首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sequence of bromoperoxidase II from the brown alga Ascophyllum nodosum was determined from a full length cloned cDNA, obtained from a tandem mass spectrometry RT-PCR-approach. The clone encodes a protein composed of 641 amino-acids, which provides a mature 67.4 kDa-bromoperoxidase II-protein (620 amino-acids). Based on 43% sequence homology with the previously characterized bromoperoxidase I from A. nodosum, a tertiary structure was modeled for the bromoperoxidase II. The structural model was refined on the basis of results from gel filtration and vanadate-binding studies, showing that the bromoperoxidase II is a hexameric metalloprotein, which binds 0.5 equivalents of vanadate as cofactor per 67.4 kDa-subunit, for catalyzing oxidation of bromide by hydrogen peroxide in a bi-bi-ping-pong mechanism (kcat = 153 s−1, 22 °C, pH 5.9). Bromide thereby is converted into a bromoelectrophile of reactivity similar to molecular bromine, based on competition kinetic data on phenol bromination and correlation analysis. Reactivity provided by the bromoperoxidase II mimics biosynthesis of methyl 4-bromopyrrole-2-carboxylate, a natural product isolated from the marine sponge Axinella tenuidigitata.  相似文献   

2.
Bromoperoxidase is an enzyme found in marine macroalgae that catalyzes the bromination of organic substrates. Photosynthetic microplantlet suspension cultures derived from the macrophytic red alga Ochtodes secundiramea were shown to possess bromoperoxidase. The optimum pH for O. secundiramea bromoperoxidase activity in cell-free extracts was 6.0, and the half-saturation constant for bromination of the exogeneous substrate monochlorodimedone (MCD) was 18 microM. O. secundiramea microplantlets were cultivated in a bubble-column photobioreactor at an incident light intensity of 38 microE x m(-2) x s(-1) (71% of light-saturated photosynthesis, 10:14 light:dark photoperiod), and the kinetics of cell growth and bromoperoxidase production were followed. At these conditions, the specific growth rate was 0.052 x day(-1). The lowest specific bromoperoxidase activity of 0.3 micromol MCD x g(-1) cell x min(-1) occurred during the midexponential phase of growth, and then increased steeply to 1.9 micromol MCD x g(-1) cell x min(-1) during the late stationary phase, suggesting that bromoperoxidase production was part of secondary metabolism. The estimated bromoperoxidase content in the cell mass at late stationary phase was 67 microg x g(-1) dry cell mass, demonstrating that bioreactor production of marine bromoperoxidase is feasible.  相似文献   

3.
The three-dimensional structure of the vanadium bromoperoxidase protein from the marine red macroalgae Corallina officinalis has been determined by single isomorphous replacement at 2.3 A resolution. The enzyme subunit is made up of 595 amino acid residues folded into a single alpha+beta domain. There are 12 bromoperoxidase subunits, arranged with 23-point group symmetry. A cavity is formed by the N terminus of each subunit in the centre of the dodecamer. The subunit fold and dimer organisation of the Cor. officinalis vanadium bromoperoxidase are similar to those of the dimeric enzyme from the brown algae Ascophyllum nodosum, with which it shares 33 % sequence identity. The different oligomeric state of the two algal enzymes seems to reflect separate mechanisms of adaptation to harsh environmental conditions and/or to chemically active substrates and products. The residues involved in the vanadate binding are conserved between the two algal bromoperoxidases and the vanadium chloroperoxidase from the fungus Curvularia inaequalis. However, most of the other residues forming the active-site cavity are different in the three enzymes, which reflects differences in the substrate specificity and stereoselectivity of the reaction. A dimer of the Cor. officinalis enzyme partially superimposes with the two-domain monomer of the fungal enzyme.  相似文献   

4.
Many organic compounds were found to be substrates for halogenation reactions catalyzed by the non-heme-type bromoperoxidase found in the red alga Corallina pilulifera. Anisole, 1-methoxynaphthalene and thiophene were converted to o and p-bromoanisoles, 1-methoxy-4-bromonaphthalene and 2-bromothiophene respectively. Regiospecificity of the enzymatic bromination of anisole was tested and found to be the same as in the chemical reaction with NaOBr. The enzyme also acted on substituted alkenes such as styrene, cyclohexene, trans-cinnamic acid, trans-cinnamyl alcohol and cis-propenylphosphonic acid, to give the respective bromohydrin compounds or decarboxylated bromo compound. These bromohydrin compounds were always mixtures of stereoisomers. In the light of the above findings together with the previous studies concerning the halogenation mechanism, the bromoperoxidase of C. pilulifera was considered to have no specific restriction site for these substrates.  相似文献   

5.
Three newly discovered non-heme bromoperoxidases isolated from marine algae were found to catalyze the production of singlet oxygen in reactions composed of the bromoperoxidase, hydrogen peroxide, and bromide. The bromoperoxidases studied were vanadium bromoperoxidase (V-BrPO) from Ascophyllum nodosum, native non-heme bromoperoxidase from Corallina vancouveriensis (which contains vanadium and iron), and the vanadium-reconstituted bromoperoxidase derivative from C. vancouveriensis. These enzyme systems generated near infrared emission, characteristic of singlet oxygen. The emission had a peak intensity near 1268 nm, was greatly increased in 2H2O-containing buffers, and was greatly decreased by the singlet oxygen quenchers, histidine and azide. The yield of singlet oxygen was approximately 80% of the theoretical yield. A unique feature of the non-heme bromoperoxidases distinct from the iron heme haloperoxidases, was the remarkable stability of the non-heme enzymes in the presence of singlet oxygen and oxidized bromine species. V-BrPO turned over multiple aliquots of 2 mM hydrogen peroxide without losing efficiency. In contrast, iron heme lactoperoxidase was completely inactivated after turnover of the first aliquot of 2 mM hydrogen peroxide, and iron heme chloroperoxidase was 50% deactivated. The profile of singlet oxygen formation by V-BrPO and the near stoichiometric yield of singlet oxygen suggest that the mechanism of singlet oxygen formation is the same as the mechanism of dioxygen formation determined by oxygen probe measurements.  相似文献   

6.
Purification of bromoperoxidase from Pseudomonas aureofaciens.   总被引:2,自引:2,他引:0       下载免费PDF全文
A Bromoperoxidase has been isolated and purified from Pseudomonas aureofaciens ATCC 15926 mutant strain ACN. The purified enzyme was homogeneous as determined by polyacrylamide gel electrophoresis and ultracentrifugation. This bromoperoxidase can utilize bromide ions in the presence of hydrogen peroxide and a halogen acceptor for the catalytic formation of carbon-halogen bonds. The homogeneous enzyme also has peroxidase and catalase activity. Based on the results from gel filtration and ultracentrifugation, the molecular weight of this procaryotic bromoperoxidase is 155,000 to 158,000. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis shows a single band having the mobility of a 77,000-molecular-weight species. We thus conclude that this bromoperoxidase exists in solution as a dimeric species. The heme prosthetic group of bromoperoxidase is ferriprotoporphyrin IX. The spectral properties of the native and reduced enzyme are reported. This bromoperoxidase is the first halogenating enzyme purified from procaryotic sources.  相似文献   

7.
Aqueous Tri-SO4 buffer (pH 8.3) extracts of cortical and surface protoplasts of Macrocystis pyrifera (L.) C. Ag. Catalyzed the bromination of monochlorodimedone (2-chloro-5, 5-dimethyl-1, 3-dimedone, MCD) in the presence of hydrogen peroxide and bromide. The apparent bromo-peroxidase activity as measured by the bromination of MCD was inhibited by the presence of endogenous compounds which are probably polyphenolics compounds (i.e. polymers of phloroglucinol) or other inhibitors. The bromoperoxidase activity of the protoplast extracts increased substantially when the extracts were washed extensively with Tris-SO4 buffer (pH 8.3) by ultrafiltration. The bromoperoxidase activity of both surface and cortical protoplast extracts was dependent on the presence of vanadium, indicating that the bromoperoxidase present in cortical and surface cells of M. pyrifera is vanadium-bromoperoxidase. Halogenated compounds constitute one of the most significant classes of marine natural products. Since bromoperoxidases are assumed to be involved in the biosynthesis of these compounds, elucidation of the location of BrPO with in the algal tissue is important.  相似文献   

8.
The vanadium-dependent bromoperoxidase from the marine macro-alga Corallina pilulifera was heterologously expressed in Saccharomyces cerevisiae. The enzyme was purified and crystals in "tear drop" form were obtained. The catalytic properties of the recombinant enzyme were studied and compared with those of the native enzyme purified from C. pilulifera. Differences in thermal stability and chloroperoxidase activity were observed. The recombinant enzyme retained full activity after preincubation at 65 degrees C for 20 min, but the native enzyme was completely inactivated under the same conditions. The chlorinating activity of the native enzyme was more than ten times higher than that of the recombinant enzyme. Other properties, such as K(m) values for KBr and H(2)O(2), and optimal temperature and pH, were similar for each source of C. pilulifera bromoperoxidase.  相似文献   

9.
Barbituric acid, 1-methyl- and 1,3-dimethylbarbituric acid, some of its 5-phenyl derivatives, and 5-chlorobarbituric acid are presented as new substrates for the bromoperoxidase isolated from the brown alga Ascophyllum nodosum. This enzyme is able to convert these substrates into the corresponding 5-bromo or 5,5-dibromo derivatives in good yields. Kinetic measurements show that the structure of the examined substrates has little or no effect on the enzymatic rate of bromination. However, at low substrate concentration the reaction rate depends on both the concentration of the organic substrate and the concentration of hydrogen peroxide. A mechanism is proposed for the reactions of bromoperoxidase with its substrates. These reactions involve the formation of free hypobromous acid which can either brominate the organic halogen acceptor or produce singlet oxygen by a competing reaction with hydrogen peroxide.  相似文献   

10.
The penta-coordinated vanadyl complexes [VO(ON)(2)] have been obtained by reaction between [VOX(2)] (X = acetylacetonate or chloride) and the Schiff base ligands HON = (R)-sal-am, (R)-Clsal-am and (S)-naph-am, where sal and naph are the salicylidene and naphthalidene moieties, and am derives from phenylethylamine. The three complexes and the ligand (R)-Clsal-am have been structurally characterized. The geometry of the complexes is in-between trigonal-bipyramidal (with the two imine functions in the axis) and square-pyramidal; tau values range from 0.66 to 0.44. Structural and EPR (electron paramagnetic resonance) features are in accord with the coordination environment proposed for the inactive, reduced (V(IV)) form of the bromoperoxidase from the marine brown alga Ascophyllum nodosum.  相似文献   

11.
The conversion is described of phenolsulphonephtalein (phenol red) to 3,3',5,5'-tetrabromophenolsulphonephthalein (bromophenol blue) by bromoper-oxidase from the brown alga Ascophyllum nodosum. This reaction provides a convenient assay for the detection of bromoperoxidase activity in vitro. Bromoperoxidase was shown to be stable under turnover conditions for three weeks at room temperature, catalyzing the bromination of phenol red into bromophenol blue. When stored at room temperature in organic sol vents such as acetone, methanol, ethanol [present up to 60% (v/v)], and 1-propanol [40% (v/v)], bromoperoxidase was stable for more than one month. As far as we know this is the first example of an oxidoreductase which displays such great stability. This enhances the applicability of the enzyme in organic synthesis.  相似文献   

12.
对中国北方海域江蓠属养殖龙须菜(Gracilaria lemaneiformis)进行了溴过氧化物酶分离纯化及性质的研究。粗提液中酶催化检测反应不稳定, 活力单位较低或无; 经DEAE cellulose 52离子交换层析, 去除了结构多糖及藻胆蛋白, 酶催化反应稳定, 得到比活力为2.8的电泳纯溴过氧化物酶。对纯化溴过氧化物酶性质研究表明: 该溴过氧化物酶为单体酶, 分子量约66 kD, 溴化单氯双甲酮时的最适pH值为6.0, 在40°C以下和pH 3.0~9.0之间有很好的稳定性。钒酸盐可提高该溴过氧化物酶的催化活性, 而Fe2+、Fe3+、Cu2+、Zn2+和EDTA等化合物对其有较显著的抑制作用。反应动力学实验表明, 该酶对Br-、H2O2的Km分别为53.5 mmol/L和38 mmol/L。  相似文献   

13.
龙须菜中溴过氧化物酶的分离纯化及酶学性质分析   总被引:2,自引:0,他引:2  
对中国北方海域江蓠属养殖龙须菜(Gracilaria lemaneiformis)进行了溴过氧化物酶分离纯化及性质的研究。粗提液中酶催化检测反应不稳定, 活力单位较低或无; 经DEAE cellulose 52离子交换层析, 去除了结构多糖及藻胆蛋白, 酶催化反应稳定, 得到比活力为2.8的电泳纯溴过氧化物酶。对纯化溴过氧化物酶性质研究表明: 该溴过氧化物酶为单体酶, 分子量约66 kD, 溴化单氯双甲酮时的最适pH值为6.0, 在40°C以下和pH 3.0~9.0之间有很好的稳定性。钒酸盐可提高该溴过氧化物酶的催化活性, 而Fe2+、Fe3+、Cu2+、Zn2+和EDTA等化合物对其有较显著的抑制作用。反应动力学实验表明, 该酶对Br-、H2O2的Km分别为53.5 mmol/L和38 mmol/L。  相似文献   

14.
A bromoperoxidase gene was cloned from Streptomyces aureofaciens Tü24 into Streptomyces lividans TK64 by using the promoter-probe vector pIJ486. Subcloning of DNA from the original, unstable clone allowed the gene to be localized to a 1.7-kilobase (kb) fragment of DNA. Southern blotting showed that the cloned 1.7-kb insert hybridized to a 4.3-kb fragment in an SstI digest of S. aureofaciens Tü24 total DNA. The 1.7-kb insert was shown to code for a protein with the electrophoretic properties of the subunits of the nonheme bromoperoxidase isolated from S. aureofaciens Tü24. The protein produced by S. lividans TK64 transformed with pHM621, which contained an 8.0-kb insert, was shown to be identical to the S. aureofaciens Tü24 bromoperoxidase in terms of its electrophoretic mobility on denaturing and nondenaturing polyacrylamide gels and its NH2-terminal amino acid sequence. The bromoperoxidase was overproduced (up to 180 times) by S. lividans TK64 containing pHM621. Based on the heat stability of the S. aureofaciens Tü24 bromoperoxidase, a new and simple purification procedure with very high yields was developed.  相似文献   

15.
We have previously shown that vanadium bromoperoxidase from Ascophyllum nodosum mediates production of the (R)-enantiomer of methyl phenyl sulfoxide with 91% enantiomeric excess. Investigation of the intrinsic selectivity of vanadium bromoperoxidase reveals that the enzyme catalyzes the sulfoxidation of methyl phenyl sulfide in a purely enantioselective manner. The K(m) of the enzyme for methyl phenyl sulfide was determined to be approximately 3.5 mM in the presence of 25% methanol or tert-butanol. The selectivity of the sulfoxidation of methyl phenyl sulfide is optimal in the temperature range 25-30 degrees C and can be further optimized by increasing the enzyme concentration, yielding selectivities with up to 96% enantiomeric excess. Furthermore, we established for the first time that vanadium bromoperoxidase is functional at temperatures up to 70 degrees C. A detailed investigation of the sulfoxidation activity of this enzyme using (18)O-labeled hydrogen peroxide shows that vanadium bromoperoxidase mediates the direct transfer of the peroxide oxygen to the sulfide. A schematic model of the vanadium haloperoxidase sulfoxidation mechanism is presented.  相似文献   

16.
Purification and properties of bromoperoxidase from Pseudomonas pyrrocinia   总被引:1,自引:0,他引:1  
A bromoperoxidase was purified and partially characterized from Pseudomonas pyrrocinia ATCC 15958, a bacterium that produces the antifungal antibiotic pyrrolnitrin. The purified enzyme preparation was homogeneous as determined by polyacrylamide gel electrophoresis and ultracentrifugation. The molecular mass of the enzyme was estimated to be 154 kDa +/- 3 kDa as determined by gel filtration and ultracentrifugation. Sodium dodecyl sulfate polyacrylamide gel electrophoresis showed a single band with the mobility of a 76-kDa species. Therefore, in solution at neutral pH, bromoperoxidase exists as a dimeric species. The isoelectric point was 5.0. The prosthetic group of this procaryotic bromoperoxidase was ferriprotoporphyrin IX. The spectral properties of the native and reduced enzyme are reported. The purified enzyme showed brominating as well as peroxidase and catalase activity.  相似文献   

17.
Bromoperoxidase Compound I has been formed in reactions between bromoperoxidase and organic peroxide substrates. The absorbance spectrum of bromoperoxidase Compound I closely resembles the Compound I spectra of other peroxidases. The pH dependence of the second order rate constant for the formation of Compound I with hydrogen peroxide demonstrates the presence of an ionizable group at the enzyme active site having a pKa of 5.3. Protonation of this acidic group inhibits the rate of Compound I formation. This pKa value is higher than that determined for other peroxidases but the overall pH rate profiles for Compound I formation are similar. The one-electron reduction of bromoperoxidase Compound I yields Compound II and a second reduction yields native enzyme. Bromoperoxidase Compound II readily forms Compound III in the presence of an excess of hydrogen peroxide. Compound III passes through an as yet uncharacterized intermediate (III) in its decay to native enzyme. Compound III is produced and accumulates in enzymatic bromination reactions to become the predominate steady state form of the enzyme. Since Compound III is inactive as catalyst for enzymatic bromination, its accumulation leads to an idling reaction pathway which displays an unusual kinetic pattern for the bromination of monochlorodimedone.  相似文献   

18.
Summary A study of bromohydrin formation from some cinnamyl substrates by the heme-dependent chloroperoxidase from Caldariomyces fumago has identified differences in the regio- and diastereospecificity of this enzyme relative to chemical hydrobromination. Diastereospecificity of bromohydrin formation from (E)-4-phenyl-buten-2-ol by the vanadium-dependent bromoperoxidase from the alga Corallina officinalis is similar to that of the fungal enzyme but significantly different to the equivalent chemical reaction.  相似文献   

19.
A bromoperoxidase has been isolated and purified from the chloramphenicol-producing actinomycete Streptomyces phaeochromogenes. The purified enzyme was homogeneous as determined by polyacrylamide gel electrophoresis. The prosthetic group of the bromoperoxidase was ferriprotoporphyrin IX. Based on gel filtration results the molecular weight of the enzyme was 147 000 +/- 3000. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis showed a single band having the mobility of a 72 500 molecular weight species. Therefore, in solution at neutral pH, the bromoperoxidase behaved as a dimer. The isoelectric point was 4.0. The spectral properties of the native and reduced enzyme are reported. The homogeneous enzyme also had peroxidase and catalase activity.  相似文献   

20.
A bromoperoxidase was isolated from the chlortetracycline-producing actinomycete, Streptomyces aureofaciens. This enzyme catalysed bromination and iodination, but surprisingly did not catalyse chlorination. The enzyme had an acidic pH optimum (pH 4.3) and the isoelectric point was 3.5. The Km for bromide was 20 mM and the Km for H2O2 was as high as 8 mM. The bromoperoxidase did not contain haem, since it was not inhibited by azide or cyanide. Excess bromide or chloride had no effect on its brominating activity; however, fluoride strongly inhibited the bromoperoxidase (Ki = 20 microM). On the basis of gel electrophoresis in the absence and presence of sodium dodecyl sulphate, the molecular mass of the enzyme was 65 kDa and it consisted of two subunits of 32 kDa each. The bromoperoxidase was remarkably thermostable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号