP-1 cells, the expression of TNF-α, IL-1β, and IL-6 on THP-1 cells, the expression of ICAM-1 and VCAM-1 on A549 cells which effect cell adhesion function. The suppression of those molecules is controlled by NF-κB and AP-1, which are activated by IκB and MAPK pathways. HES inhibits those pathways, thereby suppressing the expression of IL-8, TNFα, IL-1β, IL-6, IL-12, ICAM-1 and VCAM-1. This study indicates that HES had a markedly immunomodulatory effect in a clinically relevant model of ARDS. Nevertheless, further investigations are required to determine the potential clinical usefulness of HES in the adjunctive therapy of ARDS.  相似文献   

10.
In an immune response, antigen-specific CD4 T cells proliferate and differentiate into effector cells capable to produce large amounts of cytokines upon restimulation. Most effector T cells are later eliminated through antigen-induced cell death (AICD), mediated through FasL/Fas interactions. A low percentage of effector T cells survive and differentiate into long-lived memory cells. Mechanisms must operate not only to destroy no longer needed and even potentially damaging T cells, but also to allow the survival of a small number of activated T cells. Little is known about the factors and mechanisms that regulate the shift from an apoptosis-sensitive to an apoptosis-resistant phenotype. VIP and the structurally related peptide, PACAP, synthesized and/or released in the immune organs act on both innate and adaptive immunity. Recently, VIP and PACAP were shown to inhibit AICD in peripheral CD4 T cells by down-regulating FasL expression. In view of these findings, VIP and PACAP are reasonable candidates for the generation of memory T cells. To test this hypothesis, we analyzed the effects of VIP and PACAP in various models for effector and memory T cells. Our data demonstrate that both neuropeptides promote the in vivo effector function and memory phenotype of Th2, but not Th1 cells, by preferentially inhibiting the clonal deletion of Th2 cells. To our knowledge, this is the first report describing the role of a neuropeptide present in the lymphoid microenvironment on the generation and maintenance of long-lived memory T cells.  相似文献   

11.
Zusev M  Gozes I 《Regulatory peptides》2004,123(1-3):33-41
Activity-dependent neuroprotective protein (ADNP) was shown to be a vasoactive intestinal peptide (VIP) responsive gene in astrocytes derived from the cerebral cortex of newborn rats. The present study was set out to identify VIP receptors that are associated with increases in ADNP expression in developing astrocytes. Using VIP analogues specific for the VPAC1 and the VPAC2 receptors, it was discovered that VIP induced changes in ADNP expression in astrocytes via the VPAC2 receptor. The constitutive synthesis of ADNP and VPAC2 was shown to be age-dependent and increased as the astrocyte culture developed. Pituitary adenylate cyclase-activating polypeptide (PACAP) also induced changes in ADNP expression. The apparent changes induced by VIP and PACAP on ADNP expression were developmentally dependent, and while stimulating expression in young astrocytes, an inhibition was demonstrated in older cultures. In conclusion, VIP, PACAP and the VPAC2 receptor may all contribute to the regulation of ADNP gene expression in the developing astrocyte.  相似文献   

12.
13.
In this study, we have examined the ability of chemokine receptor antagonists to prevent neutrophil extravasation in the mouse. Two murine CXC chemokines, macrophage-inflammatory protein (MIP)-2 and KC, stimulated the accumulation of leukocytes into s.c. air pouches, although MIP-2 was considerably more potent. The leukocyte infiltrate was almost exclusively neutrophilic in nature. A human CXC chemokine antagonist, growth-related oncogene (GRO)-alpha(8-73), inhibited calcium mobilization induced by MIP-2, but not by platelet-activating factor in leukocytes isolated from the bone marrow, indicating that this antagonist inhibits MIP-2 activity toward murine leukocytes. Pretreatment of mice with GROalpha(8-73) inhibited, in a dose-dependent manner, the MIP-2-induced influx of neutrophils to levels that were not significantly different from control values. Moreover, this antagonist was also effective in inhibiting the leukocyte recruitment induced by TNF-alpha, LPS, and IL-1beta. Leukocyte infiltration into the peritoneal cavity in response to MIP-2 was also inhibited by prior treatment of mice with GROalpha(8-73) or the analogue of platelet factor 4, PF4(9-70). The results of this study indicate 1) that the murine receptor for MIP-2 and KC, muCXCR2, plays a major role in neutrophil recruitment to s.c. tissue and the peritoneal cavity in response to proinflammatory agents and 2) that CXCR2 receptor antagonists prevent acute inflammation in vivo.  相似文献   

14.
15.
Han J  Li C  Liu H  Fen D  Hu W  Liu Y  Guan C  Luo ZQ 《Cell biology international》2008,32(9):1108-1115
Antiflammin-1 (AF-1) is a synthetic nonapeptide with a similar sequence to the conserved sequence of CC10 secreted by lung Clara cells. Studies suggest that it is potent inhibitor of inflammation. We investigated the effects and possible mechanisms of AF-1 on LPS-induced alveolar macrophage (AM) activation in vitro. AMs harvested from the BALF of Sprague-Dawley (SD) rat were treated with various concentrations of AF-1 both simultaneously and after LPS stimulation. The concentrations of the cytokines IL-1beta, IL-6, and IL-10 in the supernatant were detected by an enzyme-linked immunosorbent assay. The mRNA expression levels of these cytokines in AMs were analyzed using quantitative RT-PCR. To investigate more fully the possible mechanisms by which AF-1 modulates the expression of cytokines, cells were pretreated with anti-IL-10 antibody. Toll-like receptor-4 (TLR-4) expression on the cell surface was also detected using flow cytometry. The results showed that AF-1 suppressed mRNA expression and protein production of IL-1beta and IL-6, while it promoted IL-10 expression in LPS-stimulated AMs, in a dose-dependent manner. The inhibitory effects of AF-1 on IL-1beta were significantly decreased when endogenous production of IL-10 was blocked. AF-1 also showed an effect on downregulated TLR-4 expression in LPS-stimulated AMs. The data show for the first time that AF-1 modulates the AM response to LPS by regulating TLR-4 expression and upregulating IL-10 secretion, which could be another important mechanism in the AF-1 inhibiting effect on inflammation.  相似文献   

16.
17.
18.
19.
2-mercaptopropionylglycin (2-MPG), a cell membrane penetrating thiol, was evaluated for its antithrombotic potential using in vitro and in vivo tests. 2-MPG was found to inhibit agonist-induced platelet aggregation and serotonin release as well as prostaglandin/thromboxane synthesis in platelet-rich plasma. Administration of 2-MPG to rats resulted in an inhibition of laser-induced thrombus formation in mesenteric vessels. When plasma was incubated with 2-MPG and then used for determination of various standard coagulation parameters, significant prolongation of the clotting times were observed.  相似文献   

20.
Neuroblastoma (NB) is a pediatric cancer. New therapies for high-risk NB aim to induce cell differentiation and to inhibit MYCN and ALK signaling in NB. The vasoactive intestinal peptide (VIP) and the pituitary adenylate cyclase-activating polypeptide (PACAP) are 2 related neuropeptides sharing common receptors. The level of VIP increases with NB differentiation. Here, the effects of VIP and PACAP analogs developed for therapeutic use were studied in MYCN-amplified NB SK-N-DZ and IMR-32 cells and in Kelly cells that in addition present the F1174L ALK mutation. As previously reported by our group in IMR-32 cells, VIP induced neuritogenesis in SK-N-DZ and Kelly cells and reduced MYCN expression in Kelly but not in SK-N-DZ cells. VIP decreased AKT activity in the ALK-mutated Kelly cells. These effects were PKA-dependent. IMR-32, SK-NDZ and Kelly cells expressed the genes encoding the 3 subtypes of VIP and PACAP receptors, VPAC1, VPAC2 and PAC1. In parallel to its effect on MYCN expression, VIP inhibited invasion in IMR-32 and Kelly cells. Among the 3 PACAP analogs tested, [Hyp2]PACAP-27 showed higher efficiency than VIP in Kelly cells. These results indicate that VIP and PACAP analogs act on molecular and cellular processes that could reduce aggressiveness of high-risk NB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号