首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Reciprocal grafts, and applications of gibberellin (GA) and indoleacetic acid (IAA) were used to localize the site of control for stem elongation in cucumber (Cucumis sativus L.). Dwarf and tall plants were reciprocally grafted to determine influence of stems and roots on stem elongation. At 21 days there were no significant differences in length between stems grafted to their own roots and those grafted to roots of the other type. GA3, GA4+7, and IAA were applied to seedlings with and without live apical buds. Seedlings with live apical buds responded to level of added GA, but not to added IAA. GA4+7 was more effective than GA3. Hypocotyls of tall plants responded more to both GA treatments than did those of the dwarves when both types had live apical buds. When either GA4+7 or IAA was applied to seedlings with dead apical buds, elongation of the hypocotyl responded to level of the growth regulator, but there was no difference in response between the dwarf and tall plants.  相似文献   

2.
Gibberellic acid (GA3) stimulated shoot elongation in both dwarf and tall cultivars of pea, but more so in the dwarf cultivar. The sterol composition of shoots of both cultivars was similar, with sitosterol being the most abundant compound, followed by stigmasterol and campesterol. Cholesterol could not be detected. Following GA3 application, levels of free sterols in whole shoots increased whereas glycoside levels tended to fall. The magnitudes of the changes in both classes of sterol were similar in both cultivars. Analyses of stems and leaves separately revealed a greater growth response to GA3 in the former but no effect of the hormone on the sterol composition of either organ. It is concluded that GA3 enhancement of shoot growth in pea is not mediated through quantitative changes in cell sterols.  相似文献   

3.
Rht3-containing gibberellic acid (GA3) insensitive deembryonated wheat (Triticum aestivum L. var Cappelle Desprez × Minister Dwarf) aleurone, that can be made responsive to GA3 by low temperature, can also be rendered GA3 sensitive by preincubation with indoleacetic acid (IAA). The IAA-induced response of the dwarf selection is concentration-dependent, relatively sensitive, and similar in magnitude to that induced by low temperature. Other auxins also induce GA3 responsiveness to a greater or lesser degree. IAA has no apparent effect on the wild type (rht, tall) selection.  相似文献   

4.
J. Eliezer  D. A. Morris 《Planta》1980,149(4):327-331
The putative auxin-transporting cells of the intact herbaceous dicotyledon are the young, differentiating vascular elements. The length of these cells was found to be considerably greater in dwarf (Meteor) than in tall (Alderman) varieties ofPisum sativum L., and to be greater in etiolated than in light-grown plants ofP. sativum cv Meteor andPhaseolus vulgaris L. cv Mexican Black. Under given light conditions during transport these large differences in cell length did not influence the shapes of the transport profiles or the velocity of transport of14C-labelled indol-3yl-acetic acid (IAA) applied to the apical bud. However, in both etiolated and light-grown bean and dwarf pea plants the velocity of transport in darkness was ca. 25% lower than that in light. Under the same conditions of transport velocities in bean were about twice those observed in the dwarf pea. Exposure to light during transport increased the rate of export of14C from the labelled shoot apex in green dwarf pea plants but not in etiolated plants. The light conditions to which the plants were exposed during growth and transport had little effect on the rates of uptake of IAA from the applied solutions. The results indicate that the velocity of auxin transport is independent of the frequency of cell-to-cell interfaces along the transport pathway and it is suggested that in intact plants auxin transport is entirely symplastic.  相似文献   

5.
The levels of gibberellin A1 (GA1), GA20, GA19, GA8, GA29 and GA81 (2-epiGA29) were measured in tall (L-) and dwarf (ll) sweet-pea plants grown in darkness and in light. In both environments the apical portions of dwarf plants contained less GA1; GA8 and GA19, but more GA20, GA29, and GA81 than did those of tall plants. It is concluded that the partial block in 3β-hydroxylation of GA20 to GA1 is imposed by allele l in darkness as well as in the light. Furthermore, darkness does not appear to enhance elongation in sweet pea by increasing GA1 levels. The reduction of the pool size of GA19 in dwarf plants supports recent theories on the regulation of GA biosynthesis, formulated on the basis of observations in monocotyledonous species. Darkness results in decreased GA20, GA29, and GA81 levels in the apical portions of tall and dwarf plants and possible reasons for this are discussed.  相似文献   

6.
Summary Indole-3-acetic acid (IAA) applied to the fully elongated second internode of decapitated Phaseolus multiflorus plants always inhibited axillary bud elongation at concentrations down to 100 g/g lanolin, whereas gibberellic acid (GA3) enhanced bud elongation at concentrations down to 1000 g/g lanolin. Lower concentrations than these of either IAA or GA3 were without significant effect. All possible combinations of IAA and GA3 within the concentration range 101 to 105 g/g lanolin were antagonistic; IAA tending to inhibit, and GA3 promote, axillary bud elongation growth. Treatment of an elongating internode with the hormones resulted in an increase in inhibition of bud growth by IAA in the presence of GA3.  相似文献   

7.
Longitudinal microtubules are predominant in epidermal cellsof the 3rd internodes of dwarf pea (Pisum sativum L. cv. LittleMarvel) seedlings. In more than 50% of the cells, cortical microtubulesare running parallel to the cell axis. GA3 promotes elongation of the internodes and gives rise toa predominance of transverse microtubules. In more than 60%of the GA3-treatd cells, cortical microtubules are running transverseto the cell axis. Longitudinal microtubules in the GA3-untreated cells are resistantto low-temperature treatment, but transverse microtubules inthe GA3-treated cells are sensitive to it. Longitudinal microtubulesare present in GA3-treated epidermal cells with low frequency.They are resistant to low-temperature treatment. Longitudinal, oblique and transverse microtubules are presentwith almost the same frequency in epidermal cells of the 3rdinternodes of tall pea (cv. Early Alaska) seedlings. GA3 promoteselongation of the internodes also in tall pea seedlings, butit does not alter the direction of cortical microtubules sodistinctly as it does in dwarf pea seedlings. As in dwarf pea seedlings, longitudinal microtubules are resistantto low-temperature treatment, and transverse microtubules aresensitive to it in tall pea seedlings. (Received September 19, 1986; Accepted December 26, 1986)  相似文献   

8.
以新疆主栽品种灰枣和骏枣的花芽为材料,测定不同分化时期花芽的可溶性糖、还原糖、淀粉、可溶性蛋白含量,SOD、POD、PPO、CAT活性以及内源GA3、IAA、ABA、ZT水平的变化,并分析它们与花芽分化的关系,为枣花芽分化调控提供理论参考.结果表明:(1)灰枣和骏枣花芽可溶性糖、还原糖和淀粉含量在花芽分化过程的变化趋势...  相似文献   

9.
Red light inhibits the growth of etiolated pea internodes, causes a shift toward higher indoleacetic acid (IAA) concentrations in the IAA dose-response curve of excised sections, and promotes the synthesis in intact internodes of kaempferol-3-triglucoside. Gibberellic acid (GA3) prevents all 3 effects, the first effect substantially and the last 2 completely. This suggests GA3 blockage of an early or basic event initiated by the active form of phytochrome. The red light-induced shift in the IAA dose-response curve of excised sections is consistent with a light-induced increase in the activity of an IAA destruction system, since the magnitude of the red light inhibition varied with IAA concentration. The red light and GA3 effects on growth and on flavonoid synthesis are consistent with the view that phytochrome may control growth by regulating the synthesis of phenolic compounds which act as cofactors in an IAA-oxidase system. GA3 reversal of the red light-induced shift in the IAA dose-response curve involves both growth promotion and inhibition by GA3 at different IAA concentrations and this, together with the GA3 reversal of light-induced flavonoid synthesis, supports the suggested regulatory role of phenolic compounds in growth.  相似文献   

10.
Moore TC  Shaner CA 《Plant physiology》1967,42(12):1787-1796
A 2-step, 1-dimensional thin-layer chromatographic procedure for isolating indoleacetic acid (IAA) was developed and utilized in investigations of the biosynthesis of IAA from tryptophan-14C in cell-free extracts of pea (Pisum sativum L.) shoot tips. Identification of a 14C-product as IAA was by (a) co-chromatography of authentic IAA and 14C-product on thin-layer chromatography, and (b) gas-liquid and thin-layer chromatography of authentic and presumptive IAA methyl esters. Dialysis of enzyme extracts and addition of α-ketoglutaric acid and pyridoxal phosphate to reaction mixtures resulted in approximately 2- to 3-fold increases in net yields of IAA over yields in non-dialyzed reaction mixtures which did not contain additives essential to a transaminase reaction of tryptophan. Addition of thiamine pyrophosphate to reaction mixtures further enhanced net biosynthesis of IAA. It is concluded that the formation of indolepyruvic acid and its subsequent decarboxylation probably are sequential reactions in the major pathway of IAA biosynthesis from tryptophan in cell-free extracts of Pisum shoot tips. Comparison of maximum net IAA biosynthesis in extracts of shoot tips of etiolated and light-grown dwarf and tall pea seedlings revealed an order, on a unit protein N basis, of: light-grown tall > light-grown dwarf > etiolated tall etiolated dwarf. It is concluded that the different rates of stem elongation among etiolated and light-grown dwarf and tall pea seedlings are correlated, in general, with differences in net IAA biosynthesis and sensitivity of the tissues to IAA.  相似文献   

11.
This study explores the unique growth-regulatory roles of two naturally occurring auxins, indole-3-acetic acid (IAA) and 4-chloroindole-3-acetic acid (4-Cl-IAA), and their interactions with gibberellin (GA) during early pea (Pisum sativum L.) fruit development. We have previously shown that 4-Cl-IAA can replace the seed requirement in pea pericarp growth (length and fresh weight), whereas IAA had no effect or was inhibitory. When applied simultaneously, gibberellin (GA3 or GA1) and 4-Cl-IAA had a synergistic effect on pericarp growth. In the present study, we found that simultaneous application of IAA and GA3 to deseeded pericarps inhibited GA3-stimulated growth. The inhibitory effect of IAA on GA-stimulated growth was mimicked by treatment with ethephon (ethylene releasing agent), and the inhibitory effects of IAA and ethylene on GA-mediated growth were reversed by silver thiosulfate (STS), an ethylene action inhibitor. Although pretreatment with STS could retard senescence of IAA-treated pericarps, STS pretreatment did not lead to IAA-induced pericarp growth. Although 4-Cl-IAA stimulated growth whereas IAA was ineffective, both auxins induced similar levels of ethylene evolution. However, only 4-Cl-IAA-stimulated growth was insensitive to the effects of ethylene. Gibberellin treatment did not influence the amount of ethylene released from pericarps in the presence or absence of either auxin. We propose a growth regulatory role for 4-Cl-IAA through induction of GA biosynthesis and inhibition of ethylene action. Additionally, ethylene (IAA-induced or IAA-independent) may inhibit GA responses under physiological conditions that limit fruit growth.  相似文献   

12.
13.
To test whether shifts induced in microtubuie orientation by gibberellic acid (GA3) involved changes in tubulin isotypes, pea stem cells were examined when elongation had been enhanced by GA3. The behaviour of a dwarf recessive mutation (le), with very low endogenous levels of gibberellin, was compared with the tall (Le) plant. Two hours after adding GA3, cells were measurably longer than controls and this coincided with a net shift of microtubule orientation from longitudinal and oblique to transverse — an effect that was more pronounced in the dwarf. There were always more cells with net-transverse microtubules in GA3-treated tissue than in controls, but as growth ceased, the major orientation of the microtubule arrays became oblique in both samples. Microtubule reorientation was rapid and was closely correlated with the growth of the cells. Although changes in orientation and isotype were monitored over a 40 h period, immunoblotting 2D gels with the well characterized antibodies YL1/2 and YOL1/34 confirmed that alterations to the α-tubulin constellation could be detected as early as the 2 h time point. Again the effect was especially pronounced in dwarf plants. In the presence of added GA3, one α-tubulin isotype (designated α1) retained its position in the α-tubulin constellation (as determined by total protein staining and with YOL1/34 that recognizes detyrosinated as well as tyrosinated tubulin). It was no longer recognized, however, by the anti-tyrosinated α-tubulin antibody YL1/2. This indicates that as GA3 begins to cause a reorientation of the cortical microtubules (and to enhance the rate of cell elongation) the α1 isotype is rapidly changed, probably by post-translational modification.  相似文献   

14.
Maleic hydrazide (MH) and gibberellic acid (GA) were applied alone and in combination at various doses to dwarf and tall varieties of garden pea, and their effect on stem extension measured. Combinations of MH and 3-indolylacetic acid (IAA) were also studied. Stern extension of dwarf peas was accelerated by GA and inhibited by MH. Their effects were not additive, since MH reduced the response to GA at all concentrations of each tested. IAA did not affect stem extension, whether applied alone or in combination with MH. Stem extensions of tall peas was not affected by GA or IAA alone. MH severely inhibited growth and this inhibition was not reduced either by GA or by IAA. At low doses MH broke apical dominance and side branches developed; extension of these was stimulated by GA and IAA and extension of the main axis correspondingly still further reduced. The results show that MH prevents the response to GA of GA-sensitive plants. It is suggested that the rapid growth of tall peas, as compared with that of dwarfs, and their lack of response to GA, are due to a greater capacity to synthesize a 'GA-like hormone'. Growth of tall peas is much more drastically inhibited by MH than that of dwarf peas and the suggestion is made that the inhibition of shoot growth induced by MH is due primarily to blocking the activity of the postulated 'GA-like hormone'.  相似文献   

15.
The effect of application of GA3 on hypocotyl growth, the endogenous GAs, and the metabolism of applied 3H-GA1 were investigated in relation to dwarfism and light-mediated growth inhibition in the normal (tall) strain Violet and the dwarf strain Kidachi of Japanese morning glory (Pharbitis nil). GA3 applied in a wide concentration range (10−9 to 10−3m) to 4-day-old seedlings caused great extension of the hypocotyls in light-grown plants of both the normal and the dwarf strain. However, the dwarf strain did not attain the same length as the normal one at any given GA3 concentration, even when saturation was reached. Dark-grown plants of the dwarf strain responded to GA3, although relatively much less than light-grown ones; dark-grown plants of the normal strain showed no GA3 response at all.  相似文献   

16.
From seedlings of dwarf pea (Pisum sativum L., var. Progress No. 9) grown under red light, three neutral growth inhibitors were isolated which interfered with the responses of these plants to GA3. The compounds were identified as β-sitosterol, α-stearoyl glycerol and pisatin, of which the glyceride produced remarkable inhibition when applied to terminal buds. Though its anti-gibberellin activity was not very strong, pisatin produced inhibition of the straight-growth of Avena coleoptile segments caused by IAA.  相似文献   

17.
Indole-3-acetic acid (IAA) strongly enhanced rooting of etiolated pea epicotyl cuttings while gibberellic acid (GA3) enhanced rooting only slightly. The promoting effects of the hormones appeared not until 14 d after the onset of treatment. When GA3 and IAA were applied together, the initiation of rooting started already after 6 d after onset of treatment. It is suggested that gibberellin plays an important role, in combination with auxin, in the initiation of root formation in Pisum cuttings.Abbreviations IAA Indole-3-acetic acid - GA3 Gibberellic acid  相似文献   

18.
Salinity is a worldwide problem limiting the plant growth and risking food security. This study was conducted to examine exogenous application of silicon (Si), gibberellic acid (GA3) upon the ion transport, growth, yield, and antioxidant enzymes activities of pea plant in saline conditions. Two pea varieties Meteor-FSD and Samrina Zard were pre-treated with GA3 (10-4 M) for 12 h. Plants were allowed to grow with or without silicon in washed silica sand. Ten days old seedlings were shifted in pots with 10 kg soil. Twenty-five days old plants were exposed to 0 and 5 dS m?1 sodium stress. Results showed that exogenous application of GA3 + Si was the best treatment for increasing plant biomass and yield in the presence and absence of NaCl. Furthermore, application of Si or GA3 enhanced chlorophyll content in the leaves, thereby increasing the net assimilation rate of pea varieties under NaCl stress by increasing the antioxidant enzyme activity. Treatment of Si alone or in combination with GA3 significantly reduced Na+ movement in both pea varieties. Results showed that Si has more prominent role than GA3 alone to build-up high plant biomass, yield, soluble protein content and reduction of Na+ transport. Samrina Zard variety showed higher yield, shoot and root dry weight as compared to Meteor-FSD variety in presence and absence of salt. It was concluded that Si can be used as a nutrient for pea under saline or non-saline conditions. Moreover, application of GA3 has a potential role for increasing salinity tolerance, mostly in sensitive pea varieties.  相似文献   

19.
Two-week-old dwarf peas (Pisum sativum cv Little Marvel) were sprayed with gibberellic acid (GA3), and after 3 or 4 days the upper stem and young leaf samples were analyzed for indole-3-acetic acid (IAA) and indole-3-acetyl aspartic acid by an isotope dilution high performance liquid chromatography method. GA3 increased IAA levels as much as 8-fold and decreased indole-3-acetyl aspartic acid levels.  相似文献   

20.
Radioactive gibberellin a(5) and its metabolism in dwarf peas   总被引:5,自引:5,他引:0       下载免费PDF全文
Radioactive gibberellin A5 (3H-GA5) was synthesized from gibberellic acid. When it was applied to dwarf peas grown in the dark, an average of 3% was converted to another acid gibberellin within 48 hours. The biological activity of the metabolite did not account for the response to applied GA5. GA5 is therefore assumed to be biologically active per se.3H-GA5 did not appear to form a stable complex with a macromolecule in pea shoots. When injected into dwarf pea pods, 3H-GA5 was readily metabolized by maturing seed to more water-soluble substances and to two other acidic compounds. This metabolism continued even throughout germination of the seed without reconversion of the metabolites to GA5. It is concluded that “bound” GA5 plays no part in the germination of dwarf pea seeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号