首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Clones of nontransformed hormone-responsive bone cells have been isolated in vitro from mixed cell populations of fetal rat calvaria. In several independent isolations, microscopically visible colonies appeared at plating efficiencies of 5-10% of the starting cell numbers. Of these clones, approximately 10% grew to mass populations which could be assayed for a number of growth and biochemical properties. Although some similarities existed among the clones, they could be distinguished from each other and from the mixed cell populations. Population- doubling times (tDs) and saturation densities varied over a wide range: e.g., tDs of 24-72 h and saturation densities of 0.4-5 x 10(5) cells/cm2. Morphologies varied from roughly polygonal multilayering cells to typically spindle-shaped monolayering cells. Hormone responsiveness, as measured by stimulation of cAMP by hormones, indicated that some clones were responsive to both parathyroid hormone (PTH) and prostaglandin E2 (PGE2), while others responded to PTH only. Analysis of extracellular matrix components revealed that all clones produced type I and type III collagens, though in different proportions. Similarly, although all clones synthesized four glycosaminoglycans (hyaluronic acid, heparan sulfate, chondroitin sulfate, and dermatan sulfate), the quantities of each were distinctive from clone to clone. Further investigation of such clones is continuing to define more precisely the heterogeneity of clonal bone cell populations in vitro. They represent an important step in the study of the endocrinology and differentiation of bone.  相似文献   

2.
Electrophysiological measurements on three clonally derived bone cell populations showed a positive correlation between longer-term hyperpolarizing membrane potential responses to parathyroid hormone (PTH) and an intracellular cAMP response to PTH. One clone (RCJ 1.20) had no sustained electrophysiological response and no cAMP response to PTH. Another clone (ROS 17/2.8) had both a sustained hyperpolarizing response and a cAMP response to PTH. The third clone (RCB 2.2) initially had both an electrophysiological response and a cAMP response to PTH, but both responses were lost after prolonged growth in culture. Application of dibutyryl cAMP to RCJ 1.20 and ROS 17/2.8 cells produced both transient and sustained hyperpolarizing responses. Application of isobutylmethylxanthine produced a sustained hyperpolarization. These results suggest that the hyperpolarizing response to PTH is related to a cAMP-mediated increase in Ca2+ conductance, which leads to an increase in Ca2+-activated K+ conductance. The pronounced membrane potential spikes and fluctuations that occur in some of the clonal lines were shown to be unrelated to the hyperpolarizing response to PTH. This was demonstrated by the lack of correlation between the occurrence of the spikes or fluctuations and the occurrence of the hyperpolarizing response to PTH in the various cell lines, by the lack of effect of PTH on the spikes and fluctuations, and by the lack of effect on the hyperpolarizing response to PTH of verapamil and quinine, both of which significantly reduce the spikes and fluctuations.  相似文献   

3.
Previous studies with clonally derived populations of cells have shown that cells released from embryonic rat calvaria by enzymatic digestion are heterogeneous with respect to their hormone responsiveness, morphology, and production of matrix components [Aubin JE et al; J. Cell Biol 92:452, 1982]. Several of these clonal populations have been used to study the effects of long-term culture and inter- and intraclonal cell heterogeneity. During continuous subculture, marked changes in collagen synthesis were observed in two clonal populations. Both of these clones were originally responsive to parathyroid hormone (PTH) and synthesized primarily type I collagen with small amounts of type III and V collagens, although one clone (RCJ 3.2) had a fibroblastic morphology whereas the second clone (RCB 2.2) displayed a more polygonal shape. Following routine subculture over 3 yr, clone RCB 2.2 was found to synthesize exclusively alpha 1(I)-trimer and not other interstitial collagens. When the same cells were maintained at confluence for 1-2 wk, however, they also synthesized type III collagen. Whereas RCJ 3.2 did not show such dramatic changes in collagen synthesis after long-term subculture, two subclones derived from RCJ 3.2 were found to synthesize almost exclusively either type III collagen (RCJ 3.2.4.1) or type V collagen (RCJ 3.2.4.4). Immunocytochemical staining indicated that both subpopulations also produced type IV collagen, laminin, and basement membrane proteoglycan, proteins that are typically synthesized by epithelial cells. The differences in collagen expression by the various clonal cell populations were accompanied by qualitative and quantitative differences in other secreted proteins and differences in cell morphology. The results demonstrate both the inter- and intraclonal heterogeneity of connective tissue cells and their diverse potentiality with respect to extracellular matrix synthesis.  相似文献   

4.
We investigated the effects that the combination of IL-1 alpha and transforming growth factor-beta (TGF-beta) had on PGE2 production in a murine clonal osteoblastic cell line MC3T3-E1 and primary rat calvarial osteoblast-like cells. In serum-supplemented medium, IL-1 alpha was a potent stimulator of PGE2 production in MC3T3-E1 cells (50-fold increase with 0.1 ng/ml). TGF-beta (10 ng/ml) had only a small effect alone and no additional effect on IL-1 alpha-induced responses. In serum-deprived MC3T3-E1 cells, PGE2 responses to IL-1 alpha were either absent or markedly reduced. TGF-beta alone had small effects. However, simultaneous addition of TGF-beta with IL-1 alpha to MC3T3-E1 cells partially restored the ability of IL-1 alpha to generate a PGE2 response (10-fold increase in PGE2 with 0.1 ng/ml of both IL-1 alpha and TGF-beta). As with MC3T3-E1 cells, serum-deprived primary fetal rat calvarial osteoblastic cells also did not respond to IL-1 alpha, unless TGF-beta was present in the medium (sixfold increase in PGE2 with 0.1 ng/ml IL-1 alpha and 10 ng/ml TGF-beta). The synergistic effect of TGF-beta and IL-1 alpha was specific for PGE2 responses, because these factors did not synergistically affect cell proliferation, collagen and noncollagen protein synthesis, or alkaline phosphatase activity. The observed synergy was not associated with changes in the steady state cyclooxygenase (PGH synthase) mRNA levels. However, it did correlate with increased release of [3H]arachidonic acid from prelabeled serum-depleted MC3T3-E1 cells. Hence, the synergistic interactions of IL-1 alpha and TGF-beta on PGE2 appear to occur through an increase in the release of arachidonic acid substrate from phospholipid pools. These effects may be important for both normal bone turnover and the responses of bone to inflammatory and immune stimuli.  相似文献   

5.
Prostaglandin E (PGE) stimulates resorption in bone. Since osteoblast-like osteosarcoma cells secrete PGE2, the possibility that osteoclasts were the major target for PGE was considered. To study this question, it was first established that in isolated bone cells enriched for either osteoclastic (OC) or osteoblastic (OB) characteristics, PGE1 can induce biochemical effects similar to those seen with bovine parathyroid hormone 1-84 (PTH), another potent stimulator of bone resorption. These changes include increased cAMP and hyaluronate synthesis in OC cells, and increased cAMP but decreased citrate decarboxylation in OB cells. By following these markers, it is demonstrated that PGE1 can activate OC cells at doses as low as 1 nM, whereas OB cells require 250 nM. Bone cell responses to various doses of PTH and PGE1 were also compared. In OC cells the lowest effective dose of PGE1 and PTH was similar (1 nM), but increasing response to PGE1 was seen up to 1000 nM in contrast to PTH response which peaked at 20 nM. In addition, the magnitude of PGE1-induced OC cell hyaluronate was two to four times greater than that of PTH at all doses tested. In OB cells, PTH induced significant decreases in citrate decarboxylation at 0.1 nM, compared to 250 nM for PGE1. Half-maximal inhibition of citrate decarboxylation (19% of control) by PTH occurred at 0.5 nM, whereas 500 nM of PGE1 was required for an equivalent effect. Thus, (i) OC cells responded to PGE1 doses that were approximately 200 times lower than the minimum required by OB cells, and (ii) OB cells responded to 100 times lower doses of PTH than PGE1.  相似文献   

6.
Cyclic AMP (cAMP) levels were measured in both isolated and attached osteoclasts. The level of cAMP was 0.1 pmol/10(5) osteoclasts. No change in cAMP level of osteoclasts could be detected following calcitonin treatment. Parathyroid hormone (PTH) and prostaglandin E2 (PGE2) treatment stimulated cAMP production in proportion to alkaline phosphatase levels and divergent to acid phosphatase levels. This indicates that osteoblasts, not osteoclasts, were responsive to PTH and PGE2.  相似文献   

7.
TGF-beta modulates growth and differentiation in many cell types. MC3T3E1 is a clonal non-transformed murine bone cell line which differentiates in culture. We tested the effect of porcine TGF-beta on the proliferation and differentiation of MC3T3E1 cells in monolayer cultures by following cell number, and alkaline phosphatase activity. TGF-beta treatment (2 ng/ml) altered the shape of MC3T3E1 cells from cuboidal to elongated/spindle-shape. TGF-beta inhibited the growth of MC3T3E1 by up to 40% (P less than 0.02) in a dose-dependent manner with half maximal inhibition at 1 ng/ml. Growth inhibition depended on serum concentration, maximal inhibition occurring at 2% serum. Expression of alkaline phosphatase, which peaks in vitro when the cells reach confluence, was strongly inhibited by TGF-beta, in a dose-dependent manner with half maximal inhibition at around 0.05 ng/ml and complete inhibition at 2 ng/ml. Alkaline phosphatase inhibition was irreversible after 24 hours exposure to TGF-beta.  相似文献   

8.
To determine if differential response to growth factor stimuli between subpopulations of satellite cells was due to variation in the levels of activated intracellular signaling proteins, the levels of phospho-MAPK (phospho-ERK 1/2) were determined in clonal populations of turkey (Meleagris gallopavo) satellite cells. Relative levels of phospho-ERK 1/2 between clones were determined by Western blotting of extracts from satellite cells exposed to growth factor stimuli. Initial measurements using serum mitogenic stimuli showed differences in phospho-MAPK levels between the clonal subpopulations, but the responses did not correlate with proliferation rates of the individual clones (P>0.05). IGF-I alone did not increase phospho-MAPK levels compared to unstimulated controls (P>0.05), whereas FGF-2 did increase levels (P<0.05). A synergistic response was seen in satellite cells as well as embryonic myoblasts administered both IGF-I and FGF-2. When administered FGF-2 and IGF-I, 2 of the slow growing satellite cell clones exhibited lowest levels of phospho-MAPK (P<0.05). One of the slow growing clones had levels of phospho-MAPK similar to the three fast growing clones (P>0.05). The results suggest that variation in responsiveness to growth factor stimuli among satellite cell populations within muscles may be due to several different reasons. Some differences in cell responsiveness appear to be due to variation in phospho-MAPK generation.  相似文献   

9.
Previous studies have indicated that the effects of parathyroid hormone (PTH) on osteoblastic function involve alteration of cytoskeletal assembly. We have reported that after a transitory cell retraction, PTH induces respreading with stimulation of actin, vimentin and tubulins synthesis in mouse bone cells and that this effect is not mediated by cAMP. In order to further elucidate the role of intracellular cAMP and calcium on PTH action on bone cell shape and cytoskeleton we have compared the effects of calcium- and cAMP-enhancing factors on actin, tubulin and vimentin synthesis in relation with mouse bone cell morphology, DNA synthesis and alkaline phosphatase activity as a marker of differentiation. Confluent mouse osteoblastic cells were treated with 0.1 mM isobutylmethylxanthine (IBMX) for 24 h. This treatment caused an increase in the levels of cytoskeletal subunits associated with an elevation of cAMP. Under these conditions, PTH (20 nM) and forskolin (0.1 microM) produced persistent cytoplasmic retraction. PTH and forskolin treatment in presence of IBMX (24 h) induced inhibitory effects on actin and tubulin synthesis evaluated by [35S]methionine incorporation into cytoskeletal proteins identified on two-dimensional gel electrophoresis. Under these culture conditions PTH and forskolin also caused disassembly of microfilament and microtubules as shown by the marked reduction in Triton X soluble-actin and alpha- and beta-tubulins. In contrast, incubation of mouse bone cells with 1 microM calcium ionophore A23187 (24 h) resulted in increased monomeric and polymeric forms of actin and tubulin while not affecting intracellular cAMP. Alkaline phosphatase activity was increased in all conditions while DNA synthesis evaluated by [3H]thymidine incorporation into DNA was stimulated by PTH combined with forskolin and inhibited by the calcium ionophore. These data indicate that persistent elevation of cAMP levels induced by PTH and forskolin with IBMX cause cell retraction with actin and tubulin disassembly whereas rising cell calcium induces cytoskeletal protein assembly and synthesis in mouse osteoblasts. The results point to a distinct involvement of calcium and cAMP in both cytoskeletal assembly and DNA synthesis in mouse bone cells.  相似文献   

10.
The effects of retinoic acid (RA) on the expression of osteoblastic-related cell makers was examined. A marrow and osteogenic cell line, MBA-15, was analyzed by Northern blotting for the expression of bone matrix proteins. These cells constituentively express mRNA encoding for procolllagen a2 (1), osteonectin, osteopontin, biglycan and alkaline phosphatase (ALK-P). Gene expression was unchanged in response to RA triggering for 24hr. Furthermore, cell growth and enzymatic activities of ALK-P and neutral endopeptidase (CD10/NEP) were studied. These parameters were examined in MBA-15 and clonal populations representing different stages of differentiation. The cell's growth rate was unchanged, while ALK-P activity was greatly increased during the culture period under RA treatment in MBA-15 and in the clonal cell lines examined while CD10/NEP activity dispalyed a different pattern. MBA-15.4, a presosteoblast cell ine, exhibited an inhibition in CD10/NEP activity at the beginning of the culture period, reaching basal level with time. This activity was greatly increased over control level in MBA-15.6, a mature stage of osteoblasts. Furthermore, the response of cell lines to various growth factors was tested subsequent to priming the cultures with RA. A synergistic effect was monitored for ALK-P activity in MBA-15.4 and MBA-15.6 cells under rh-bone morphogenic protein (BMP-2) and purified osteogenin (BMP-3), and an antagonist effect was measured when cells were exposed to transforming growth factor β (TGFβ). Contrarily, BMP-2 and BMP-3 inhibited the CD10/NEP activity that had remained unchanged following priming of the cell with RA. Insulin-like growth factor 1 (IGF-1) and basic fibroblast growth factors (bFGF) did not affect either ALK-P nor CD10/NEP activities in both cloned cells. Cellular response to bone-seeking hormone, parathyroid hormone (PTH), and prostaglandin E2 (PGE2) was monitored by activation of intracellular cAMP. Treatment with RA caused a dramatic increase in MBA-15.6 cell responses to PTH and PGE2 but no significant effects could be observed in other clonal lines.  相似文献   

11.
《Bone and mineral》1992,16(2):89-100
Injections of parathyroid hormone (PTH) result in increased bone formation in several species. Work in our laboratory and others has shown a stimulation of bone cell proliferation and growth factor production by PTH. Our purpose was to study the effects of PTH on a human bone cell line using TE-85 human osteosarcoma cells as a model. After 24 h treatment, PTH caused an increase in cell proliferation as measured by cell counts and [3H]-thymidine incorporation. Proliferation was not inhibited by an anti-transforming growth factor beta (TGFβ) antibody which could abolish stimulation by exogenous TGFβ. PTH did not stimulate cAMP production, alkaline phosphatase activity or production of insulin-like growth factors I or II (IGF-I or IGF-II) in TE-85 cells. Although basal TE-85 proliferation was slowed by incubation with the calcium channel blocking agent verapamil, PTH still caused an increase in growth rate. We conclude that PTH directly stimulates TE-85 proliferation via a mechanism not involving increased adenylate cyclase activity or increased secretion of IGF-I, IGF-II or TGFβ and may stimulate bone formation in vivo by activating some other mitogenic signal to increase bone cell proliferation.  相似文献   

12.
Myofibroblasts are pathogenic in pulmonary fibrotic disease due to their exuberant production of matrix rich in collagen that interferes with gas exchange and the ability of these cells to contract and distort the alveolar space. Transforming growth factor-beta1 (TGF-beta1) is a well-known inducer of myofibroblast differentiation. TGF-beta1-induced transformation of fibroblasts to apoptosis-resistant myofibroblasts is adhesion-dependent and focal adhesion kinase (FAK)-mediated. Prostaglandin E(2) (PGE(2)) inhibits this differentiation via E prostanoid receptor 2 (EP2) signaling and cAMP elevation, but whether PGE(2) does so by interfering with TGF-beta1 signaling is unknown. Thus we examined the effects of PGE(2) in the presence and absence of TGF-beta1 stimulation on candidate signaling pathways in human lung fibroblasts. We now demonstrate that PGE(2) does not interfere with TGF-beta1-induced Smad phosphorylation or its translocation to the nucleus. Rather, PGE(2) has dramatic effects on cell shape and cytoskeletal architecture and disrupts the formation of appropriate focal adhesions. PGE(2) treatment diminishes TGF-beta1-induced phosphorylation of paxillin, STAT-3, and FAK and, in turn, limits activation of the protein kinase B (PKB/Akt) pathway. These alterations do not, however, result in increased apoptosis within the first 24 h of treatment. Interestingly, the effects of PGE(2) stimulation alone do not always mirror the effects of PGE(2) in the presence of TGF-beta1, indicating that the context for EP2 signaling is different in the presence of TGF-beta1. Taken together, our results demonstrate that PGE(2) has the potential to limit TGF-beta1-induced myofibroblast differentiation via adhesion-dependent, but Smad-independent, pathways.  相似文献   

13.
To determine the effects of transforming growth factor-beta (TGF-beta) on the different cell types that exist in bone, cell populations (I-IV), progressively enriched in osteoblastic cells relative to fibroblastic cells, were prepared from fetal rat calvaria using timed collagenase digestions. TGF-beta did not induce anchorage-independent growth of these cells, nor was anchorage-dependent growth stimulated in most populations studied, despite a two- to threefold increase in the synthesis of cellular proteins. In all populations the synthesis of secreted proteins increased 2-3.5-fold. In particular, collagen, fibronectin, and plasminogen activator inhibitor synthesis was stimulated. However, different degrees of stimulation of individual proteins were observed both within and between cell populations. A marked preferential stimulation of plasminogen activator inhibitor was observed in each population, together with a slight preferential stimulation of collagen; the effect on collagen expression being directed primarily at type I collagen. In contrast, the synthesis of SPARC (secreted protein acidic rich in cysteine/osteonectin was stimulated approximately two-fold by TGF-beta, but only in fibroblastic populations. Collectively, these results demonstrate that TGF-beta stimulates matrix production by bone cells and, through differential effects on individual matrix components, may also influence the nature of the matrix formed by different bone cell populations. In the presence of TGF-beta, osteoblastic cells lost their polygonal morphology and alkaline phosphatase activity was decreased, reflecting a suppression of osteoblastic features. The differential effects of TGF-beta on bone cell populations are likely to be important in bone remodeling and fracture repair.  相似文献   

14.
During bone remodeling, activation of resorption is followed by a cycle of formation and this ordered sequence of events has long suggested that local interactions between osteoclasts and osteoblasts are an important regulatory mechanism in bone metabolism. To study this phenomenon, we have prepared bone cells containing primarily osteoclasts by brief digestion of mice calvariae in collagenase, overnight attachment to polystyrene tissue culture flasks in serumless medium supplemented with OB (osteoblast) cell conditioned medium and subsequent growth in low serum. These OC (osteoclast) cells were found to be highly enriched in acid phosphatase activity and expressed cAMP responses to PTH (parathyroid hormone) and prostaglandin E2 but exhibited no PTH-stimulated hyaluronate synthesis in contrast to prostaglandin E2. PTH effects on hyaluronate, however, could be restored upon coculture of OC cells with OB cells (noncontact) or with OB cell conditioned medium, thereby suggesting that OB cells regulate OC cell PTH responsiveness and/or differentiation by soluble cell products secreted into the medium.  相似文献   

15.
16.
Bone marrow stromal cells regulate marrow haematopoiesis by secreting growth factors such as macrophage colony stimulating factor (M-CSF) that regulates the proliferation, differentiation and several functions of cells of the mononuclear-phagocytic lineage. By using a specific ELISA we found that their constitutive secretion of M-CSF is enhanced by tumour necrosis factor-alpha (TNF-alpha). The lipid mediator prostaglandin E2 (PGE2) markedly reduces in a time- and dose-dependent manner the constitutive and TNF-alpha-induced M-CSF synthesis by bone marrow stromal cells. In contrast, other lipid mediators such as 12-HETE, 15-HETE, leukotriene B4, leukotriene C4 and lipoxin A4 have no effect. EP2/EP4 selective agonists (11-deoxy PGE1 and 1-OH PGE1) and EP2 agonist (19-OH PGE2) inhibit M-CSF synthesis by bone marrow stromal cells while an EP1/EP3 agonist (sulprostone) has no effect. Stimulation with PGE2 induces an increase of intracellular cAMP levels in bone marrow stromal cells. cAMP elevating agents (forskolin and cholera toxin) mimic the PGE2-induced inhibition of M-CSF production. In conclusion, PGE2 is a potent regulator of M-CSF production by human bone marrow stromal cells, its effects being mediated via cAMP and PGE receptor EP2/EP4 subtypes.  相似文献   

17.
Metabolic labeling has revealed that rat bone cell populations in culture synthesize several forms of the secreted phosphoprotein, SppI. Most cell populations produced two major [32PO4]-labeled forms that behaved anomolously on SDS-PAGE migrating at 60 kDa and 56 kDa on 10% gels and 55 kDa and 44 kDa on 15% gels. Minor forms of intermediate sizes were also resolved. In normal bone cells the 60 kDa form was predominant and was the only form produced by the clonal bone cell line, RCA 11, whereas the 56 kDa a form predominated in the transformed bone cell line, ROS 17/2.8. In all populations [35S]-methionine-labeling revealed SppIs at approximately 60 kDa but no 56 kDa form. Each form of SppI was specifically cleaved by thrombin which generated fragments of approximately 28 kDa. Transforming growth factor beta 1 increased SppI mRNA levels 3 to 6-fold within 24 h in the normal bone cells, but no increase occurred in the ROS 17/2.8 cells. The elevated expression of SppI was reflected in a selective increase in the synthesis of the [32PO4]-and [35S]-methionine-labeled 60 kDa SppIs.  相似文献   

18.
《The Journal of cell biology》1994,127(6):1755-1766
The implantation of bone morphogenetic protein (BMP) into muscular tissues induces ectopic bone formation at the site of implantation. To investigate the mechanism underlying this process, we examined whether recombinant bone morphogenetic protein-2 (BMP-2) converts the differentiation pathway of the clonal myoblastic cell line, C2C12, into that of osteoblast lineage. Incubating the cells with 300 ng/ml of BMP- 2 for 6 d almost completely inhibited the formation of the multinucleated myotubes expressing troponin T and myosin heavy chain, and induced the appearance of numerous alkaline phosphatase (ALP)- positive cells. BMP-2 dose dependently induced ALP activity, parathyroid hormone (PTH)-dependent 3',5'-cAMP production, and osteocalcin production at concentrations above 100 ng/ml. The concentration of BMP-2 required to induce these osteoblastic phenotypes was the same as that required to almost completely inhibit myotube formation. Incubating primary muscle cells with 300 ng/ml of BMP-2 for 6 d also inhibited myotube formation, whereas induced ALP activity and osteocalcin production. Incubation with 300 ng/ml of BMP-2 suppressed the expression of mRNA for muscle creatine kinase within 6 h, whereas it induced mRNA expression for ALP, PTH/PTH-related protein (PTHrP) receptors, and osteocalcin within 24-48 h. BMP-2 completely inhibited the expression of myogenin mRNA by day 3. By day 3, BMP-2 also inhibited the expression of MyoD mRNA, but it was transiently stimulated 12 h after exposure to BMP-2. Expression of Id-1 mRNA was greatly stimulated by BMP-2. When C2C12 cells pretreated with BMP-2 for 6 d were transferred to a colony assay system in the absence of BMP-2, more than 84% of the colonies generated became troponin T-positive and ALP activity disappeared. TGF-beta 1 also inhibited myotube formation in C2C12 cells, and suppressed the expression of myogenin and MyoD mRNAs without inducing that of Id-1 mRNA. However, no osteoblastic phenotype was induced by TGF-beta 1 in C2C12 cells. TGF-beta 1 potentiated the inhibitory effect of BMP-2 on myotube formation, whereas TGF-beta 1 reduced ALP activity and osteocalcin production induced by BMP-2 in C2C12 cells. These results indicate that BMP-2 specifically converts the differentiation pathway of C2C12 myoblasts into that of osteoblast lineage cells, but that the conversion is not heritable.  相似文献   

19.
This report documents characterization of five osteogenic cell subpopulations of bone marrow stroma. The clonally derived cell lines were isolated from the parental line MBA-15 known to express osteoblastic-associated features in vitro and to form bone in vivo. The latter, presumably “arrested” at a particular stage along the osteogenic lineage, are useful models to study the processes involved in the differentiation of bone forming cells. The clones differ in their morphology, proliferation rate, quantities and distribution of extracellular matrix proteins, levels of alkaline phosphatase activity and activation of adenylate cyclase by parathyroid hormone and/or prostaglandin E. These properties have been retained during prolonged growth and subculturing through many passages. MBA-15.4 is a presumptive preosteoblast with a fibroblast-like appearance; it proliferates rapidly, synthesizes equal amounts of collagen and noncollagenous proteins, and produces constitutively low levels of alkaline phosphatase. This clone has PGE2-stimulated adenylate cyclase activity and a very low constitutive response to PTH. On the other hand, MBA-15.6 has a large polygonal morphology with limited proliferative potential, synthesizes twice as much noncollagenous proteins as collagen, has high alkaline phosphatase activity, and responds strongly to PTH. The characteristics of the other clones place them between these two categories. The effects of 10?7 M dexamethasone or 10?12–10?8 M 1,25 dihydroxyvitamin D3 on growth and differentiation further strengthen the variance between these clones. The different in vitro characteristics of the various clones were directly reflected in their bone formation ability in vivo. When transplanted under the renal capsule, MBA-15.33 formed a thick fibrous tissue, MBA-15.4 formed small foci of bone, and MBA-15.6 formed massive woven bone at the same period of time. © 1993 Wiley-Liss, Inc.  相似文献   

20.
Effects of parathyroid hormone (PTH) and several prostaglandins (PGs) on cyclic AMP (cAMP) metabolism were studied and compared in isolated renal cortical tubules from male hamsters. Both production and intracellular degradation of cAMP were increased by PTH and each of the PGs tested (PGE2, PGE1, PGI2). Production of cAMP was increased to similar levels by maximal concentrations of PTH and each PG, however, degradation of cAMP was significantly higher in response to PTH than with any of the PGs. This difference in intracellular degradation of cAMP was responsible for the much higher concentrations of cAMP in renal cortical tubules exposed to PGs (PGE1, PGE2, PGI2) than to PTH. Submaximal amounts of each PG produced additive increases in cAMP concentrations in the presence of maximal amounts of PTH. Additivity of the combined responses was lost, however, as the PGs concentrations reached their maxima. The results suggest that renal PGs (PGE2 and PGI2) may modulate the effects of PTH on cAMP concentrations in renal cortical tubules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号