首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H Vilmann  S Kirkeby 《Acta anatomica》1988,131(2):108-112
Cross-sections of normal and dystrophic digastric and masseter muscles from 7- and 35- to 40-week-old mice were studied in the light microscope. Comparisons of mean cell size, cell size variance and number of centrally positioned nuclei in a given number of fibers were carried out. The masseter muscle seems at both ages to be far more affected by the disease than the digastric muscle. However, the progression of the disease from 7 to 40 weeks is more pronounced in the digastric muscle than in the masseter muscle.  相似文献   

2.
With the aid of histochemical and electrophoretic techniques activities for esterase and esterprotease were investigated in the digastric and masseter muscles from normal and dystrophic mice. The substrates used were -naphthyl acetate and N-acetyl-l-alanine -naphthyl ester. According to the microscopic observations of the dystrophic muscles the histopathological changes in the masseter muscle were much more pronounced than in the digastric muscle. The connective tissue surrounding the myofibers of the dystrophic masseter contained a large number of cells with pronounced enzyme activity. Among them were mast cells that were strongly stained for esterprotease. The connective tissue of the dystrophic digastricus was much less infiltrated with cellular elements reacting for esterprotease. In zymograms the normal digastricus, the dystrophic masseter and the dystrophic digastricus showed a strong activity for certain isoenzymes that were absent or weakly expressed in the normal masseter.This study was supported by grand No. 12-6516 from the Danish Medical Research Council  相似文献   

3.
Neural controlling mechanisms between the digastric (jaw-opening) and masseter (jaw-closing) muscles were studied in the cat. High threshold afferent impulses from the anterior belly of the digastric muscle to masseteric montoneurons in the trigeminal motor nucleus induced an EPSP-IPSP sequence of potentials with long latency, and high threshold afferent impulses from the masseter muscle also exerted a similar effect on digastric motoneurons in the same nucleus innervating the anterior belly of the digastric muscle. These results suggest that reciprocal inhibition via Ia interneurons as observed between the flexor and extensor muscles in the spinal cord does not exist between the digastric and masseter muscles in the cat. However, the respective motoneurons innervating the masseter and digastric muscles receive inputs of early excitation-late inhibition via high threshold afferent nerve fibers from each antagonistic muscle. As such, since EPSPs preceding IPSPs are recognized, these high threshold afferent impulses may exert not only a reciprocal inhibitory effect, but also a synchronous excitatory or inhibitory effect on the antagonistic motoneurons.  相似文献   

4.
Cross-sections of normal digastric, temporalis and masseter muscles from 7- and 30-week-old mice were studied for centrally positioned nuclei. Such nuclei were inhomogeneously distributed throughout each muscle and varied markedly between specimens. The incidence of centrally positioned nuclei in the digastric muscle (mean +/- SD: 0.029 +/- 0.015, n = 25) was significantly higher (p less than 0.001) than that in the temporalis (mean +/- SD: 0.011 +/- 0.010, n = 25) and masseter muscles (mean +/- SD: 0.005 +/- 0.007, n = 9), but did not differ between the two latter muscles (p = 0.41). Furthermore, the frequency in a given muscle was apparently age-independent. A connection between fiber type and centrally positioned nuclei is suggested.  相似文献   

5.
The purposes of the present study were to elucidate the influences of the deficiency of teeth on masticatory muscles, such as the masseter, temporalis and digastric muscles and compare the influence among masticatory muscles. We analysed the expressions of myosin heavy chain (MyHC) isoform messenger RNA (mRNA) and protein in these muscles in the microphthalmic (mi/mi) mouse, whose teeth cannot erupt because of a mutation in the mitf gene locus. The expression levels of MyHC mRNA and protein in the masseter, temporalis, digastric, tibialis anterior and gastrocnemius muscles of +/+ and mi/mi mice were analysed with real‐time polymerase chain reaction and sodium dodecyl sulfate‐polyacrylamide gel electrophoresis, respectively. The mi/mi masseter muscle at 8 weeks of age expressed 4·1‐fold (p < 0·05) and 3.3‐fold (p < 0·01) more MyHC neonatal mRNA and protein than that in the +/+, respectively; the expression level of MyHC neonatal protein was 19% of the total MyHC protein in the masseter muscle of mi/mi mice. In the digastric muscle, the expression levels of MyHC I mRNA and protein in the mi/mi mice were 4·7‐fold (p < 0·05) and 5‐fold (p < 0·01) higher than those in the +/+ mice. In the temporalis, tibialis anterior and gastrocnemius muscles, there was no significant difference in the expression levels of any MyHC isoform mRNA and protein between +/+ and mi/mi mice. These results indicate associations between the lack of teeth and the expression of MyHC in the masseter and digastric muscles but not such associations in the temporalis muscle, suggesting that the influence of tooth deficiency varies among the masticatory muscles. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
The aim of this study was to obtain insight into the coactivation behaviour of the jaw muscles under various a priori defined static loading conditions of the mandible. As the masticatory system is mechanically redundant, an infinite number of recruitment patterns is theoretically possible to produce a certain bite force. Using a three-component force transducer and a feedback method, subjects could be instructed to produce a bite force of specific direction and magnitude under simultaneous registration of the EMG activity of anterior and posterior temporal, masseter and digastric muscles on each side. Forces were measured at the second premolars. Vertical, anterior, posterior, lateral and medial force directions were examined; in each direction force levels between 50 N and maximal voluntary force were produced. The results show that for all muscles the bite force-EMG relationship obeys a straight-line fit for forces exceeding 50 N. The relationship varies with bite force direction, except in the case of the digastric muscles. Variation is small for the anterior temporal and large for the posterior temporal and masseter muscles. The relative activation of muscles for a particular force in a particular direction in unique, despite the redundancy.  相似文献   

7.
The musculus masseter, ensuring movements of the mandible, displace the osseous pieces at its fracture up/down in the lateral and medial sides. Morphometrical investigation of the musculi depressores++ mandibulae has been performed. As a whole 33 corpses (29-78 years of age) of normosthenic++ complexion have been studied. The measurements have been performed by means of a special compasses and a ruler with an approximation to 1 mm and 1 degree. The length of the digastric muscle belly is 55.3 +/- 1.1 mm. The length of the geniohyoid muscle is 44.5 +/- 0.9 mm. The distance between the centers, where the digastric muscle are fixed on the hypoglossal bone is 46.1 +/- 1.1 mm, and on the mandible--25 +/- 9 mm. The width of fixation of the musculus mylohyoideus on the mandible is 52.6 +/- 1.2 mm. The angles between the masseter muscles, the mandibular body and the occlusive plane have also been determined.  相似文献   

8.
The pectoralis muscles of dystrophic chickens (line 413) were hypertrophic on the basis of fresh weight and fat-free dry weight. They also had greater DNA content and greater glucose-6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGD) activities. Of the parameters measured, the largest differences between pectoralis muscles from dystrophic and normal (line 412) chickens were for DNA content and G6PD activity. These parameters were 4.3- and 6.7-fold, respectively, the values for control pectoralis at 5 wk of age. The average number of nuclei per unit length of isolated muscle fiber was also greater (approximately 3-fold) for the dystrophic pectoralis. Body weight and pectoralis fresh weight, fat-free dry weight, DNA content, G6PD activity and 6PGD activity were reduced significantly in propylthiouracil (PTU)-treated normal and dystrophic chickens. Moreover, the effects of PTU were more pronounced in the dystrophic strain. Thyroid deprivation significantly improved the righting ability of the dystrophic chickens, in addition to its influence on muscle hypertrophy and body growth. Thyroxine (T4) replacement reversed the PTU effects in both strains. Of all the variables measured, total G6PD activity was the most affected by PTU treatment of dystrophic chickens and was only 16% of the control dystrophic value.In addition to the effects of thyroid deprivation on the expression of avian muscular dystrophy, we observed significant differences in thyroid-related variables in the two strains. The average thyroid weight at 4 wk and serum triiodothyronine level at 5 wk for dystrophic chickens were 65 and 76%, respectively, of the normal values. The results that we report here indicate that altered thyroid function affects the expression of avian muscular dystrophy.  相似文献   

9.
We have attempted to develop an intraoral method which can measure the textural changes in foodstuffs during chewing by using electromyography (EMG). Forty-three foodstuffs with variable textural attributes were used.

Total chewing energy for these foodstuffs during chewing varied from 3 to 108 for the masseter muscle and 13 to 154 for the digastric muscle, respectively. Large differences in total chewing energy could be observed by EMG among the foodstuffs. The chewing energy for many foodstuffs revealed distinct differences throughout the chewing process. Foodstuffs could be categorized into six groups according to the changing patterns of chewing energy. EMG data and the number of strokes were influenced by masticatory index and salivary flow rate.  相似文献   

10.
We have studied the protein composition of the pectoralis superficialis muscle of genetically dystrophic (New Hampshire line 413) and normal control (line 412) chickens by one- and two-dimensional gel electrophoresis. A protein, referred to hereafter as the 30 kDa abnormal protein, was specifically detected in the affected muscle. It was purified to homogeneity, and its molecular properties were studied. It is a monomer with a molecular mass of approximately 30 kDa and an isoelectric point of about pI 8.4. We have screened by Western blotting a variety of muscles from line 412 and line 413 chickens for the presence of the 30 kDa protein. While the pattern of total protein is very similar in all cases, the 30 kDa protein was not detected in the pectoralis superficialis muscle of line 412 chickens. However, the immunoreactive bands were detected in the sartorius muscle and the tensor fasciae latae muscle from dystrophic and normal chickens. Interestingly, the immunoreactive bands of normal skeletal muscles are smaller in molecular weight than those of dystrophic skeletal muscles. To determine the early time sequence of the appearance of the abnormal protein, we studied muscles from embryos and post-hatched chickens at various ages. The abnormal protein was detected in dystrophic muscles as early as 15 days ex ovo and occurred throughout development up to six months ex ovo. Although the implication of the dystrophy-associated appearance of the 30 kDa protein in the affected muscle is not clear at present, it would be of particular interest to elucidate the biochemical functions of the 30 kDa protein in the affected muscle (pectoralis superficialis muscle) of genetically dystrophic chicken.  相似文献   

11.
In an attempt to understand the mechanism of calcium accumulation in myopathies, changes in the major calcium-binding protein, calmodulin, was studied in genetically dystrophic chickens. Measurements by radioimmunoassay revealed an increase in the calmodulin concentration of dystrophic chicken muscles. Poly A-containing RNA(s) of fast and slow muscles from the normal and dystrophic chicks were hybridized with [32P]-labeled calmodulin cDNA probe by the dot-hybridization technique. Densitometric scan of the autoradiogram showed that the calmodulin mRNA levels of dystrophic fast muscles (pectoralis and posterior latissimus dorsi) were approximately two-fold higher than those of the corresponding normal muscles. No significant change in calmodulin and calmodulin messenger RNA of slow muscle (ALD) was found in dystrophic chickens. Our results suggest that increased calcium flux within the dystrophic muscle may be modulated by calmodulin.  相似文献   

12.
Young dystrophic (dy) murine muscle is capable of "spontaneous" regeneration (i.e., regeneration in the absence of external trauma); however, by the time the mice are 8 weeks old, this regeneration ceases. It has been suggested that the cessation of regeneration in dystrophic muscle may be due to exhaustion of the mitotic capability of myosatellite cells during the early stages of the disease. To test this hypothesis, orthotopic transplantation of bupivacaine treated, whole extensor digitorum longus muscles has been performed on 14 to 16-week-old 129 ReJ/++ and 129 ReJ/dydy mice. The grafted dystrophic muscle is able to produce and maintain for 100 days post-transplantation 356 +/- 22 myofibers, a number similar to that found in age-matched dystrophic muscle. The ability of old dystrophic muscle to regenerate subsequent to extreme trauma indicates that the cessation of "spontaneous" regeneration is due to factor(s) other than the exhaustion of mitotic capability of myosatellite cells. Moreover, there is no significant difference in myosatellite cell frequencies between grafted normal and dystrophic muscles (100 days post-transplantation). Myosatellite cell frequencies in grafted muscles are similar to those in age-matched, untraumatized muscles. While grafting of young dystrophic muscle modifies the phenotypic expression of histopathological changes usually associated with murine dystrophy, grafts of older dystrophic muscle show extensive connective-tissue infiltration and significantly fewer myofibers than do grafts of age-matched normal muscle. As early as 14 days post-transplantation, it is possible to distinguish between grafts of old, normal and dystrophic muscles. It is suggested that the connective tissue stroma, present in the dystrophic muscle at the time of transplantation, may survive the grafting procedure.  相似文献   

13.
14.
Young adult albino rats of Wistar strain were used for the present study. 0.5 to 15 microliters of 20-50% of horseradish peroxidase (HRP) were injected into each individual muscle of mastication to label neurons in the trigeminal motor nucleus (TMON) for light microscopic study. The results reveal that: (1) Many HRP-labeled, multipolar neurons are observed in the motor nucleus in each jaw-closing muscle (JCM) with less in each the jaw-opening muscle (JOM). (2) The motor neurons innervating each masticatory muscle in the motor nucleus show a somatotopic arrangement: (a) those innervating the temporalis muscle are located in the medial and dorsomedial parts; (b) those innervating the masseter muscle are located in the intermediate and lateral; (c) those innervating the medial and lateral pterygoid muscles are located in the lateral, ventrolateral and ventromedial parts, respectively; and (d) those innervating the mylohyoid and the anterior belly of the digastric muscles are located in the most ventromedial part of the caudal one-third of the nucleus. Axons of most masticatory motor neurons run ventrolaterally in between the motor and the chief sensory nuclei of the trigeminal nerve. However, those of the mylohyoid and anterior belly of the digastric muscles ascend dorsally to the dorsal aspect of the caudal nucleus and then turn ventrolaterally to join the motor root of the trigeminal nerve. Furthermore, the dendrites of the motor neuron of JCM converge dorsocaudally to the supratrigeminal region. The diameters of neurons of each JCM display a bimodal distribution. However, an unimodal distribution is present in the motor neurons from each JCM. It is suggested that the motor nucleus innervating the JCM is comprised of comprised of alpha- and gamma-motor neurons. It, thus, may provide a neural basis for the regulation of the muscle tone and biting force.  相似文献   

15.
Interneurons of the supratrigeminal nucleus, transmitting effects from the sensory and motor branches of the trigeminal nerve to motoneurons of the muscles of mastication were investigated. Two groups of interneurons with different functional connections were found. The first group (A) contains neurons excited during stimulation of the sensory branches and the motor nerve to the digastric muscle (A1), neurons excited during stimulation of sensory branches and high-threshold afferents of the motor nerve to the masseter muscle (A2), and neurons excited only by low-threshold afferents of the motor nerve to the masseter muscle (A3). Neurons of the second group (B) were activated only by sensory fibers of the trigeminal nerve. It is postulated that interneurons of group A transmit inhibitory effects to motoneurons of antagonist muscles of the lower jaw. Group B interneurons participate in the transmission of excitatory influences to motoneurons of the digastric muscle.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 4, No. 2, pp. 150–157, March–April, 1972.  相似文献   

16.
Age changes of morphometrical parameters of the masticatory muscles have been analyzed in domestic sheep and pigs of white large breed in the following age groups: 2-, 3-, 4-month-old fetuses, newborns, 4-month-old lambs, 10-month-old pigs, 18-month-old lambs, mature she-sheep and brood-sows. Uneven weight growth of the masticatory muscles in the sheep and pigs during the prenatal ontogenesis should be considered as a consequence of recapitulation of their phylogenesis, and in the postnatal ontogenesis it depends on changes in life conditions, type of nutrition, character of food and type of life. In newborn sheep the digastric, lateral, pterygoid and temporal muscles grow intensively, and in pigs--medial pterygoid and temporal ones. When they pass to roughage, in the former the mass of the musculus masseter major and medial pterygoid muscle increases, and in the latter--that of the musculus masseter major and temporal one. The masticatory muscles of the species studied increase in their mass especially intensively during the middle of the prenatal ontogenesis and during suckling period of their development. This should be taken into consideration in stock-breeding practice. In domestic pigs there is only one muscular belly in the digastric muscle. In sheep there are two bellies, separated one from another by means of a tendinous intersection, owing to crossing of the latter by the stylohyoid muscle.  相似文献   

17.
There were marked differences between the levels of collagen (measured as hydroxyproline) and mucopolysaccharides (measured as hexosamine) found in embryonic chicks with genetic muscular dystrophy and their normal controls. The chief differences were that the dystrophic tissues (gastrocnemius muscle and tendon, pectoralis major and skin) had: (a) greater amounts of hexosamine early in embryonic development; (b) hydroxyproline levels that rose at a faster rate, yielding different slopes than their normal controls; (c) relatively greater amounts of hydroxyproline than hexosamine later in embryonic life (day 20). Connective tissue systems in muscles were preferentially affected. The connective tissue system associated with dystrophic tissues appeared to lag behind the normal rhythm pattern of embryological development. The changes in connective tissue metabolism observed in dystrophic chicks suggested that the collagen from dystrophic embryonic chicks may be of a different structure or composition than that found in the normals.  相似文献   

18.
The limited proliferative capacity of normal diploid cells predicts that the utilization of cell divisions in vivo should reduce the lifespan of cells in culture. Because of the continuing demands for muscle regeneration in muscular dystrophy, myoblasts isolated from affected muscles should thus show a decrease in the number of cell divisions they are capable of expressing in culture. This hypothesis was tested by examining the proliferative capacity of myoblasts from different muscles for normal line 412 and dystrophic line 413 chickens of various ages. Prior to approx. 2 months of age, dystrophic myoblasts exhibited a relatively normal proliferative lifespan. By 5 months of age, myoblasts from the severely affected pectoralis major showed a 40% reduction in their proliferative potential, while myoblasts from the less affected posterior latissimus dorsi muscle showed a 25% decrease in their cultured lifespan. The time course of the appearance of a decreased proliferative capacity only after the disease has been clinically manifested strongly supports it representing a secondary response rather than it being an intrinsic property of dystrophic myoblasts. A hypothesis for manipulating the pattern of stem cell division in order to increase the mass of muscle produced from a constant number of cell divisions is presented. If myoblast senescence and the consequent failure of muscle regeneration is a contributing factor in the progressive deterioration of muscle function in the disease, then this hypothesis might provide an important therapeutic strategy for ameliorating the course of muscular dystrophy.  相似文献   

19.
The program of acquisition of adult metabolic phenotypes was studied in three jaw muscles in order to determine the link between muscle metabolism and functional development. During early postnatal stages, there were similar transitions in the masseter, anterior digastric, and internal pterygoid muscles with respect to fiber growth, fiber type composition, and whole muscle energy metabolism. Oxidative capacity, as judged by the activities of the enzymes succinate dehydrogenase (SDH), malate dehydrogenase (MDH), and beta-hydroxyacyl CoA dehydrogenase (beta OAC), rose sharply after birth to reach near maximal levels by 3 weeks. The capacities for glycolytic metabolism represented by lactate dehydrogenase (LDH), and for high-energy phosphate metabolism represented by adenylokinase (AK) and creatine kinase (CK) activities, rose gradually, not reaching peak values until 6 weeks or later. Thus, the maturation of oxidative metabolism preceded that of glycolytic metabolism in the developing jaw muscles. This was documented for individual fibers in the masseter muscle. Differential metabolic maturation among the jaw muscles was evident beyond 3 weeks. All three jaw muscles attained their specific adult fiber-type profile by about 6 weeks. This maturation program differed from that of hindlimb muscles [Nemeth et al., J Neurosci 9:2336-2343, 1989] and diaphragm muscle [Kelly et al., J Neurosci 11:1231-1242, 1991], reflecting their differential energy demands for contractile performance.  相似文献   

20.
Synopsis A scanning electron microscopic survey of normal and dystrophic murine muscle revealed an increased amount of fat around the dystrophic muscle. Although decreased activity of carnitine acetyltransferase an enzyme involved in lipid metabolism, has been reported previously in dystrophic muscle, it was found in this study that the electron microscopic localization of this enzyme in dystrophic and normal muscle was similar. The final reaction product for this enzyme, uranyl ferrocyanide, was located on the outer surface of the inner membrane of mitochondria.Although not strictly specific to the dystrophy, some focal alterations of the submitochondrial structure, such as an intracristal dense line and the whorl-like arrangement of cristae and an increased number of lipid droplets closely associated with mitochondria, were conspicuous in the affected muscle fibres. No carnitine acetyltransferase activity was detected on these altered structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号