首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sedum alfredii Hance has been identified as a Zn-hyperaccumulating plant species native to China. The characteristics of Zn uptake and accumulation in the hyperaccumulating ecotype (HE) and non-hyperaccumulating ecotype (NHE) of S. alfredii were investigated under nutrient solution and soil culture conditions. The growth of HE was normal up to 1000 μM Zn in nutrient solution, and 1600 mg Zn kg−1 soil in a Zn-amended soil. Growth of the NHE was inhibited at Zn levels ≥250 μM in nutrient solution. Zinc concentrations in the leaves and stems increased with increasing Zn supply levels, peaking at 500 and 250 μM Zn in nutrient solution for the HE and the NHE, respectively, and then gradually decreased or leveled off with further increase in solution Zn. Minimal increases in root Zn were noted at Zn levels up to 50 μM; root Zn sharply increased at higher Zn supply. The maximum Zn concentration in the shoots of the HE reached 20,000 and 29,000 mg kg−1 in the nutrient solution and soil experiments, respectively, approximately 20 times greater than those of the NHE. Root Zn concentrations were higher in the NHE than in the HE when plants were grown at Zn levels ≥50 μM. The time-course of Zn uptake and accumulation exhibited a hyperbolic saturation curve: a rapid linear increase during the first 6 days in the long-term and 60 min in the short-term studies; followed by a slower increase or leveling off with time. More than 80% of Zn accumulated in the shoots of the HE at half time (day 16) of the long-term uptake in 500 μM Zn, and also at half time (120 min) of the short-term uptake in 10 μM 65Zn2+. These results indicate that Zn uptake and accumulation in the shoots of S. alfredii exhibited a down-regulation by internal Zn accumulated in roots or leaves under both nutrient solution and soil conditions. An altered Zn transport system and increased metal sequestration capacity in the shoot tissues, especially in the stems, may be the factors that allow increased Zn accumulation in the hyperaccumulating ecotype of S. alfredii. Section Editor: F. J. Zhao  相似文献   

2.
Morphological and physiological measurements on individual leaves of Leucaena leucocephala seedlings were used to study acclimation to neutral shading. The light-saturated photosynthetic rate (Pn max) ranged from 19.6 to 6.5 mol CO2 m–2 s–1 as photosynthetic photon flux density (PPFD) during growth decreased from 27 to 1.6 mol m–2 s–1. Stomatal density varied from 144 mm–2 in plants grown in high PPFD to 84 mm–2 in plants grown in low PPFD. Average maximal stomatal conductance for H2O was 1.1 in plants grown in high PPFD and 0.3 for plants grown in low PPFD. Plants grown in low PPFD had a greater total chlorophyll content than plants grown in high PPFD (7.2 vs 2.9 mg g–1 on a unit fresh weight basis, and 4.3 vs 3.7 mg dm–2 on a unit leaf area basis). Leaf area was largest when plants were grown under the intermediate PPFDs. Leaf density thickness was largest when plants were grown under the largest PPFDs. It is concluded that L. leucocephala shows extensive ability to acclimate to neutral shade, and could be considered a facultative shade plant.Abbreviations the initial slope of the photosynthesis vs PPFD curve - Pn max the light-saturated photosynthetic rate - PPFD photosynthetic photon flux density  相似文献   

3.
Past studies of the effects of varying levels of photosynthetic photon flux density (PPFD) on the morphology and physiology of the epiphytic Crassulacean acid metabolism (CAM) plant Tillandsia usneoides L. (Bromeliaceae) have resulted in two important findings: (1) CAM, measured as integrated nocturnal CO2 uptake or as nocturnal increases in tissue acidity, saturates at relatively low PPFD, and (2) this plant does not acclimate to different PPFD levels, these findings require substantiation using photosynthetic responses immediately attributable to different PPFD levels, e.g., O2 evolution, as opposed to the delayed, nocturnal responses (CO2 uptake and acid accumulation). In the present study, instantaneous responses of O2 evolution to PPFD level were measured using plants grown eight weeks at three PPFD (20–45, 200–350, and 750–800 mol m-2s-1) in a growth chamber, and using shoots taken from the exposed upper portions (maximum PPFD of 800 mol m-2s-1) and shaded lower portions (maximum PPFD of 140 mol m-2s-1) of plants grown ten years in a greenhouse. In addition, nocturnal increases in acidity were measured in the growth chamber plants. Regardless of the PPFD levels during growth, O2 evolution rates saturated around 500 mol m-2s-1. Furthermore, nocturnal increases in tissue acidity saturated at much lower PPFD. Thus, previous results were confirmed: photosynthesis saturated at low PPFD, and this epiphyte does not acclimate to different levels of PPFD.Abbreviations ANOVA analysis of variance - CAM Crassulacean acid metabolism - DW dry weight - PPFD photosynthetic photon flux density - SNK Student-Newman-Keuls (to whom all correspondence should be sent-present address and reprint requests);  相似文献   

4.
There have been no studies of the effects of soil P deficiency on pearl millet (Pennisetum glaucum (L.) R. Br.) photosynthesis, despite the fact that P deficiency is the major constraint to pearl millet production in most regions of West Africa. Because current photosynthesis-based crop simulation models do not explicitly take into account P deficiency effects on leaf photosynthesis, they cannot predict millet growth without extensive calibration. We studied the effects of soil addition on leaf P content, photosynthetic rate (A), and whole-plant dry matter production (DM) of non-water-stressed, 28 d pearl millet plants grown in pots containing 6.00 kg of a P-deficient soil. As soil P addition increased from 0 to 155.2 mg P kg–1 soil, leaf P content increased from 0.65 to 7.0 g kg–1. Both A and DM had maximal values near 51.7 mg P kg–1 soil, which corresponded to a leaf P content of 3.2 g kg–1. Within this range of soil P addition, the slope of A plotted against stomatal conductance (gs) tripled, and mean leaf internal CO2 concentration ([CO2]i) decreased from 260 to 92 L L–1, thus indicating that P deficiency limited A through metabolic dysfunction rather than stomatal regulation. Light response curves of A, which changed markedly with P leaf content, were modelled as a single substrate, Michaelis-Menten reaction, using quantum flux as the substrate for each level of soil P addition. An Eadie-Hofstee plot of light response data revealed that both KM, which is mathematically equivalent to quantum efficiency, and Vmax, which is the light-saturated rate of photosynthesis, increased sharply from leaf P contents of 0.6 to 3 g kg–1, with peak values between 4 and 5 g P kg–1. Polynomial equations relating KM and Vmax, to leaf P content offered a simple and attractive way of modelling photosynthetic light response for plants of different P status, but this approach is somewhat complicated by the decrease of leaf P content with ontogeny.  相似文献   

5.
The photon use efficiencies and maximal rates of photosynthesis in Dunaliella salina (Chlorophyta) cultures acclimated to different light intensities were investigated. Batch cultures were grown to the mid-exponential phase under continuous low-light (LL: 100 μmol photon m-2 s-1) or high-light (HL: 2000 μmol photon m-2 s-1) conditions. Under LL, cells were normally pigmented (deep green) containing ∼500 chlorophyll (Chl) molecules per photosystem II (PSII) unit and ∼250 Chl molecules per photosystem I (PSI). HL-grown cells were yellow-green, contained only 60 Chl per PSII and 100 Chl per PSI and showed signs of chronic photoinhibition, i.e., accumulation of photodamaged PSII reaction centers in the chloroplast thylakoids. In LL-grown cells, photosynthesis saturated at ∼200 μmol photon m-2 s-1 with a rate (Pmax) of ∼100 mmol O2 (mol Chl)-1 s-1. In HL-grown cells, photosynthesis saturated at much higher light intensities, i.e. ∼2500 μmol photon m-2 s-1, and exhibited a three-fold higher Pmax (∼300 mmol O2 (mol Chl)-1 s-1) than the normally pigmented LL-grown cells. Recovery of the HL-grown cells from photoinhibition, occurring prior to a light-harvesting Chl antenna size increase, enhanced Pmax to ∼675 mmol O2 (mol Chl)-1 s-1. Extrapolation of these results to outdoor mass culture conditions suggested that algal strains with small Chl antenna size could exhibit 2–3 times higher productivities than currently achieved with normally pigmented cells. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
Husen  Jia  Dequan  Li 《Photosynthetica》2002,40(1):139-144
The responses to irradiance of photosynthetic CO2 assimilation and photosystem 2 (PS2) electron transport were simultaneously studied by gas exchange and chlorophyll (Chl) fluorescence measurement in two-year-old apple tree leaves (Malus pumila Mill. cv. Tengmu No.1/Malus hupehensis Rehd). Net photosynthetic rate (P N) was saturated at photosynthetic photon flux density (PPFD) 600-1 100 (mol m-2 s-1, while the PS2 non-cyclic electron transport (P-rate) showed a maximum at PPFD 800 mol m-2 s-1. With PPFD increasing, either leaf potential photosynthetic CO2 assimilation activity (Fd/Fs) and PS2 maximal photochemical activity (Fv/Fm) decreased or the ratio of the inactive PS2 reaction centres (RC) [(Fi – Fo)/(Fm – Fo)] and the slow relaxing non-photochemical Chl fluorescence quenching (qs) increased from PPFD 1 200 mol m-2 s-1, but cyclic electron transport around photosystem 1 (RFp), irradiance induced PS2 RC closure [(Fs – Fo)/Fm – Fo)], and the fast and medium relaxing non-photochemical Chl fluorescence quenching (qf and qm) increased remarkably from PPFD 900 (mol m-2 s-1. Hence leaf photosynthesis of young apple leaves saturated at PPFD 800 mol m-2 s-1 and photoinhibition occurred above PPFD 900 mol m-2 s-1. During the photoinhibition at different irradiances, young apple tree leaves could dissipate excess photons mainly by energy quenching and state transition mechanisms at PPFD 900-1 100 mol m-2 s-1, but photosynthetic apparatus damage was unavoidable from PPFD 1 200 mol m-2 s-1. We propose that Chl fluorescence parameter P-rate is superior to the gas exchange parameter P N and the Chl fluorescence parameter Fv/Fm as a definition of saturation irradiance and photoinhibition of plant leaves.  相似文献   

7.
Three strawberry (Fragaria × ananassa Duch.) cultivars Rainier, Totem and Selva were grown under greenhouse conditions in a Parkhill sandy loam soil with a background DTPA-extractable Cd concentration of 0.18 mg kg-1 and a pH of 5.1. Experimental treatments included combinations of 4 Cd applications (0, 15, 30 and 60 mg Cd kg-1 soil) applied as CdSO4 and 2 soil pH values 5.1 and 6.8. Both the application of Cd and pH of the soil significantly affected plant growth, yield and Cd accumulation in plant tissue anf fruit. Although roots accumulated the highest concentrations of Cd of all plant parts investigated, increased soil Cd application reduced leaf weight more than root weight. In general, yield of strawberries was decreased by an increase in amount of soil-applied Cd, however the yield response varied among cultivars. At 60 mg Cd kg-1 soil, yield of Rainier cultivar was reduced to 17.6% of control plants. Over 90% of total Cd taken up by plants grown in Cd-treated soil accumulated in roots, regardless of the Cd level in the soil. Root Cd concentrations ranged from 2.6 mg kg-1 (control plants) to 505.7 mg kg-1 (Totem plants grown in soil at highest Cd and a soil pH 5.1) and were directly related to soil Cd concentrations. Cd translocation from roots to leaves and fruit was very limited, resulting in a maximum Cd concentration in root leaf tissue of 10.2 mg kg-1. Accumulation of Cd in fruit was found to correlate well with leaf Cd, although even at the highest amount of applied Cd, fruit Cd concentration did not exceed 700 g kg-1 of fresh weight.Contribution no. 951  相似文献   

8.
A crown rot disease in wheat caused by the fungusFusarium graminearum Schw. Group 1 is a widespread problem in chronically Zn-deficient Australian soils. A link between crown rot and Zn deficiency was established by Sparrow and Graham (1988). This paper reports a test of a further hypothesis, that wheat genotypes more efficient at extracting zinc from low-zinc soils are more resistant to infection by this pathogen. Three wheat cultivars (Excalibur, Songlen and Durati) of differential Zn efficiency were tested at three zinc levels (0.05, 0.5 and 2.0 mg Zn kg−1 of soil) and three levels ofF. graminearum S. Group 1 inoculum (0.1 g and 0.3 g kg−1 live chaff-inoculum and control having 0.1 g kg−1 dead chaff inoculum). Six weeks after sowing dry matter production of shoots and roots was decreased byFusarium inoculation at 0.05 mg and 0.5 mg kg−1 applied Zn.Fusarium inoculum at 0.1 g was as effective as 0.3 g kg−1 for infection and decreasing dry matter. The infection at the basal part of culm decreased significantly by increasing the rate of Zn application. Excalibur, a Zn-efficient cultivar (tolerant to Zn deficiency) produced significantly more shoot and root dry matter, and showed less disease infection compared with Zn-inefficient cultivars (Durati and Songlen) at low (0.05 mg Zn kg−1 soil) and medium (0.5 mg Zn kg−1 soil) Zn fertilization rates. Higher rate of Zn fertilization (2.0 mg Zn kg−1 soil) reduced the disease level in Durati to the level of Excalibur but the disease level of Songlen was still high, indicating its high Zn requirement and or sensitivity to crown rot. The data on Zn uptake show that Excalibur, being Zn-efficient, was able to scavenge enough Zn from Zn-deficient soil, we suggest that besides sustaining growth Excalibur was able to build and maintain resistance to the pathogen; inefficient cultivars needed extra Zn fertilization to achieve performance comparable to that of Excalibur. The present study indicates that growing Zn-efficient cultivars of wheat along with judicious use of Zn fertilizer in Zn-deficient areas where crown rot is a problem may sustain wheat production by reducing the severity of the disease as well as by increasing the plant vigour through improved Zn nutrition. ei]Section editor: R Rodriques-Kalana  相似文献   

9.
Brassica rapa L. is an important vegetable crop in eastern Asia. The objective of this study was to investigate the genetic variation in leaf Zn, Fe and Mn accumulation, Zn toxicity tolerance and Zn efficiency in B. rapa. In total 188 accessions were screened for their Zn-related characteristics in hydroponic culture. In experiment 1, mineral assays on 111 accessions grown under sufficient Zn supply (2 μM ZnSO4) revealed a variation range of 23.2–155.9 μg g−1 dry weight (d. wt.) for Zn, 60.3–350.1 μg g−1 d. wt. for Fe and 20.9–53.3 μg g−1 d. wt. for the Mn concentration in shoot. The investigation of tolerance to excessive Zn (800 μM ZnSO4) on 158 accessions, by using visual toxicity symptom parameters (TSPs), identified different levels of tolerance in B. rapa. In experiment 2, a selected sub-set of accessions from experiment 1 was characterized in more detail for their mineral accumulation and tolerance to excessive Zn supply (100 μM and 300 μM ZnSO4). In this experiment Zn tolerance (ZT) determined by relative root or shoot dry biomass varied about 2-fold. The same six accessions were also examined for Zn efficiency, determined as relative growth under 0 μM ZnSO4 compared to 2 μM ZnSO4. Zn efficiency varied 1.8-fold based on shoot dry biomass and 2.6-fold variation based on root dry biomass. Zn accumulation was strongly correlated with Mn and Fe accumulation both under sufficient and deficient Zn supply. In conclusion, there is substantial variation for Zn accumulation, Zn toxicity tolerance and Zn efficiency in Brassica rapa L., which would allow selective breeding for these traits.  相似文献   

10.
Stutte GW  Monje O  Goins GD  Tripathy BC 《Planta》2005,223(1):46-56
The concept of using higher plants to maintain a sustainable life support system for humans during long-duration space missions is dependent upon photosynthesis. The effects of extended exposure to microgravity on the development and functioning of photosynthesis at the leaf and stand levels were examined onboard the International Space Station (ISS). The PESTO (Photosynthesis Experiment Systems Testing and Operations) experiment was the first long-term replicated test to obtain direct measurements of canopy photosynthesis from space under well-controlled conditions. The PESTO experiment consisted of a series of 21–24 day growth cycles of Triticum aestivum L. cv. USU Apogee onboard ISS. Single leaf measurements showed no differences in photosynthetic activity at the moderate (up to 600 μmol m−2 s−1) light levels, but reductions in whole chain electron transport, PSII, and PSI activities were measured under saturating light (>2,000 μmol m−2 s−1) and CO2 (4000 μmol mol−1) conditions in the microgravity-grown plants. Canopy level photosynthetic rates of plants developing in microgravity at ∼280 μmol m−2 s−1 were not different from ground controls. The wheat canopy had apparently adapted to the microgravity environment since the CO2 compensation (121 vs. 118 μmol mol−1) and PPF compensation (85 vs. 81 μmol m−2 s−1) of the flight and ground treatments were similar. The reduction in whole chain electron transport (13%), PSII (13%), and PSI (16%) activities observed under saturating light conditions suggests that microgravity-induced responses at the canopy level may occur at higher PPF intensity.  相似文献   

11.
Assessment of the Zn status of chickpea by plant analysis   总被引:1,自引:0,他引:1  
Khan  H. R.  McDonald  G. K.  Rengel  Z. 《Plant and Soil》1998,198(1):1-9
Chickpea (Cicer arietinum L.) is extensively grown in areas where soils are deficient in zinc (Zn). To determine the response of chickpea to Zn nutrition and to diagnose Zn status in plant tissue, two glasshouse experiments were conducted using Zn-deficient siliceous sandy soil. In Experiment 1, two genotypes of desi chickpea (Dooen and Tyson) were grown at five Zn levels (0, 0.04, 0.2, 1.0 and 5.0 mg kg-1 of soil). After 4 weeks, no difference in growth and no visible symptoms of Zn deficiency were detected. After 6–8 weeks of growth, chlorosis of younger leaves and stipules occured in the Zn0 treatment, with shoot dry weight being only 24% of that recorded at the highest Zn level. Root growth increased from 0.52 g/plant when no Zn was applied to 1.04 g/plant in the treatment with 0.2 mg Zn kg-1 of soil; no response to further increase of Zn fertilization occurred. Zinc concentration in the whole shoot increased significantly with increased in Zn application. The critical Zn concentration in the shoot tissue, associated with 90% of maximum growth, was 20 mg kg-1 for both genotypes at flowering stage.In the second experiment, two genotypes of desi chickpea (Tyson and T-1587) were grown at three Zn levels (0, 0.5 and 2.5 mg kg-1 of soil) under two moisture regimes (field capacity 12% w/w, and water stress 4% w/w). Shoot growth was influenced by both Zn supply and water stress. The effect of water stress was severe in the 0.5 and 2.5 mg Zn treatments where shoot dry matter was reduced 52 and 46%, respectively. T-1587 was less sensitive to Zn deficiency and produced higher shoot dry weight than Tyson in the Zn0 treatment. Zinc concentration in shoots increased from 5 mg kg-1 when no Zn was applied to 40 mg kg-1 at the highest Zn level. The critical Zn concentration in shoots was 21 mg kg-1.The results of the two experiments showed that the critical concentration for Zn did not differ amongst the three cultivars used and was not affected by soil moisture. Similar studies should be undertaken with a wider number of genotypes to discover if a critical concentration of 20–21 mg kg-1 in the shoot can be used to diagose the Zn status of chickpea genotypes.  相似文献   

12.
The objective was to reduce in vitro production costs while retaining or improving plant quality, in particular the suitability for pot plant production. Plants were grown at photosynthetic photon flux densities (PPFD) of 0–40 μmol m-2 s-1 and sucrose concentrations of 3–7% during the multiplication phase and the effects of sucrose, BA, and NAA during root formation were investigated. Ex vitro growth were tested in both experiments. A small reduction in the rhizome multiplication rate was found with increasing PPFD and sucrose concentration. Increasing sucrose concentration reduced the number of aerial shoots. Aerial shoots were etiolated when cultured in darkness and their number increased with increasing PPFD at 3% sucrose, whereas PPFD did not affect the number of aerial shoots at 5 or 7% sucrose. During the multiplication phase a synergistic promoting effect of PPFD and sucrose was observed on root formation. Root formation after transfer to rooting medium was affected by sucrose and PPFD during the multiplication phase. PPFD did not influence root formation after propagation on 7% sucrose, whereas on 3 or 5 % sucrose root formation was gradually inhibited when PPFD was decreased below 17 μmol m-2 s-1. The formation of thick roots was promoted by propagation in light, and not influenced by sucrose concentration. Ex vitro growth was not affected by in vitro conditions, except for 7% sucrose during the multiplication phase that reduced flowering. Root formation on rooting medium was reduced by BA and promoted both by NAA and high levels of sucrose. The root inhibiting effect of BA could not completely be overcome by simultaneous application of NAA and high sucrose concentrations. Thick roots were only produced in the presence of NAA, and not affected by sucrose treatment. Ex vitro flowering was negatively influenced by the presence of BA during root formation and by high levels of sucrose if BA was absent in the rooting medium. High sucrose levels and NAA could partially compensate for the negative effect of BA on flowering. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
Vats  S.K.  Pandey  S.  Nagar  P.K. 《Photosynthetica》2002,40(4):625-628
Net photosynthetic rate (P N) of Valeriana jatamansi plants, grown under nylon net shade or under different tree canopies, was saturated with photons at 1 000 mol m–2 s–1 photosynthetic photon-flux-density (PPFD), whereas open-grown plants were able to photosynthesise even at higher PPFD, e.g. of 2 000 mol m–2 s–1. Plants grown under net shade had higher total chlorophyll (Chl) content per unit area of leaf surface. However, Chl a/b ratio was maximal in open-grown plants, but remained unchanged in plants grown in nylon net shade and under different tree canopies. Sun-grown plants had thicker leaves (higher leaf mass per leaf area unit), higher wax content, and higher P N than shade grown plants. Thus V. jatamansi is able to acclimate to high PPFD and therefore this Himalayan species may be cultivated in open habitat to meet the ever-increasing industrial demand.  相似文献   

14.
Summary Cadmium and zinc uptake parameters were determined for intact corn (Zea mays L.) seedlings grown for 15 and 22 in nutrient solutions containing levels of Cd and Zn that were similar to those found in soil solutions. Uptake of both elements was assumed to follow Michaelis-Menten kinetics. Calculations were based on the concentrations of free ionic Cd (Cd2+) and Zn (Zn2+) rather than the total solution concentration. Rates of Zn uptake were measured by determining depletion of Zn for periods of up to 30 h from solutions containing initial concentrations of 1.5 and 10μmol Zn 1−1. Depletion curves suggested that Zn uptake characteristics were similar at both levels of Zn in solution. The Imax for Zn uptake decreased from 550 to 400 pmol m−2 root surface s−1 between 16 and 22 d of growth while Km decreased from 2.2 to 1.5 μmol Zn2+ 1−1. Cadmium uptake parameters were measured by controlling Cd2+ activities in nutrient solution betwen 6.3 to 164 nmol l−1 by continuous circulation of nutrient solution through a mixed-resin system. Imax for Cd uptake was 400 pmol m−2 root surface s−1 at 15 and 22 d of growth. The magnitude of Km increased from 30 to 100 nmol Cd2+ 1−1 during this time period. The Km value suggests that corn is efficient for Cd uptake. The results of these uptake studies are consistent with the observed uptake of Zn and Cd by corn seedlings in soils.  相似文献   

15.
Effects of zinc [0 and 5.0 mg Zn kg−1 (soil)] on photosynthetic rate (PN), and chlorophyll fluorescence in leaves of maize (Zea mays L.) cv. Zhongdan 9409 seedlings grown under different soil moisture regimes (40–45 % and 70–75 % of soil saturated water content) were studied. Zn application did not enhance maize plant adaptation to drought stress. The relative water content and the water potential of leaves were not affected by Zn treatment. Moreover, The PN of drought-stressed plants was not improved by Zn supply. The increases of plant biomass, stomatal conductance and quantum yield of photosystem 2 due to Zn addition were notable in well-watered plants.  相似文献   

16.
The photosynthetic responses of tomato (Lycopersicum esculentum Mill.) leaves to environmental and ontogenetic factors were determined on plants grown in the field under high radiation and high nitrogen fertilization. Response curves showed net photosynthesis to only approach light saturation at a photosynthetic photon flux density (PPFD) of 2200 mol m-2 s-1, with rates of approx. 40 mol CO2 m-2 s-1. A broad temperature optimum was observed between 25° and 35°C, with 50% of the photosynthetic rates remaining even at 47°C. The high rate, the lack of saturation at the equivalent of full sunlight, and the tolerance to high temperature of tomato were unusual in light of the literature on this C3 species. Apparently, acclimation to the field environment of high radiation and hot daytime temperature, coupled with the high nitrogen nutrition, made possible the high photosynthetic performance normally associated with C4 species.Photosynthetic ability of the leaf reached a maximum near the time of its full expansion and declined steadily thereafter, regardless of the time of leaf initiation. Leaf nitrogen content showed a similar decline with leaf ontogeny. Photosynthesis was linearly correlated with nitrogen content, whether the nitrogen variation was due to leaf age or rates of nitrogen fertilization. Internal CO2 concentrations (Ci) of the leaf indicated that stomatal function was well coordinated with photosynthetic capacity as leaf age and fluence rate varied down to a PPFD of 500 mol m-2 s-1. As PPFD decreased further, there was less stomatal control and Ci increased to as high as 320 bar bar-1.Dark respiration was highest for expanding leaves and increased nearly exponentially with temperature. Respiration was also highest for young and expanding fruits, and next highest for fruits just turning pink. Fruit respiration increased approximately linearly with temperature, and was estimated to be an important component of the CO2 flux of the plant near maturity because of the heavy fruit load and low leaf photosynthesis at that time. The results are significant for model simulation of tomato productivity in the field.  相似文献   

17.
Zinc deficiency is an important limiting factor in sustainable crop production and is a factor often overlooked in determining the benefits and overall success of alfalfa pastures in rotations. A field experiment was conducted to investigate the effects of zinc and alfalfa cultivars on nodulation, herbage yield, leaf drop and disease severity (Phytophthora root rot disease and common leaf spot disease) in alfalfa (Medicago sativa L.). Ten cultivars of alfalfa (Hunter River, Hunterfield, Sceptre Aurora, Genesis, Aquarius, Venus (Y8622), PL69, P5929 and PL34HQ) were tested at two levels of zinc (+Zn: 4 kg ha–1, -Zn: no zinc added) on a Zn-deficient soil (DTPA zinc of top 0–15 cm soil was 0.4 mg kg–1 soil, while 15–30 cm subsoil Zn was 0.1 mg kg–1 soil) under field conditions. Zinc application significantly increased number and dry weight of nodules, herbage yield and leaf to stem ratio of alfalfa plants. There was a significant reduction in leaf drop, and occurrence of Phytophthora root rot (caused by fungus Phytophthora megasperma f. sp. medicaginis) and common leaf spot (caused by fungus Pseudopeziza medicaginis) diseases with Zn application. Alfalfa cultivars had a differential response to low Zn. Hunter River and Hunterfield were the most affected by omitting zinc application, while Sceptre, PL34HQ and Aquarius were comparatively less affected. The present study suggest that Zn nutrition effects nodulation, leaf drop, disease occurrence and production potential of alfalfa. The alfalfa cultivars have differential ability to low Zn supply. Growing of Zn-efficient cultivars and adequate Zn nutrition may also improve the N2-fixation by alfalfa on low-Zn soils.  相似文献   

18.
Grewal  Harsharn Singh  Williams  Rex 《Plant and Soil》1999,214(1-2):39-48
Response of 13 alfalfa (Medicago sativa L.) genotypes to varied Zn supply (+Zn: 2 mg kg−1 soil, −Zn: no added Zn) was studied in a pot experiment under controlled environmental conditions. Plants were grown for four weeks in a Zn-deficient siliceous sandy soil. Plants grown at no added Zn showed typical Zn deficiency symptoms i.e. interveinal chlorosis of leaves, yellowish-white necrotic lesions on leaf blades, necrosis of leaf margins, smaller leaves and a marked reduction in growth. There was solute leakage from the leaves of Zn-deficient plants, while no solute leakage from Zn-sufficient plants. The ratios of P:Zn, Fe:Zn, Cu:Zn and Mn:Zn in Zn-deficient plants were extremely high compared with Zn-sufficient plants indicating disturbance of P:Zn, Fe:Zn, Cu:Zn and Mn:Zn balance within plant system by Zn deficiency. Genotypes differed markedly in Zn efficiency based on shoot dry matter production. Alfalfa genotypes also differed markedly in P:Zn ratio, Cu:Zn ratio and Fe:Zn ratio under —Zn treatment. The shoot dry weight, shoot:root ratio, chlorophyll content of fresh leaf tissue, solute leakage from the leaves, Zn uptake and distribution of Zn in shoots and roots were the most sensitive parameters of Zn efficiency. Zn-efficient genotypes had less solute leakage but higher shoot:root ratio and higher Zn uptake compared with Zn-inefficient genotypes. Under —Zn treatment, Zn-inefficient genotypes had less Zn partitioning to shoots (33–37%) and more Zn retained in roots (63–67%), while Zn-efficient genotypes had about equal proportions of Zn in roots (50%) and shoots (50%). This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Pinus sylvestris seedlings infected with either the ectomycorrhizal (ECM) fungus Paxillus involutus or Suillus variegatus were exposed to a range of Cd or Zn concentrations. This was done to investigate the relationship between the sensitivity of ECM fungi and their host plants over a wide range of concentrations. P. involutus ameliorated the toxicity of Cd and Zn to P. sylvestris with respect to root length, despite significant inhibition of ECM infection levels by Cd (Cd EC50 [effective concentration which inhibits ECM infection by 50%] values were: P. involutus 3.7 μg g-1 Cd; S. variegatus 2.3 μg g-1 Cd). ECM infection by P. involutus also decreased Cd and Zn transport to the plant shoots at potentially toxic concentrations and also influenced the proportion of Zn transported to the roots and shoots, with a higher proportion retained in the roots of the seedlings. ECM infection did increase host biomass production, but this was not affected by the presence of Cd or Zn. Root and shoot biomass production by P. sylvestris, in both the presence and absence of ECM fungi, was unaffected by Cd and Zn at all concentrations tested. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
Seed of flax (Linum usitatissimum L.) grown on calcareous and neutral soils sometimes accumulates relatively high concentrations of Cd. The influence of a post-flowering application of NH4NO3 (115 mg N kg-1), CdSO4 (1 mg Cd kg-1), FeEDDHA (2 mg Fe kg-1), NaH2PO4 (120 mg P kg-1) and ZnSO4 (8 mg Zn kg-1) on seed accumulation of Cd, Fe, N, Mn, P and Zn by flax grown on a Calciaquoll was studied in two experiments under greenhouse conditions. Seed yields were increased by the N and Zn treatments, and the N×Zn interaction was positive. Zinc deficiency delayed flowering and boll formation by up to 20 days and reduced seed size. In the absence of added Cd, seed accumulated up to 0.33 mg Cd kg-1. This Cd accumulation was reduced by approximately 50 and 17% by added Zn and Fe, respectively, but was little affected by P fertilizer and post-flowering N stress. In the presence of added Cd, seed Cd exceeded 3.3 mg Cd kg-1, and the antagonistic effects of Fe and Zn on seed Cd were absent. Seed N, P, Fe and Zn concentrations were increased on average by 10, 45, 31 and 97% by the N, P, Fe and Zn fertilizer treatments, respectively. FeEDDHA reduced seed Mn concentration by approximately 58%. However, seed Mn concentration was much less than that found in vegetative tissue at flowering. Soil-applied Zn may reduce seed Cd concentration in flax under field conditions, and may increase marketability of flax for food use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号