首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The existence of two different M-state structures in the photocycle of the bacteriorhodopsin mutant ASP38ARG was proved. At pH 6.7 (0 to -6 degreesC) a spectroscopic M intermediate (M1) that does not differ significantly in its tertiary structure from the light-adapted ground state accumulates under illumination. At pH > 9 another state (M2), characterized by additional pronounced changes in the Fourier transform infrared difference spectrum in the region of the amide I and II bands, accumulates. The M2 intermediate trapped at pH 9.6 displays the same changes in the x-ray diffraction intensities under continuous illumination as previously described for x-ray experiments with the mutant ASP96ASN. These observations indicate that in this mutant the altered charge distribution at neutral pH controls the tertiary structural changes that seem to be necessary for proton translocation.  相似文献   

3.
Phosphorescence spectroscopy on mouse myeloma IgA J539 in rigid solution at 77K revealed the type of anomalous short-lived component in the tryptophan decay originally observed with lysozyme (Churchich, J.E., 1966. Biochim. Biophys. Acta. 120:406-412) and seen in a large number of Bence Jones proteins (Longworth, J.W., C.L. McLaughlin, and A. Solomon. 1976. Biochemistry. 15:2953-2958). The decay time of the anomalous component that results from the interaction between tryptophan side chains and disulfide linkages in proteins was observed to significantly lengthen in J539 in response to binding of a galactan antigen. With hen egg-white lysozyme in which the type of fluorescence enhancement on ligand binding seen with J539 has also been observed, phosphorescence measurements revealed a similar lengthening of the decay time of the disulfide-induced anomalous component in the tryptophan decay. These perturbations are interpreted as ligand-induced changes to the tryptophan-disulfide proximities that have been shown to exist in these structures. Given the short-range nature of the disulfide perturbation (see following article) the observations suggest, in particular when combined with x-ray crystallographic data, that phosphorescence decay-time measurements of disulfide perturbations can serve as a sensitive spectroscopic indicator of subtle conformational changes in immunoglobulins and other tryptophan-disulfide containing proteins.  相似文献   

4.
Fourier transform infrared difference spectroscopy is used to examine the role of lysine in the primary event of the bacteriorhodopsin photocycle. Isotopically labeled lysine is used to tentatively assign the lysine modes in the BR and K species. The results suggest that the lysine side-chain undergoes conformational changes in concert with the known light-induced chromophore structural alterations.  相似文献   

5.
6.
M Kotik  H Zuber 《Biochemistry》1992,31(34):7787-7795
L-Lactate dehydrogenase from Bacillus stearothermophilus (BSLDH) has been shown to change its conformation in a temperature-dependent manner in the temperature range between 25 and 70 degrees C. To provide a more detailed understanding of this reversible structural reorganization of the tetrameric form of BSLDH, we have determined in the presence of 5 mM fructose, 1,6-bisphosphate (FBP) the effect of temperature on far-UV and near-UV circular dichroism (CD), Nile red-binding to the enzyme surface, NADH binding, fluorescence polarization of fluorescamine-labeled protein, and hydrogen-deuterium exchange. In addition, we have analyzed the temperature dependence of the dimer-tetramer equilibrium of this protein by steady-state enzyme kinetics in the absence of FBP. The results obtained from these measurements at various temperatures can be summarized as follows. No changes in the secondary-structure distribution are detectable from far-UV CD measurements. On the other hand, near-UV CD data reveal that changes in the arrangements of aromatic side chains do occur. With increasing temperature, the asymmetry of the environment around aromatic residues decreases with a small change at 45 degrees C and a more pronounced change at 65 degrees C. Nile red-binding data suggest that the BSLDH surface hydrophobicity changes with temperature. It appears that decreasing the surface hydrophobicity may be a strategy to increase the protein stability of the active enzyme. We have noted significant alterations in the thermodynamic binding parameters of NADH above 45 degrees C, indicating a conformational change in the active site at 45 degrees C. The hydrodynamic volume of BSLDH is also temperature dependent.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
A hydrolysis study of 3-methyl-cycloSal-PCVMP 2 is described. Surprisingly, phosphotriester 5 released in this study not the expected PCVMP, but cycloPCVMP.  相似文献   

8.
Inactivation of rat renal phosphate-dependent glutaminase by 6-diazo-5-oxo-L-norleucine occurs only under conditions where the enzyme is catalytically active. The glutaminase activity and the rate of inactivation by the diazoketone exhibit very similar phosphate concentration-dependent activation profiles. Because of this phosphate dependency, it was not possible to differentiate an apparent protection by glutamine from the strong inhibition of inactivation caused by glutamate. The ability of glutamate to protect the glutaminase against inactivation is reversed by increasing concentrations of phosphate.The observed characteristics of inactivation by 6-diazo-5-oxo-L-norleucine differ considerably from those reported for the inactivation by L-2-amino-4-oxo-5-chloropentanoic acid. In addition, the presence of o-carbamoyl-L-serine was found to stimulate inactivation by 6-diazo-5-oxo-L-norleucine, but to protect the glutaminase against inactivation by the chloroketone. Preinactivation of the glutaminase by the diazoketone only slightly reduced the stoichiometry of binding of [5-14C]chloroketone. These observations suggest that 6-diazo-5-oxo-L-norleucine and L-2-amino-4-oxo-5-chloropentanoic acid interact with different sites on the glutaminase which are specific for binding glutamine and glutamate, respectively.  相似文献   

9.
Synapsin I is a major nerve terminal-specific phosphoprotein. It consists of a hydrophobic head region containing one phosphorylation site for either cAMP-dependent protein kinase or Ca2+/calmodulin-dependent protein kinase I and of a basic and elongated tail region containing two phosphorylation sites for Ca2+/calmodulin-dependent protein kinase II. The steady-state emission spectrum of synapsin I was centered at 330 nm and was markedly red shifted upon denaturation, as expected for tryptophan residues segregated from the external aqueous environment in native conditions. Quenching studies showed a low accessibility of synapsin I tryptophans at low ionic strength which was further decreased by exposure to 200 mM NaCl but not significantly affected by phosphorylation. The intrinsic fluorescence of synapsin I was resolved into three major decay components with lifetimes of about 0.2, 3, and 7 ns. Upon phosphorylation of synapsin I on the tail sites, the spectra associated with the intermediate and long lifetimes were shifted to the red region, while the spectrum associated with the short lifetime was shifted to the blue region, in the absence of significant changes of the lifetimes. Phosphorylation of synapsin I on the head site was less effective. The anisotropy decay of synapsin I labeled with the long-living chromophore pyrene on Cys-223 was also analyzed. A shorter rotational correlation time was found for the tail phosphorylated form (corresponding to a Stokes radius of 41-42 A) than for the dephosphorylated or for the head phosphorylated form (corresponding to a Stokes radius of 60-63 A). The data suggest that phosphorylation of the tail sites induces changes in the conformation and hydrodynamic properties of synapsin I which may play a role in the regulation of the molecular interactions of synapsin I within the nerve terminal.  相似文献   

10.
The fluorescence polarization of 8-hydroxypyrene (1,3,6)trisulfonate (HPT) increases upon interaction with pig heart citrate synthase. Titration of HPT with increasing concentrations of citrate synthase exhibits a hyperbolic saturation behavior, from which the dissociation constant of the enzyme-HPT complex (3.64 +/- 0.3 microM) was determined. The enzyme-HPT interaction is competitively inhibited by oxaloacetate (but not affected by acetyl CoA) with a Ki of 4.3 +/- 1.8 microM. This value is similar to the dissociation constant (Kd = 4.5 +/- 1.6 microM) for the enzyme-oxalocetate complex (determined in the absence of any effector ligand), as well as to the Km for oxaloacetate (3.9 +/- 0.7 microM) in a steady-state citrate synthase catalyzed reaction at a saturating concentration of acetyl CoA. However, the dissociation constant for the citrate synthase-oxaloacetate complex determined by the urea denaturation method is at least 25-fold lower than those determined by the other methods. This suggests an effector role of urea in strengthening the enzyme-oxaloacetate interaction. At low nondenaturing concentrations, urea inhibits the citrate synthase catalyzed reaction in an uncompetitive manner with respect to oxaloacetate, i.e., the Km for oxaloacetate decreases with an increase in urea concentration. This further suggests that urea stabilizes the interaction between citrate synthase and oxaloacetate. The effect of urea is specific for the substrate oxaloacetate, and not for the substrate analogue, HPT, although both these ligands bind citrate synthase with equal affinities, and protect the enzyme against thermal denaturation with equal magnitudes. The results presented herein are discussed in the light of known conformational states of the enzyme.  相似文献   

11.
12.
Fatty acid synthase is an important enzyme participating in energy metabolism in vivo. The inactivation and conformational changes of the multifunctional fatty acid synthase from chicken liver in SDS solutions have been studied. The results show that the denaturation of this multifunctional enzyme by SDS occurred in three stages. At low concentrations of SDS (less than 0.15 mM) the enzyme was completely inactivated with regard to the overall reaction. For each component of the enzyme, the loss of activity occurred at higher concentrations of SDS. Significant conformational changes (as indicated by the changes of the intrinsic fluorescence emission and the ultraviolet difference spectra) occurred at higher concentrations of SDS. Increasing the SDS concentration caused only slight changes of the CD spectra, indicating that SDS had no significant effect on the secondary structure of the enzyme. The results suggest that the active sites of the multifunctional fatty acid synthase display more conformational flexibility than the enzyme molecule as a whole.  相似文献   

13.
Using highly purified recombinant human prorenin, we report the first evidence for the formation of a stable, partially active, conformational variant of the recombinant proenzyme. The enzymatically active prorenin exhibits the following characteristics: (1) the proenzyme N-terminal sequence and molecular weight are maintained; (2) the active proenzyme is capable of cleaving a novel fluorogenic peptide substrate based on the sequence of human angiotensinogen and exhibits about 30% of mature renin specific activity for the fluorogenic substrate; (3) the active proenzyme conformation binds to, and can be eluted from, a pepstatin affinity column; and (4) the activity of the active proenzyme can be inhibited by a novel peptidomimetic renin inhibitor.  相似文献   

14.
Crystal violet (gentian violet) can undergo an oxidative metabolism, catalyzed by horseradish peroxidase, resulting in formaldehyde formation. The N-demethylation reaction was strongly inhibited by reduced glutathione. Evidence for the formation of a crystal violet radical during the horseradish peroxidase catalyzed reaction was the detection of thiyl and ascorbate radicals from glutathione and ascorbate, respectively. The concentration of radicals from both compounds was significantly increased in the presence of crystal violet. Oxygen uptake was stimulated when glutathione was present in the system and this oxygen uptake was dependent on the dye and enzyme concentration. Oxygen uptake did not occur when ascorbate, instead of glutathione, was present in the system. However, when glutathione was present, ascorbate totally inhibited the glutathione-stimulated oxygen uptake in the crystal violet/horseradish peroxidase/hydrogen peroxide system. Although a weak ESR spectrum from a crystal violet-derived free radical was detected when the dye reacted with H2O2 and horseradish peroxidase, using the fast flow technique, this spectrum could not be interpreted.  相似文献   

15.
Miller JJ  Delwiche CF  Coats DW 《Protist》2012,163(5):720-745
Amoebophrya is a syndinian parasite that kills harmful bloom forming algae. Previously uncharacterized ultrastructural aspects of infection and development were elucidated. The biflagellate dinospore has two mitochondria, electron-dense bodies, striated strips, trichocysts, and a nucleus with peripherally condensed chromatin. After finding an Akashiwo sanguinea host and adhering to its surface, the parasite penetrates the host surface, apparently using a microfilament based motility and electron-dense bodies within a microtubular basket in the process of parasitophorous vacuole membrane formation. After entering the host nucleus, possibly by a similar mechanism used to enter the host cell, the parasite cytosol expanded substantially prior to mitosis. From 12-36 hours mitochondria were inconspicuous but present. Chromatin condensation was variable. By 36 hours post-infection, parasites had multiple nuclei, a microtubule-supported cytopharynx, and were beginning to form a fully internal mastigocoel. By 48 hours, the characteristic "beehive" appearance was apparent with flagella projecting into a fully developed mastigocoel. The cytoplasm contained trichocysts, elongated mitochondria, and nuclei with peripherally condensed chromatin. Although Amoebophrya lacks an apical complex, its electron-dense bodies show functional similarities to apicomplexan rhoptries. Its lack of permanently condensed chromosomes, but compact dinospore chromatin, supports the idea that dinoflagellate permanently condensed chromosomes may be a remnant of a parasitic ancestor with a compact dispersal stage.  相似文献   

16.
Thrombomodulin (TM) is an endothelial cell surface protein that binds thrombin to form a reversible complex with altered enzyme specificity. The complex rapidly converts protein C to the anticoagulant enzyme activated protein C and has decreased fibrinogen clotting activity. To investigate whether formation of this complex elicits conformational changes in the active center of thrombin, we employed the following fluorosulfonyl spin-label inhibitors: N-(2,2,5,5-tetramethyl-1-oxy-3-pyrrolidinyl)-m-(fluorosulfonyl)benzamide (m-V); O-(2,2,6,6-tetramethyl-1-oxy-4-piperidinyl) N-[m-(fluorosulfonyl)phenyl]carbamate (m-VI); N-[4-(fluorosulfonyl)phenyl]-2,2,5,5-tetramethyl-1-oxy-3-pyrroline -3-carboxamide (p-I); N-(2,2,5,5-tetramethyl-1-oxy-3-pyrrolidinyl)-p-(fluorosulfonyl)benzamide (p-V). To compare the spectra of the free thrombin with those of the complex, the viscosity of the solution was adjusted with sucrose to give similar tumbling rates (isokylindric spectra) or the macromolecular rotational contribution to the spectra was essentially eliminated with saturated sucrose. Both a buffer-soluble proteolytic derivative of TM and the intact molecule elicited changes in the electron spin resonance signals of many of the labeled thrombins employed. Two of the labels, p-I and p-V, had previously been shown to exhibit decreased mobility when indole derivatives were bound to thrombin. When TM complexes with thrombin, the mobility of the p-I label increases while the mobility of the p-V label decreases.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Two experiments were conducted to examine whether the 40 or 50% decrease in systemic progesterone (P(4)) concentrations between Days 13 and 21 postmating in the pig results from decreased ovarian P(4) secretion or increased uptake of P(4) by the uterus. In Experiment I, five nonpregnant (NP) and four pregnant (P) gilts were sham-operated, and five NP gilts were hysterectomized (HYST) on Days 7 to 9 postestrus or postmating (first day of estrus or mating = Day 0). Femoral arterial blood was obtained once daily from Day 10 until the subsequent estrus (NP gilts) or Day 21 (P and HYST gilts). In Experiment II, blood was collected daily from both utero-ovarian veins of two NP and three P gilts from Days 11 to 18. Femoral arterial P(4) concentrations were similar for all gilts in Experiment I from Days 10 to 14. For NP gilts, femoral arterial P(4) declined (P < 0.01) after Day 14 to reach basal levels by Day 17. Progesterone in femoral arterial blood of P gilts declined (P < 0.01) from Days 13 to 16 and then remained constant through Day 21. Concentrations of P(4) in femoral arterial blood of HYST gilts remained constant from Days 13 to 21 and were greater (P < 0.01) than for P gilts from Days 15 to 21. In Experiment II, P(4) concentrations in utero-ovarian venous blood were similar until Day 14 between NP and P gilts. Utero-ovarian P(4) of NP gilts then declined (P < 0.01) to reach basal levels by Day 16. P(4) concentrations in utero-ovarian venous blood of P gilts increased (P < 0.05) for Days 14 to 18. These results demonstrate that ovarian P(4) secretion increases during early pregnancy in the pig. Further, the absence of a decline in P(4) concentrations in femoral arterial blood of HYST gilts suggests that the declining systemic P(4) levels observed during early pregnancy are a result of uterine uptake and(or) metabolism.  相似文献   

18.
When aerobically incubated with liver microsomes and NADPH, chloroform produces a stable adduct with cysteineas a nucleophilic trapping agent. The adduct was identified by thin layer chromatography, gas-liquid chromatography and combined gas chromatography-mass spectrometry as the reaction product of cysteine with phosgene.  相似文献   

19.
During the course of chromate-induced acute renal failure (ARF), urinary kallikrein excretion (UKE), a serine protease of distal tubule origin in the normal animal was decreased but tissue kallikrein concentration (TK) was increased, suggesting intracellular accumulation. Severe morphological lesions were observed in proximal tubular cells which showed brush border damage, numerous vesicles, necrosis and liquefaction of cytoplasmic material. Less marked changes were also present in distal tubules: large apical vacuoles and swollen mitochondria. Compared to normal rats, using the peroxidase-anti-peroxidase (PAP) method for light microscopy, greater kallikrein immunoreactivity was detected along the apical pole in distal tubules, on the membrane and in the cytoplasm as well as in the glomerulus. By immunoelectron microscopy, kallikrein was found in the connecting apical area, along the luminal, basolateral and basement membranes, in some vesicles, in Golgi apparatus and on ribosomes bound to endoplasmic reticulum. In the glomerulus, kallikrein was observed along the luminal surface of endothelial cell. After 14 days a progressive recovery of renal function, tissue morphology and UKE towards control values was observed. The presence of immunoreactive kallikrein in the glomerulus observed only during ARF confirmed the previous demonstration of kallikrein mRNA in the glomerulus. The cellular accumulation results more likely from a dysfunction of a general secretory mechanism due to cell membrane alteration than from a specific inhibition of kallikrein production and secretion.  相似文献   

20.
Arginine decarboxylase (arginine carboxy-lyase, EC 4.1.1.19) from Mycobacterium smegmatis, TMC 1546 has been purified to homogeneity. The enzyme has a molecular mass of 232 kDa and a subunit mass of 58.9 kDa. The enzyme from mycobacteria is totally dependent on pyridoxal 5'-phosphate for its activity at its optimal pH and, unlike that from Escherichia coli, Mg2+ does not play an active role in the enzyme conformation. The enzyme is specific for arginine (Km = 1.6 mM). The holoenzyme is completely resolved in dialysis against hydroxylamine. Reconstitution of the apoenzyme with pyridoxal 5'-phosphate shows sigmoidal binding characteristics at pH 8.4 with a Hill coefficient of 2.77, whereas at pH 6.2 the binding is hyperbolic in nature. The kinetics of reconstitution at pH 8.4 are apparently sigmoidal, indicating the occurrence of two binding types of differing strengths. A low-affinity (Kd = 22.5 microM) binding to apoenzyme at high pyridoxal 5'-phosphate concentrations and a high-affinity (Kd = 3.0 microM) binding to apoenzyme at high pyridoxal 5'-phosphate concentrations. The restoration of full activity occurred in parallel with the tight binding (high affinity) of pyridoxal 5'-phosphate to the apoenzyme. Along with these characteristics, spectral analyses of holoenzyme and apoenzyme at pH 8.4 and pH 6.2 indicate a pH-dependent modulation of coenzyme function. Based on the pH-dependent changes in the polarity of the active-site environment, pyridoxal 5'-phosphate forms different Schiff-base tautomers at pH 8.4 and pH 6.2 with absorption maxima at 415 nm and 333 nm, respectively. These separate forms of Schiff-base confer different catalytic efficiencies to the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号