首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The X chromosomal nucleolus organizer of Drosophila hydei contains about 500 ribosomal RNA genes. The 28 S rRNA coding region of about 50% of these genes is interrupted by an intervening sequence of 6.0 × 103 base-pairs. Restriction enzyme analysis revealed that more than 90% of the rRNA genes with intervening sequences are present as one or a few clusters within the X chromosomal nucleolus organizer. Furthermore, even though X chromosomal rRNA genes show several distinct size classes of non-transcribed spacers, the cluster of repeating units containing an intervening sequence has major spacer lengths of 4.4 × 103 and 4.6 × 103 base-pairs; spacers 5.1 × 103 base-pairs in length are mainly linked with genes lacking the intervening sequence.  相似文献   

2.
3.
During the formation of polytene chromosomes in salivary glands of Drosophila hydei, the genes for ribosomal RNA (rDNA) are underreplicated relative to the rest of the genome. We have measured the number of rRNA genes with and without intervening sequences (ivs+ and ivs- genes) in polytene chromosomes of different genotypes. In the group of genotypes having a large number of ivs- rRNA genes polytenization only occurs within the cluster of ivs- genes. In each of these genotypes rDNA polytenization reaches a constant level of 150 ivs- genes per two chromatid sets (2C); X/X constitutions having two nucleolus organizers (NOs) in the diploid set polytenize the same amount of rDNA as X/O constitutions. In the group of genotypes with small ivs- gene numbers, the rDNA region involved in polytenization is longer and has an average length of 1,700 kb per NO, which is constant in these genotypes. Polytenization of rDNA is extended into the cluster of ivs+ genes, in spite of the fact that these genes appear to be nonfunctional. The smaller the number of ivs- genes, the greater the number of ivs+ genes that are polytenized in the NO. In these genotypes, X/X females replicate twice as much rDNA as X/O males, suggesting that both NOs of the diploid set are polytenized. A comparison of the pattern of spacer length heterogeneity in hybrids between different stocks also demonstrates that both NOs are replicated during polytenization.  相似文献   

4.
Sequence arrangement of the rDNA of Drosophila melanogaster.   总被引:41,自引:0,他引:41  
M Pellegrini  J Manning  N Davidson 《Cell》1977,10(2):213-214
The sequence arrangement of genes coding for stable rRNA species and of the interspersed spacers on long single strands of rDNA purified from total chromosomal DNA of Drosophila melanogaster has been determined by a study of the structure of rRNA:DNA hybrids which were mounted for electron microscope observation by the gene 32-ethidium bromide technique. One repeat unit contains the following sequences in the order given. First, an 18 S gene of length 2.13 +/- 0.17 kb. Second, an internal transcribed spacer (Spl) of length 1.58 +/- 0.15 kb. A short sequence coding for the 5.8S and perhaps the 2S rRNA species is located within this spacer. Third, the 28S gene with a length of 4.36 +/- 0.23 kb. About 55% of the 28S genes are unbroken or continuous (C genes). However, about 45% of the 28S genes contain an insertion of an additional segment of DNA that is not complementary to rRNA (l genes). The insertion occurs at a reproducible point 2.99 +/- 0.26 kb from the junction with Spl. The insertions are heterogeneous in length and occur in three broad size classes: 1.42 +/- 0.47, 3.97 +/- 0.55, and 6.59 +/- 0.62 kb. Fourth, an external spacer between the 28S gene and the next 18S gene which is presumably mainly nontranscribed and which has a heterogeneous length distribution with a mean length and standard deviation of 5.67 +/- 1.92 kb. Short inverted repeat stems (100-400 nucleotide pairs) occur at the base of the insertion. It is known from other studies that I genes occur only on the X chromosome. The present study shows that the I and C genes on the X chromosomes are approximately randomly assorted. The sequence arrangement on the plasmid pDm103 containing one repeat of rDNA (Glover et al., 1975) has been determined by similar methods. The I gene on this plasmid contains an inverted repeat stem. The occurrence of inverted repeat sequences flanking the insertion supports the speculation that these sequences are translocatable elements similar to procaryotic translocons.  相似文献   

5.
Length variation of the ribosomal gene spacers of Drosophila melanogaster was studied. Analysis of 47 X chromosomal and 47 Y chromosomal linked rDNA arrays collected from five continents indicates that the arrays on the two chromosomes differ qualitatively. The Y-linked arrays from around the world share little or no similarity for either their overall length or the organization of their spacers. Most of the X-linked arrays do, however, share a major length spacer of 5.1 kb. In addition, those X-linked arrays that have a major 5.1-kb band have similar spacer organization as demonstrated by genomic DNA digestions with several restriction enzymes. These data strongly support the hypothesis that spacer length patterns on only X-linked genes are maintained primarily by natural selection.  相似文献   

6.
The positions of the nucleolus organizer regions in metaphase chromosomes of Drosophila hydei were detected by in situ hybridization experiments. In agreement with earlier conclusions the nucleolus of the X chromosome was found to originate in a terminal region of the heterochromatic arm. The Y chromosome contains two nucleolus organizers, one in a terminal position of the long arm, and the other in the short arm. The implications with respect to the evolution of the Y chromosome are discussed.  相似文献   

7.
In Triturus vulgaris meridionalis, the 18S + 28S rDNA sequences have been shown to be located in a number of additional chromosomal sites besides the nucleolus organizing region. The additional ribosomal sites have been found to vary as to their number and chromosomal location in different individuals of the species.—The data presented in this study concern the chromosomal distribution of the ribosomal sequences as analyzed by in situ hybridization technique in two individuals as well as in their offspring. The evidence obtained by this analysis indicates quite clearly that all 18S + 28S rRNA sites present in each individual genome are inherited according to simple mendelian principles.Abbreviations rRNA ribosomal RNA - NOR nucleolus organizer region - rDNA DNA coding for 18S+28S rRNA plus the intervening spacers - SSC 0.15M Sodium chloride, 0.015 M Sodium citrate, pH 7 - RNase ribonuclease  相似文献   

8.
B D McKee  G H Karpen 《Cell》1990,61(1):61-72
In Drosophila melanogaster males, the sex chromosomes pair during meiosis in the centric X heterochromatin and at the base of the short arm of the Y (YS), in the vicinity of the nucleolus organizers. X chromosomes deficient for the pairing region segregate randomly from the Y. In this report we show that a single ribosomal RNA (rRNA) gene stimulates X-Y pairing and disjunction when inserted onto a heterochromatically deficient X chromosome by P element-mediated transformation. We also show that insert-containing X chromosomes pair at the site of insertion, that autosomal rDNA inserts do not affect X-Y pairing or disjunction, and that the strength of an X pairing site is proportional to the dose of ectopic rRNA genes. These results demonstrate that rRNA genes can promote X-Y pairing and disjunction and imply that the nucleolus organizers function as X-Y pairing sites in wild-type Drosophila males.  相似文献   

9.
The sequence organization of four different families of Y chromosomal repetitive DNA is characterized at three levels of spatial extension along the Y chromosome of Drosophila hydei. At the lowest level of resolution, DNA blot analysis of Y chromosomal fragments of different lengths and in situ hybridization experiments on metaphase chromosomes demonstrate the clustering of each particular sequence family within one defined region of the chromosome. At a higher level of resolution, family specific repeats can be detected within these clusters by crosshybridization within 10–20 kb long continuous stretches of cloned DNA in EMBL3 phages. At the highest level of resolution, detailed sequence analysis of representative subclones about 1 kb in length reveals a satellite-like head to tail arrangement of family specific degenerated subrepeats as the building scheme common to all four families. Our results provide the first comparative sequence analysis of three novel families of repetitive DNA on the long arm of the F chromosome of D. hydei. Additional data are presented which support the existence of two related subfamilies of repetitive DNA on the short arm of the Y chromosome.  相似文献   

10.
The structural organization of ribosomal DNA in Drosophila melanogaster.   总被引:66,自引:0,他引:66  
P K Wellauer  I B Dawid 《Cell》1977,10(2):193-212
  相似文献   

11.
Ribosomal genes have been localized on mitotic and lampbrush chromosomes of 20 specimens of Triturus vulgaris meridionalis by in situ hybridization with 3H 18S+28S rRNA. The results may be summarized as follows: 1) each individual shows positive in situ hybridization at the nucleolus organizing region (NOR) on chromosome XI; 2) in addition, many specimens exhibit a positive reaction in chromosomal sites other than the NOR (additional ribosomal sites); 3) the chromosomal distribution of the additional sites appears to be identical in different tissues from the same specimen and to follow a specific individual pattern; 4) the additional ribosomal sites are preferentially found at the telomeric, centromeric or C-band regions of the chromosomes involved.Abbreviations rRNA ribosomal RNA - NOR nucleolus organizer region - rDNA the DNA sequences coding for 18S+28S rRNA plus the intervening spacer sequences - SSC 0.15 M sodium chloride, 0.015 sodium citrate, pH 7  相似文献   

12.
Nontranscribed spacers in Drosophila ribosomal DNA   总被引:3,自引:0,他引:3  
Ribosomal DNA nontranscribed spacers in Drosophila virilis DNA have been examined in some detail by restriction site analysis of cloned segments of rDNA, nucleic acid hybridizations involving unfractionated rDNA, and base composition estimates. The overall G+C content of the spacer is 27–28%; this compares with 39% for rDNA as a whole, 40% for main band DNA, and 26% for the D. virilis satellites. Much of the spacer is comprised of 0.25 kb repeats revealed by digestion with Msp I, Fnu DII or Rsd I, which terminate very near the beginning of the template for the ribosomal RNA precursor. The spacers are heterogeneous in length among rDNA repeats, and this is largely accounted for by variation among rDNA units in the number of 0.25 kb elements per spacer. Despite its high A+T content and the repetitive nature of much of the spacer, and the proximity of rDNA and heterochromatin in Drosophila, pyrimidine tract analysis gave no indication of relatedness between the spacer and satellite DNA sequences. Species of Drosophila closely related to D. virilis have rDNA spacers that are homologous with those in D. virilis to the extent that hybridization of a cloned spacer segment of D. virilis rDNA to various DNA is comparable with hybridization to homologous DNA, and distributions of restriction enzyme cleavage sites are very similar (but not identical) among spacers of the various species. There is spacer length heterogeneity in the rDNA of all species, and each species has a unique major rDNA spacer length. Judging from Southern blot hybridization, D. hydei rDNA spacers have 20–30% sequence homology with D. virilis rDNA spacers, and a repetitive component is similarly sensitive to Msp I and Fnu DII digestion, D. melanogaster rDNA spacers have little or no homology with counterparts in D. virilis rDNA, despite a similar content of 0.25 kb repetitive elements. In contrast, sequences in rDNA that encode 18S and 28S ribosomal RNA have been highly conserved during the divergence of Drosophila species; this is inferred from interspecific hybridizations involving ribosomal RNA and a comparison of distributions of restriction enzyme cleavage sites in rDNA.Dedicated to Professor Wolfgang Beermann on the occasion of his sixtieth birthday  相似文献   

13.
The nuclear 18S, 5.8S and 25S rRNA genes exist as thousands of rDNA repeats in the Scots pine genome. The number and location of rDNA loci (nucleolus organizers, NORs) were studied by cytological methods, and a restriction map from the coding region of the Scots pine rDNA repeat was constructed using digoxigenin-labeled flax rDNA as a probe. Based on the maximum number of nucleoli and chromosomal secondary constrictions, Scots pine has at least eight NORs in its haploid genome. The size of the Scots pine rDNA repeat unit is approximately 27 kb, two- or threefold larger than the typical angiosperm rDNA unit, but similar in size to other characterized conifer rDNA repeats. The intergenic spacer region (IGS) of the rDNA repeat unit in Scots pine is longer than 20 kb, and the transcribed spacer regions surrounding the 5.8S gene (ITS1 and ITS2) span a region of 2.9 kb. Restriction analysis revealed that although the coding regions of rDNA repeats are homogeneous, heterogeneity exists in the intergenic spacer region between individuals, as well as among the rDNA repeats within individuals.  相似文献   

14.
15.
16.
Polanco C  González AI  Dover GA 《Genetics》2000,155(3):1221-1229
Detailed analysis of variation in intergenic spacer (IGS) and internal transcribed spacer (ITS) regions of rDNA drawn from natural populations of Drosophila melanogaster has revealed contrasting patterns of homogenization although both spacers are located in the same rDNA unit. On the basis of the role of IGS regions in X-Y chromosome pairing, we proposed a mechanism of single-strand exchanges at the IGS regions, which can explain the different evolutionary trajectories followed by the IGS and the ITS regions. Here, we provide data from the chromosomal distribution of selected IGS length variants, as well as the detailed internal structure of a large number of IGS regions obtained from specific X and Y chromosomes. The variability found in the different internal subrepeat regions of IGS regions isolated from X and Y chromosomes supports the proposed mechanism of genetic exchanges and suggests that only the "240" subrepeats are involved. The presence of a putative site for topoisomerase I at the 5' end of the 18S rRNA gene would allow for the exchange between X and Y chromosomes of some 240 subrepeats, the promoter, and the ETS region, leaving the rest of the rDNA unit to evolve along separate chromosomal lineages. The phenomenon of localized units (modules) of homogenization has implications for multigene family evolution in general.  相似文献   

17.
P K Wellauer  I B Dawid  K D Tartof 《Cell》1978,14(2):269-278
In Drosophila melanogaster, the genes coding for 18S and 28S ribosomal RNA (rDNA) are clustered at one locus each on the X and the Y chromosomes. We have compared the structure of rDNA at the two loci. The 18S and 28S rRNAs coded by the X and Y chromosomes are very similar and probably identical (Maden and Tartof, 1974). In D. melanogaster, many rDNA repeating units are interrupted in the 28S RNA sequence by a DNA region called the insertion. There are at least two sequence types of insertions. Type 1 insertions include the most abundant 5 kilobase (kb) class and homologous small (0.5 and 1 kb) insertions. Most insertions between 1.5 and 4 kb have no homology to the 5 kb class and are identified as type 2 insertions. In X rDNA, about 49% of all rDNA repeats have type 1 insertions, and another 16% have type 2 insertions. On the Y chromosome, only 16% of all rDNA repeats are interrupted, and most if not all insertions are of type 2.rDNA fragments derived from the X and Y chromosomes have been cloned in E. coli. The homology between the nontranscribed spacers in X and Y rDNA was studied with cloned fragments. Stable heteroduplexes were found which showed that these regions on the two chromosomes are very similar.The evolution of rDNA in D. melanogaster might involve genetic exchange between the X and Y chromosomal clusters with restrictions on the movement of type 1 insertions to the Y chromosome.  相似文献   

18.
Characterization of cloned ribosomal DNA from Drosophila hydei.   总被引:8,自引:5,他引:3       下载免费PDF全文
The structure of ribosomal genes from the fly Drosophila hydei has been analyzed. EcoRI fragments, cloned in a plasmid vector, were mapped by restriction enzyme analysis. The lengths of the regions coding for 18S and 28S rRNA were defined by R-loop formation. From these data a physical map of the rRNA genes was constructed. There are two major types of rDNA units in D. hydei, one having a size of 11 kb and the other a size of 17 kb. The 17 kb unit results from an intervening sequence (ivs) of 6.0 kb, interrupting the beta-28S rRNA coding region. Some homology between th D. hydei ivs and D. melanogaster type 1 ivs has been described previously (1). However, the restriction sites within these ivs show considerable divergence. Whereas D. hydei rDNA D. melanogaster rDNA, the nontranscribed spacer has little, if any, sequence homology. Despite difference in sequence, D. hydei and D. melanogaster spacers show structural similarities in that both contain repeated sequence elements of similar size and location.  相似文献   

19.
W. Kunz 《Genetics》1976,82(1):25-34
The number of rRNA cistrons is measured by filter saturation hybridization in different stocks of D. hydei, where the wild-type X chromosome has one nucleolus organizer (NO) and the wild-type Y has two separated NO's. (see PDF) females having no X chromosomal NO show an rDNA content exceeding that of a Y chromosome. An even greater increase in the rRNA cistron number is measured in two translocation stocks where the (see PDF) is combined with one half of a Y and, therefore, each stock contains only one of the two Y chromosomal NO's. But when the same Y fragments are brought together with a wild-type X chromosome they lose about one-half of their rRNA cistrons within one generation. Males with two complementary Y fragments but having no X chromosomal NO show a considerably higher rDNA content than the (see PDF) females, although both are equal in respect of their NO number. Consideration is given to related phenomena in Drosophila melanogaster.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号