首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Reddy KV  Mangale SS 《Tissue & cell》2003,35(4):260-273
Cell-cell and cell-extracellular matrix (ECM) interactions play a critical role in various developmental processes, including differentiation, proliferation and migration of cells. ECM proteins can influence cellular function thus creating a complex feedback mechanism. The adhesion of cells to each other, their ECM proteins and endothelial surfaces is mediated by a variety of membrane proteins collectively known as adhesion molecules. Adhesion molecules have been further divided into five subfamilies, the integrins, the selectins, the cadherins, the mucins and the immunoglobulin superfamily. Members of the integrin family of cell surface adhesion receptors are important mediators of cell-ECM contact. Integrin receptors are alpha beta heterodimers with a transmembrane segment, a short cytoplasmic domain and a large extracellular domain. The role of integrins in reproduction has been established. Several reasons make these molecules very attractive due to their constant involvement from egg to birth. They participate in sperm-egg interaction, fertilization, implantation and placentation in many species including humans. Integrins provide signals to individual cells essential for growth and development of different tissues. In the present review, we describe (1) the regulatory pathways for controlling expression of integrins in the endometrium, (2) various biomarkers and their role in endometrial function, (3) reproductive disorders in women related to aberrant integrin expression in the endometrium and (4) the functional significance of integrins available from gene knockout studies.  相似文献   

2.
Binding of type‐1 plasminogen activator inhibitor (PAI‐1) to cell surface urokinase (uPA) promotes inactivation and internalization of adhesion receptors (e.g., urokinase receptor (uPAR), integrins) and leads to cell detachment from a variety of extracellular matrices. In this report, we begin to examine the mechanism of this process. We show that neither specific antibodies to uPA, nor active site inhibitors of uPA, can detach the cells. Thus, cell detachment is not simply the result of the binding of macromolecules to uPA and/or of the inactivation of uPA. We further demonstrate that another uPA inhibitor, protease nexin‐1 (PN‐1), also stimulates cell detachment in a uPA/uPAR‐dependent manner. The binding of both inhibitors to uPA leads to the specific inactivation of the matrix‐engaged integrins and the subsequent detachment of these integrins from the underlying extracellular matrix (ECM). This inhibitor‐mediated inactivation of integrins requires direct interaction between uPAR and those integrins since cells attached to the ECM through integrins incapable of binding uPAR do not respond to the presence of either PAI‐1 of PN‐1. Although both inhibitors initiate the clearance of uPAR, only PAI‐1 triggers the internalization of integrins. However, cell detachment by PAI‐1 or PN‐1 does not depend on the endocytosis of these integrins since cell detachment was also observed when clearance of these integrins was blocked. Thus, PAI‐1 and PN‐1 induce cell detachment through two slightly different mechanisms that affect integrin metabolism. These differences may be important for distinct cellular processes that require controlled changes in the subcellular localization of these receptors. J. Cell. Physiol. 220: 655–663, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
Haptokinetic cell migration across surfaces is mediated by adhesion receptors including beta1 integrins and CD44 providing adhesion to extracellular matrix (ECM) ligands such as collagen and hyaluronan (HA), respectively. Little is known, however, about how such different receptor systems synergize for cell migration through three-dimensionally (3-D) interconnected ECM ligands. In highly motile human MV3 melanoma cells, both beta1 integrins and CD44 are abundantly expressed, support migration across collagen and HA, respectively, and are deposited upon migration, whereas only beta1 integrins but not CD44 redistribute to focal adhesions. In 3-D collagen lattices in the presence or absence of HA and cross-linking chondroitin sulfate, MV3 cell migration and associated functions such as polarization and matrix reorganization were blocked by anti-beta1 and anti-alpha2 integrin mAbs, whereas mAbs blocking CD44, alpha3, alpha5, alpha6, or alphav integrins showed no effect. With use of highly sensitive time-lapse videomicroscopy and computer-assisted cell tracking techniques, promigratory functions of CD44 were excluded. 1) Addition of HA did not increase the migratory cell population or its migration velocity, 2) blocking of the HA-binding Hermes-1 epitope did not affect migration, and 3) impaired migration after blocking or activation of beta1 integrins was not restored via CD44. Because alpha2beta1-mediated migration was neither synergized nor replaced by CD44-HA interactions, we conclude that the biophysical properties of 3-D multicomponent ECM impose more restricted molecular functions of adhesion receptors, thereby differing from haptokinetic migration across surfaces.  相似文献   

4.
We investigated in a colon adenocarcinoma cell line, the exclusive role of extracellular matrix (ECM) components in the absence of soluble factors regarding the integrin clustering processes, and their implication in cell adhesion, spreading and organization of the actin cytoskeleton. Caco-2 cells were shown to express at the plasma membrane 11 integrins, some of which (e.g. alpha3beta1, alpha5beta1, alpha6beta1/beta4, alpha8beta1 and alpha(v)beta1/beta5/beta6) were identified for the first time in this cell line. Cell adhesion and spreading processes were governed essentially by lamellipodium, the regulation of which was shown to be induced by two types of integrin clustering processes mediated by ECM proteins alone. During these phenomena, alpha2beta1, alpha(v)beta6 and alpha6beta1 integrins, the Caco-2 cell specific receptors of type IV collagen, fibronectin and laminin, respectively, were clustered in small focal complexes (point contacts), whereas alpha(v)beta5, the vitronectin receptor in this cell line, was aggregated in focal adhesions. The two levels of integrin clustering induced only F-actin cortical web formation organized in thin radial and/or circular filaments. We conclude thus that ECM components per se through their action on integrin clustering are involved in cell adhesion, cortical actin cytoskeleton organization and cell spreading.  相似文献   

5.
Cell-substrate interactions and signaling through ILK   总被引:19,自引:0,他引:19  
Interactions between cells and the extracellular matrix (ECM) result in the regulation of cell growth, cell differentiation and cell migration. These interactions are mediated by integrins and growth factor receptors and intracellular effectors that couple these receptors to downstream components are key to the transduction of ECM signals. This review summarizes recent advances in our understanding of signal transduction via integrins, focusing on the role of integrin-linked kinase in some of these pathways. Research into this interesting protein is uncovering novel aspects of coordinated signaling by the ECM and growth factors.  相似文献   

6.
Cell-extracellular matrix (ECM) adhesion is mediated by transmembrane cell adhesion receptors (e.g., integrins) and receptor proximal cytoplasmic proteins. Over the past several years, studies using biochemical, structural, cell biological and genetic approaches have provided important evidence suggesting crucial roles of integrin-linked kinase (ILK), PINCH and CH-ILKBP/actopaxin/affixin/parvin (abbreviated as parvin herein) in ECM control of cell behavior. One general theme emerging from these studies is that the formation of ternary protein complexes consisting of ILK, PINCH and parvin is pivotal to the functions of PINCH, ILK and parvin proteins. In addition, recent studies have begun to uncover the molecular mechanisms underlying the assembly, functions and regulation of the PINCH-ILK-parvin (PIP) complexes. The PIP complexes provide crucial physical linkages between integrins and the actin cytoskeleton and transduce diverse signals from ECM to intracellular effectors. Among the challenges of future studies are to define the functions of different PIP complexes in various cellular processes, identify additional partners of the PIP complexes that regulate and/or mediate the functions of the PIP complexes, and determine the roles of the PIP complexes in the pathogenesis of human diseases involving abnormal cell-ECM adhesion and signaling.  相似文献   

7.
Cellular adhesion receptors termed integrins play an important role in the interaction of cells with extracellular matrix (ECM) during wound healing, development and tumorigenesis. During such events, ECM may become modified or damaged which could alter the types of adhesive signals presented to cells. In this study, cell adhesion and affinity chromatography experiments were performed to determine whether different integrins interact with denatured versus native ECM molecules. Human melanoma cells were found to adhere to denatured versus native type I collagen through different integrins. The cells adhere to denatured collagen through the alpha v beta 3 integrin and this interaction is inhibited by an RGD containing peptide but not by a control peptide. In contrast, adhesion to native type I collagen appears to be mediated by several beta 1 integrins and thus, is not inhibited by either alpha v beta 3 antibodies or the RGD peptide. Affinity chromatography reveals a marked increase in the quantity of alpha v beta 3 isolated on denatured collagen versus native collagen-sepharose. These results suggest that RGD sites in type I collagen may be masked and that they become exposed upon denaturation of the molecule. Wounding of extracellular matrix may, thus, expose RGD sites in collagens that facilitate the interaction of cells with damaged extracellular matrix through RGD binding integrins.  相似文献   

8.
The extracellular matrix (ECM) provides structural support to cells and tissues and is involved in the regulation of various essential physiological processes, including neurite outgrowth. Most of the adhesive interactions between cells and ECM proteins are mediated by integrins. Integrins typically recognize short linear amino acid sequences in ECM proteins, one of the most common being Arginine-Glycine-Aspartate (RGD). The present study investigated neurite outgrowth and adhesion of identified molluscan neurons on a selection of substrates in vitro. Involvement of RGD binding sites in adhesion to the different substrates was investigated using soluble synthetic RGD peptides. The cells adhered to native (i.e., nondenatured) laminin and type IV collagen, but not to native plasma fibronectin. Denaturation of fibronectin dramatically enhanced cell adhesion. Only the adhesion to denatured fibronectin was inhibited by RGD peptides, indicating that denaturation uncovers a RGD binding site in the protein. Laminin as well as denatured fibronectin, but not type IV collagen, induced neurite outgrowth from a percentage of the RPA neurons. These results demonstrate that molluscan neurons can attach to various substrates using both RGD-dependent and RGD-independent adhesion mechanisms. This suggests that at least two different cell adhesion receptors, possibly belonging to the integrin family, are expressed in these neurons. Moreover, the results show that vertebrate ECM proteins can induce outgrowth from these neurons, suggesting that the mechanisms involved in adhesion as well as outgrowth promoting are evolutionarily well conserved. © 1998 John Wiley & Sons, Inc. J Neurobiol 35: 37–52, 1998  相似文献   

9.
Cell adhesion to the extracellular matrix (ECM) is important in a variety of physiological and pathologic processes, including development, tumor invasion, and metastasis. Integrin-mediated attachment to ECM proteins has emerged to cue events primitively important for the transformed phenotype of human cancer cells. Cross-talk between integrins and growth factor receptors takes an increasingly prominent role in defining adhesion, motility, and cell growth. This functional interaction has expanded beyond to link integrins with resistance to Tyrosine kinase inhibitors (TKIs) of Epidermal Growth Factor Receptors (EGFRs). In this regard, integrin-mediated adhesion has two separate functions one as a clear collaborator with growth factor receptor signaling and the second as a basic mechanism contributing in Epithelial to Mesenchymal Transition (EMT) which affects response to chemotherapy. This review provides an overview of these mechanisms and describes treatment options for selectively targeting and disrupting integrin interaction to EGFR for cancer therapy.  相似文献   

10.
Adhesion and migration are integrated cell functions that build, maintain and remodel the multicellular organism. In migrating cells, integrins are the main transmembrane receptors that provide dynamic interactions between extracellular ligands and actin cytoskeleton and signalling machineries. In parallel to integrins, other adhesion systems mediate adhesion and cytoskeletal coupling to the extracellular matrix (ECM). These include multifunctional cell surface receptors (syndecans and CD44) and discoidin domain receptors, which together coordinate ligand binding with direct or indirect cytoskeletal coupling and intracellular signalling. We review the way that the different adhesion systems for ECM components impact cell migration in two- and three-dimensional migration models. We further discuss the hierarchy of these concurrent adhesion systems, their specific tasks in cell migration and their contribution to migration in three-dimensional multi-ligand tissue environments.  相似文献   

11.
Morphogenesis of the adult structures of holometabolous insects is regulated by ecdysteroids and juvenile hormones and involves cell-cell interactions mediated in part by the cell surface integrin receptors and their extracellular matrix (ECM) ligands. These adhesion molecules and their regulation by hormones are not well characterized. We describe the gene structure of a newly described ECM molecule, tenectin, and demonstrate that it is a hormonally regulated ECM protein required for proper morphogenesis of the adult wing and male genitalia. Tenectin's function as a new ligand of the PS2 integrins is demonstrated by both genetic interactions in the fly and by cell spreading and cell adhesion assays in cultured cells. Its interaction with the PS2 integrins is dependent on RGD and RGD-like motifs. Tenectin's function in looping morphogenesis in the development of the male genitalia led to experiments that demonstrate a role for PS integrins in the execution of left-right asymmetry.  相似文献   

12.
Integrins and other cell adhesion molecules   总被引:146,自引:0,他引:146  
S M Albelda  C A Buck 《FASEB journal》1990,4(11):2868-2880
Cell-cell and cell-substratum interactions are mediated through several different families of receptors. In addition to targeting cell adhesion to specific extracellular matrix proteins and ligands on adjacent cells, these receptors influence many diverse processes including cellular growth, differentiation, junction formation, and polarity. Several families of adhesion receptors have been identified. These include: 1) the integrins, heterodimeric molecules that function both as cell-substratum and cell-cell adhesion receptors; 2) the adhesion molecules of the immunoglobulin superfamily, which are involved in cell-cell adhesion and especially important during embryo-genesis, wound healing, and the inflammatory response; 3) the cadherins, developmentally regulated, calcium-dependent homophilic cell-cell adhesion proteins; 4) the LEC-CAMs, cell adhesion molecules with lectin-like domains that mediate white blood cell/endothelial cell adhesion; and 5) homing receptors that target lymphocytes to specific lymphoid tissue. In this review we summarize recent data describing the structure and function of some of these cell adhesion molecules (with special emphasis on the integrin family) and discuss the possible role of these molecules in development, inflammation, wound healing, coagulation, and tumor metastasis.  相似文献   

13.
Integrins are transmembrane adhesion receptors that bind extracellular matrix (ECM) proteins and signal bidirectionally to regulate cell adhesion and migration. In many cell types, integrins cluster at cell-ECM contacts to create the foundation for adhesion complexes that transfer force between the cell and the ECM. Even though the temporal and spatial regulation of these integrin clusters is essential for cell migration, how cells regulate their formation is currently unknown. It has been shown that integrin cluster formation is independent of actin stress fiber formation, but requires active (high-affinity) integrins, phosphoinositol-4,5-bisphosphate (PIP2), talin, and immobile ECM ligand. Based on these observations, we propose a minimal model for initial formation of integrin clusters, facilitated by localized activation and binding of integrins to ECM ligands as a result of biochemical feedback between integrin binding and integrin activation. By employing a diffusion-reaction framework for modeling these reactions, we show how spatial organization of bound integrins into clusters may be achieved by a local source of active integrins, namely protein complexes formed on the cytoplasmic tails of bound integrins. Further, we show how such a mechanism can turn small local increases in the concentration of active talin or active integrin into integrin clusters via positive feedback. Our results suggest that the formation of integrin clusters by the proposed mechanism depends on the relationships between production and diffusion of integrin-activating species, and that changes to the relative rates of these processes may affect the resulting properties of integrin clusters.  相似文献   

14.
The recruitment of tissue‐resident stem cells is important for wound regeneration. Periodontal ligament cells (PDL cells) are heterogeneous cell populations with stemness features that migrate into wound sites to regenerate periodontal fibres and neighbouring hard tissues. Cell migration is regulated by the local microenvironment, coordinated by growth factors and the extracellular matrix (ECM). Integrin‐mediated cell adhesion to the ECM provides essential signals for migration. We hypothesized that PDL cell migration could be enhanced by selective expression of integrins. The migration of primary cultured PDL cells was induced by platelet‐derived growth factor‐BB (PDGF‐BB). The effects of blocking specific integrins on migration and ECM adhesion were investigated based on the integrin expression profiles observed during migration. Up‐regulation of integrins α3, α5, and fibronectin was identified at distinct localizations in migrating PDL cells. Treatment with anti‐integrin α5 antibodies inhibited PDL cell migration. Treatment with anti‐integrin α3, α3‐blocking peptide, and α3 siRNA significantly enhanced cell migration, comparable to treatment with PDGF‐BB. Furthermore, integrin α3 inhibition preferentially enhanced adhesion to fibronectin via integrin α5. These findings indicate that PDL cell migration is reciprocally regulated by integrin α3‐mediated inhibition and α5‐mediated promotion. Thus, targeting integrin expression is a possible therapeutic strategy for periodontal regeneration.  相似文献   

15.
The native extracellular matrix (ECM) and the cells that comprise human tissues are together engaged in a complex relationship; cells alter the composition and structure of the ECM to regulate the material and biologic properties of the surrounding environment while the composition and structure of the ECM modulates cellular processes that maintain healthy tissue and repair diseased tissue. This reciprocal relationship occurs via cell adhesion molecules (CAMs) such as integrins, selectins, cadherins and IgSF adhesion molecules. To study these cell-ECM interactions, researchers use two-dimensional substrates or three-dimensional matrices composed of native proteins or bioactive peptide sequences to study single cell function. While two-dimensional substrates provide valuable information about cell-ECM interactions, three-dimensional matrices more closely mimic the native ECM; cells cultured in three-dimensional matrices have demonstrated greater cell movement and increased integrin expression when compared to cells cultured on two-dimensional substrates. In this article we review a number of cellular processes (adhesion, motility, phagocytosis, differentiation and survival) and examine the cell adhesion molecules and ECM proteins (or bioactive peptide sequences) that mediate cell functionality.  相似文献   

16.
Leukocyte adhesion to the extracellular matrix (ECM) is tightly controlled and is vital for the immune response. Circulating lymphocytes leave the bloodstream and adhere to ECM components at sites of inflammation and lymphoid tissues. Mechanisms for regulating T-lymphocyte–ECM adhesion include (i) an alteration in the affinity of cell surface integrin receptors for their extracellular ligands and (ii) an alteration of events following postreceptor occupancy (e.g., cell spreading). Whereas H-Ras and R-Ras were previously shown to affect T-cell adhesion by altering the affinity state of the integrin receptors, no signaling molecule has been identified for the second mechanism. In this study, we demonstrated that expression of an activated mutant of Rac triggered dramatic spreading of T cells and their increased adhesion on immobilized fibronectin in an integrin-dependent manner. This effect was not mimicked by expression of activated mutant forms of Rho, Cdc42, H-Ras, or ARF6, indicating the unique role of Rac in this event. The Rac-induced spreading was accompanied by specific cytoskeletal rearrangements. Also, a clustering of integrins at sites of cell adhesion and at the peripheral edges of spread cells was observed. We demonstrate that expression of RacV12 did not alter the level of expression of cell surface integrins or the affinity state of the integrin receptors. Moreover, our results indicate that Rac plays a role in the regulation of T-cell adhesion by a mechanism involving cell spreading, rather than by altering the level of expression or the affinity of the integrin receptors. Furthermore, we show that the Rac-mediated signaling pathway leading to spreading of T lymphocytes did not require activation of c-Jun kinase, serum response factor, or pp70S6 kinase but appeared to involve a phospholipid kinase.  相似文献   

17.
Integrins     
Integrins are cell adhesion receptors that are evolutionary old and that play important roles during developmental and pathological processes. The integrin family is composed of 24 αβ heterodimeric members that mediate the attachment of cells to the extracellular matrix (ECM) but that also take part in specialized cell-cell interactions. Only a subset of integrins (8 out of 24) recognizes the RGD sequence in the native ligands. In some ECM molecules, such as collagen and certain laminin isoforms, the RGD sequences are exposed upon denaturation or proteolytic cleavage, allowing cells to bind these ligands by using RGD-binding receptors. Proteolytic cleavage of ECM proteins might also generate fragments with novel biological activity such as endostatin, tumstatin, and endorepellin. Nine integrin chains contain an αI domain, including the collagen-binding integrins α1β1, α2β1, α10β1, and α11β1. The collagen-binding integrins recognize the triple-helical GFOGER sequence in the major collagens, but their ability to recognize these sequences in vivo is dependent on the fibrillar status and accessibility of the interactive domains in the fibrillar collagens. The current review summarizes some basic facts about the integrin family including a historical perspective, their structure, and their ligand-binding properties.  相似文献   

18.
The adhesion and aggregation of platelets during hemostasis and thrombosis represents one of the best-understood examples of cell–matrix adhesion. Platelets are exposed to a wide variety of extracellular matrix (ECM) proteins once blood vessels are damaged and basement membranes and interstitial ECM are exposed. Platelet adhesion to these ECM proteins involves ECM receptors familiar in other contexts, such as integrins. The major platelet-specific integrin, αIIbβ3, is the best-understood ECM receptor and exhibits the most tightly regulated switch between inactive and active states. Once activated, αIIbβ3 binds many different ECM proteins, including fibrinogen, its major ligand. In addition to αIIbβ3, there are other integrins expressed at lower levels on platelets and responsible for adhesion to additional ECM proteins. There are also some important nonintegrin ECM receptors, GPIb-V-IX and GPVI, which are specific to platelets. These receptors play major roles in platelet adhesion and in the activation of the integrins and of other platelet responses, such as cytoskeletal organization and exocytosis of additional ECM ligands and autoactivators of the platelets.The balance between hemostasis and thrombosis relies on a finely tuned adhesive response of blood platelets. Inadequate adhesion leads to bleeding, whereas excessive or inappropriate adhesion leads to thrombosis. Resting platelets are nonadhesive anuclear discs and do not interact with the vessel wall, but they have a plethora of receptors that sense activating signals (agonists) of various sorts. The activating signals include soluble factors such as thrombin, adenosine diphosphate (ADP), and epinephrine, all of which act on G-protein-coupled receptors (GPCRs) on the platelets. In addition, certain receptors for extracellular matrix (ECM) proteins (e.g., GPIb, GPVI, and some integrins) can also act as activating receptors. These diverse receptors trigger intracellular signaling pathways that activate (1) actin assembly leading to cell shape change and extension of filopodia; (2) exocytosis of secretory granules that release additional platelet agonists as well as adhesive ECM proteins; and (3) activation of additional cell-surface receptors such as the major platelet-specific integrin, αIIbβ3, that contribute further to the adhesion and aggregation of activated platelets. Thus, the interactions of platelet-ECM adhesion receptors with ECM proteins from the vessel wall, from the plasma, and from the platelets themselves, are central to both the initial adhesion and the subsequent activation and aggregation of platelets (Varga-Szabo et al. 2008). These adhesive interactions, together with coagulation (to which platelets also contribute), generate the fibrin clot, essentially a facultative ECM that forms the initial occlusion of the damaged vessel but also serves as a subsequent ECM substrate for wound healing. In this article, we will review what is known about the roles of ECM proteins and their receptors in platelet adhesion and aggregation, summarize the roles of the clot and provisional ECM in subsequent wound healing, point out various unanswered questions, and discuss briefly the contributions of the relevant cell–ECM interactions to disease and the potential for therapeutic interventions.  相似文献   

19.
Interaction of cell integrins with the ECM (extracellular matrix) proteins is commonly assumed to be associated with cell dissemination and tumour metastases. Since these processes depend on the mechanism of cell-protein interaction, we have attempted to show the contribution of α5β1 and αvβ3 integrins of the prostate cancer PC-3 cells in in vitro interaction with FN (fibronectin) adsorbed on defined polystyrene surfaces. Cell adhesion, spreading and cytoskeleton organization were studied using antibodies against integrins or a GRGDSP (Gly-Arg-Gly-Asp-Ser-Pro) peptide. The results show that blocking the α5β1 integrin causes: (i) a decrease in the number of the adherent cells in the early phase of adhesion and (ii) a decrease in the dynamics of cell spreading and cell shape changes, and weaker reorganization of cytoskeletal proteins than in the control cells. Conversely, the blocking of the αvβ3 integrin: (i) causes no observable effect on the number of the adhered cells; however, (ii) causes an increase in the dynamics of cell spreading and cell shape changes, and stronger reorganization of cytoskeletal proteins than in the control cells. Interestingly, the blocking of integrins with a GRGDSP peptide strongly decreases the number of the adhered cells, and a complete inhibition of cell spreading. Our results strongly suggest that the α5β1 integrin plays the main role in the adhesion and spreading of PC-3 cells interacting with FN, whereas the αvβ3 integrin seems to regulate other receptors in the spreading process. Moreover, integrin-FN interaction through the RGD sequence evidently curbed the cell adhesion and spreading.  相似文献   

20.

Background

Cell migration is an essential process in organ homeostasis, in inflammation, and also in metastasis, the main cause of death from cancer. The extracellular matrix (ECM) serves as the molecular scaffold for cell adhesion and migration; in the first phase of migration, adhesion of cells to the ECM is critical. Engagement of integrin receptors with ECM ligands gives rise to the formation of complex multiprotein structures which link the ECM to the cytoplasmic actin skeleton. Both ECM proteins and the adhesion receptors are glycoproteins, and it is well accepted that N-glycans modulate their conformation and activity, thereby affecting cell–ECM interactions. Likely targets for glycosylation are the integrins, whose ability to form functional dimers depends upon the presence of N-linked oligosaccharides. Cell migratory behavior may depend on the level of expression of adhesion proteins, and their N-glycosylation that affect receptor-ligand binding.

Scope of review

The mechanism underlying the effect of integrin glycosylation on migration is still unknown, but results gained from integrins with artificial or mutated N-glycosylation sites provide evidence that integrin function can be regulated by changes in glycosylation.

General significance

A better understanding of the molecular mechanism of cell migration processes could lead to novel diagnostic and therapeutic approaches and applications. For this, the proteins and oligosaccharides involved in these events need to be characterized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号