首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
alpha2-Macroglobulin (alpha2M) inhibits diverse extracellular proteases, binds growth factors such as platelet-derived growth factor-BB (PDGF-BB) and transforming growth factor-beta1 (TGF-beta1), and carries beta-amyloid peptide. alpha2M may also trigger cell signaling by binding to the low density lipoprotein receptor-related protein (LRP-1) and/or other cell surface receptors. Based on studies with recombinant alpha2M fragments expressed in bacteria and synthetic peptides, we previously localized a growth factor-binding site near the center of the alpha2M subunit. However, because intact alpha2M forms a hollow cylinder structure, an alternative model for growth factor binding involves nonspecific entrapment within the alpha2M core. To distinguish between these two models, we engineered mutations in the putative growth factor binding sequence of full-length alpha2M. These mutations did not perturb the tetrameric structure of alpha2M, reaction with proteases, the thiol ester bonds, or binding to LRP-1. A single mutation (E730R) completely blocked binding of platelet-derived growth factor-BB to intact alpha2M. E730R did not alter TGF-beta1 binding; however, this mutation in combination with mutations at Glu714 and Asp719 eliminated the increase in TGF-beta1 binding associated with alpha2M conformational change. These studies demonstrate that growth factor binding to intact alpha2M is specific, involving a defined region of the alpha2M subunit. The exact sequences required for binding different growth factors may be non-identical, mimicking the model of the bait region in which different proteases target adjacent and sometimes overlapping sequences.  相似文献   

2.
Alpha2-macroglobulin (alpha2M) is a major carrier of transforming growth factor-beta (TGF-beta) in vitro and in vivo. By screening glutathione S-transferase (GST) fusion proteins with overlapping sequences, we localized the TGFbeta-binding site to aa 700-738 of the mature human alpha2M subunit. In separate experiments, we screened overlapping synthetic peptides corresponding to aa 696-777 of alpha2M and identified a single 16-mer (718-733) that binds TGF-beta1. Platelet-derived growth factor-BB (PDGF-BB) bound to the same peptide, even though TGF-beta and PDGF-BB share almost no sequence identity. The sequence of the growth factor-binding peptide, WDLVVVNSAGVAEVGV, included a high proportion of hydrophobic amino acids. The analogous peptide from murinoglobulin, a human alpha2M homologue that does not bind growth factors, contained only three nonconservative amino acid substitutions; however, the MUG peptide failed to bind TGF-beta1 and PDGF-BB. These results demonstrate that a distinct and highly-restricted site in alpha2M, positioned near the C-terminal flank of the bait region, mediates growth factor binding. At least part of the growth factor-binding site is encoded by exon 18 of the alpha2M gene, which is notable for a 5' splice site polymorphism that has been implicated in Alzheimer's Disease.  相似文献   

3.
Native alpha 2-macroglobulin (alpha 2M) and alpha 2M-methylamine were immobilized in 96-well microtiter plates. 125I-labeled transforming growth factor-beta 1 (TGF-beta 1) bound to both alpha 2M variants; however, greater binding was observed with alpha 2M-methylamine. Binding of 125I-TGF-beta 1 (0.2 nM) to immobilized alpha 2M-methylamine was inhibited by nonradiolabeled TGF-beta 1 (up to 74% with 0.4 microM TGF-beta 1). Approximately 10% of the TGF-beta 1-alpha 2M-methylamine complex was covalent. Treatment of alpha 2M-methylamine with iodoacetamide prior to immobilization completely eliminated covalent TGF-beta 1 binding; the total amount of 125I-TGF-beta 1-alpha 2M-methylamine complex detected was unchanged. The binding of 125I-TGF-beta 1 to immobilized alpha 2M-methylamine was not significantly inhibited by increasing the ionic strength to 1.0 M. Binding and complex dissociation were also unaffected by changes in pH within the range 6.9-8.9. Acidic pH dramatically decreased binding and promoted complex dissociation; no binding of 125I-TGF-beta 1 to immobilized alpha 2M-methylamine was detected at pH 3.5. The interaction of TGF-beta 1 with immobilized alpha 2M-methylamine was not significantly changed by 1.0 mM EDTA or 1.0 mM CaCl2. ZnCl2 (1.0 mM) completely eliminated binding. This result was not due to TGF-beta 1 precipitation or aggregation. Inhibition of 125I-TGF-beta 1 binding to alpha 2M-methylamine was 50% complete (IC50) with 30 microM ZnCl2. Native alpha 2M, thrombospondin, and alpha 2M-methylamine (in solution) decreased binding of 125I-TGF-beta 1 to immobilized alpha 2M-methylamine. The IC50 values for these three proteins were 520, 160, and 79 nM, respectively. The TGF-beta 1-binding activity of native alpha 2M may have reflected, at least in part, trace-contamination with alpha 2M-proteinase complex.  相似文献   

4.
It has been widely assumed that the interaction of transforming growth factor-beta 1 (TGF-beta 1) with its serum-binding protein, alpha 2-macroglobulin (alpha 2M), mediates the rapid clearance of TGF-beta 1 from the circulation. To test this, we have analyzed the effect of TGF-beta 1 binding on the conformational state of alpha 2M. Our results demonstrate that the binding of TGF-beta 1 to alpha 2M does not lead to the conformational change in the alpha 2M molecule that is required for the clearance of the alpha 2M.TGF-beta 1 complex via the alpha 2M receptor. Furthermore, endogenous TGF-beta 1 is associated with the conformationally unaltered slow clearance form of alpha 2M. Clearance studies in mice show that the half-life of 125I-TGF-beta 1 in the circulation (1.6 +/- 0.71 min) is not affected by blocking the alpha 2M receptor with excess conformationally altered alpha 2M. These results suggest that TGF-beta 1 is rapidly cleared from the circulation after injection by a pathway not involving alpha 2M.  相似文献   

5.
alpha(2)-Macroglobulin (alpha(2)M) binds transforming growth factor-beta1 (TGF-beta1) and TGF-beta2, forcing these growth factors into a state of latency. The mechanism by which this occurs remains unclear. In this paper, we demonstrate that peptides, derived from the structure of human alpha(2)M (amino acids 714-729), bind directly to TGF-beta1 and block the binding of TGF-beta1 to the type I and II TGF-beta receptors. The alpha(2)M-derived peptides are notable for hydrophobic tripeptide sequences (WIW or VVV) and acidic residues (Glu(714) and Asp(719) in the mature alpha(2)M subunit), which may function analogously to the structural elements that mediate TGF-beta-binding in the type II receptor. Mutating Glu(714) and Asp(719) in the alpha(2)M-peptide-GST fusion protein, FP3, which contains the putative growth factor-binding site, significantly decreased the binding affinity of FP3 for TGF-beta1. The alpha(2)M-derived peptides, which bind TGF-beta1, inhibited the interaction of TGF-beta1 with its receptors in fetal bovine heart endothelial cells. The same peptides also inhibited the activity of TGF-beta1 in endothelial cell proliferation assays. These results demonstrate that alpha(2)M-derived peptides target the receptor-binding sequence in TGF-beta.  相似文献   

6.
Human alpha(2)-macroglobulin-proteinase complexes bind to their receptor, the low density lipoprotein receptor-related protein (LRP), through a discrete 138-residue C-terminal receptor binding domain (RBD), which also binds to the beta-amyloid peptide. We have used NMR spectroscopy on recombinantly expressed uniformly (13)C/(15)N-labeled human RBD to determine its three-dimensional structure in solution. Human RBD is a sandwich of two antiparallel beta-sheets, one four-strand and one five-strand, and also contains one alpha-helix of 2.5 turns and an additional 1-turn helical region. The principal alpha-helix contains two lysine residues on the outer face that are known to be essential for receptor binding. A calcium binding site (K(d) approximately 11 mM) is present in the loop region at one end of the beta-sandwich. Calcium binding principally affects this loop region and does not significantly perturb the stable core structure of the domain. The structure and NMR assignments will enable us to examine in solution specific binding of RBD to domains of the receptor and to beta-amyloid peptide.  相似文献   

7.
8.
The biological activities of transforming growth factor-beta isoforms (TGF-beta(1,2)) are known to be modulated by alpha(2)-macroglobulin (alpha(2)M). alpha(2)M forms complexes with numerous growth factors, cytokines, and hormones, including TGF-beta. Identification of the binding sites in TGF-beta isoforms responsible for high affinity interaction with alpha(2)M many unravel the molecular basis of the complex formation. Here we demonstrate that among nine synthetic pentacosapeptides with overlapping amino acid sequences spanning the entire TGF-beta(1) molecule, the peptide (residues 41-65) containing Trp-52 exhibited the most potent activity in inhibiting the formation of complexes between (125)I-TGF-beta(1) and activated alpha(2)M (alpha(2)M*) as determined by nondenaturing polyacrylamide gel electrophoresis and by plasma clearance in mice. TGF-beta(2) peptide containing the homologous sequence and Trp-52 was as active as the TGF-beta(1) peptide, whereas the corresponding TGF-beta(3) peptide lacking Trp-52, was inactive. The replacement of the Trp-52 with alanine abolished the inhibitory activities of these peptides. (125)I-TGF-beta(3), which lacks Trp-52, bound to alpha(2)M* with an affinity lower than that of (125)I-TGF-beta(1). Furthermore, unlabeled TGF-beta(3) and the mutant TGF-beta(1)W52A, in which Trp-52 was replaced with alanine, were less potent than unlabeled TGF-beta(1) in blocking I(125)-TGF-beta(1) binding to alpha(2)M*. TGF-beta(1) and TGF-beta(2) peptides containing Trp-52 were also effective in inhibiting I(125)-nerve growth factor binding to alpha(2)M*. Tauhese results suggest that Trp-52 is involved in high affinity binding of TGF-beta to alpha(2)M*. They also imply that TGF-beta and other growth factors/cytokines/hormones may form complexes with alpha(2)M* via a common mechanism involving the interactions between topologically exposed Trp and/or other hydrophobic residues and a hydrophobic region in alpha(2)M*.  相似文献   

9.
Stimulation of human fibroblasts by platelet-derived growth factor (PDGF)-BB leads to a down-regulation of PDGF beta-receptors and a concomitant appearance of intracellular granular accumulations of receptors, as determined by stainings with the mAb PDGFR-B2. The granules contained both the ligand and PDGF beta-receptors, as revealed by double-immunofluorescence staining, and were formed in response to PDGF-BB but not in response to other cytokines tested. The formation of intracellular PDGF beta-receptor granules was dependent on PDGF-BB concentration and time of stimulation. The granular PDGF beta-receptor staining on cells treated with PDGF-BB for 1 h at 37 degrees C was used to investigate the effects of macrophage-derived cytokines on PDGF beta-receptor expression. The number of PDGF beta-receptor granules was found to be reduced in fibroblasts grown for 48 h in the presence of PDGF-BB, TNF-alpha, or IL-1; PDGF-AA under the same conditions had no effect. The reduction observed was paralleled by a decrease in cell surface expression of PDGF beta-receptors, measured as binding of 125I-PDGF-BB and of the PDGFR-B2 antibody. Furthermore, both TNF-alpha and IL-1 decreased the detergent-extractable pool of PDGF-beta receptors in the fibroblasts, as revealed by immunoblotting of detergent cell extracts. Finally, the decrease in PDGF beta-receptors after culturing of the cells in the presence of TNF-alpha and IL-1 was accompanied by a decreased incorporation of [3H]thymidine in response to PDGF-BB stimulation. In conclusion, our data suggest that certain macrophage-derived cytokines can modulate the expression of PDGF beta-receptors by cultured fibroblasts, which may contribute in part to their reduced responsiveness to PDGF.  相似文献   

10.
11.
We report the purification of betaglycan, a low-abundance membrane proteoglycan with high affinity for transforming growth factor-beta (TGF-beta). Betaglycan solubilized from rat embryo membrane preparations was purified to near-homogeneity by sequential chromatography through DEAE-Trisacryl, wheat germ lectin-Sepharose, and TGF-beta 1-agarose. Purified betaglycan has properties similar to betaglycan affinity-labeled in intact cells: it binds TGF-beta 1 and TGF-beta 2 with KD approximately 0.2 nM, contains heparan sulfate and chondroitin sulfate glycosaminoglycan (GAG) chains and N-linked glycans attached to a 110-kDa core protein, and can spontaneously associate with phosphatidylcholine liposomes. The betaglycan core obtained by enzymatic removal of the GAG chains has high affinity for TGF-beta and associates with artificial liposomes, indicating that the core protein binds TGF-beta and anchors to membranes independently of the GAG chains present on the native protein or of any ancillary protein.  相似文献   

12.
A mouse alpha-macroglobulin (AMG), a homologue of human alpha 2-macroglobulin (alpha 2 M), has been purified to homogeneity. In contrast to human and acute-phase rat alpha 2 M which contains subunits of about Mr 190 000, the mouse protein contains two major (Mr 163000 and 35000) and one minor (Mr 185000) subunits. Also unlike human alpha 2 M, which can be broken down into about 85000-dalton subunits when reacted with an endopeptidase, the native AMG is cleaved by trypsin into multiple components (Mr 86000, 63000, 61000 and 33000). Two-dimensional peptide map analysis of these various 125I-labeled subunit components reveals that the 185000- and 163000-dalton components are homologous proteins but only the 185000-dalton protein contains the 35000-dalton component. The 163000-dalton protein is cleaved by trypsin into 86000- and 63000-dalton components, and the 86-kDa component in turn can be broken down into 61000- and 33000-dalton fragments. Since the 35000-dalton component is serologically related to AMG but does not share any tryptic peptides with both the 163000- and 33000-dalton components, it is neither a copurified impurity nor a cleavage product of the major (163000-dalton) subunit. AMG, therefore, is composed of covalently linked subunits of Mr 163000 and 35000, and the 185000-dalton protein may be a variant subunit of AMG. Trypsin treatment of the [14C]methylamine-labeled AMG and alpha 2 M also sequentially generate subunit patterns indistinguishable from those of the unlabeled macroglobulins. The methylamine-sensitive site(s) of AMG is localized in the 63000-dalton peptide, which is rather resistant to trypsin digestion and to staining by Coomassie brillant blue. We conclude from this study that the mouse homologue has a subunit composition and primary structure distinctly different from those of human and rat alpha 2 M.  相似文献   

13.
The binding of 125I-transforming growth factors-beta 1 and beta 2 (TGF-beta 1 and TGF-beta 2) to alpha 2-macroglobulin (alpha 2M) was studied before and after reaction with plasmin, thrombin, trypsin, or methylamine. Complex formation between TGF-beta and native or reacted forms of alpha 2M was demonstrated by non-denaturing polyacrylamide gel electrophoresis and autoradiography. Reaction of native alpha 2M with plasmin or methylamine markedly increased the binding of 125I-TGF-beta 1 and 125I-TGF-beta 2 to alpha 2M. The alpha 2M-plasmin/TGF-beta complexes were minimally dissociated by heparin. Reaction of alpha 2M with thrombin or trypsin reduced the binding of 125I-TGF-beta 1 and 125I-TGF-beta 2; the resulting complexes were readily dissociated by heparin. Complexes between TGF-beta 2 and native or reacted forms of alpha 2M were less dissociable by heparin than the equivalent complexes with TGF-beta 1. These studies demonstrate that the TGF-beta-binding activity of alpha 2M is significantly affected by plasmin, thrombin, trypsin and methylamine. Observations that alpha 2M-plasmin preferentially binds TGFs-beta suggest a mechanism by which alpha 2M may regulate availability of TGFs-beta to target cells in vivo.  相似文献   

14.
15.
16.
Betaglycan, also known as the transforming growth factor-beta (TGF-beta) type III receptor, is a membrane-anchored proteoglycan that binds TGF-beta via its core protein. Deletion mutagenesis analysis has revealed two regions of betaglycan ectodomain capable of binding TGF-beta: one at the amino-terminal half, the endoglin-related region (López-Casillas, F., Payne, H., Andres, J. L., and Massagué, J. (1994) J. Cell Biol. 124, 557-568), and the other at the carboxyl-terminal half, the uromodulin-related region (Pepin, M.-C., Beauchemin, M., Plamondon, J., and O'Connor-McCourt, M. D. (1994) Proc. Natl. Acad. Sci. U. S. A 91, 6997-7001). In the present work we have functionally characterized these ligand binding regions. Similar to the wild type receptor, both regions bind TGF-beta2 with higher affinity than TGF-beta1. However, only the endoglin-related region increases the TGF-beta2 labeling of the TGF-beta type II receptor, the so-called "TGF-beta -presentation" function of the wild type receptor. Despite this preference, both regions as well as the wild type receptor mediate the TGF-beta2-dependent Smad2 phosphorylation, indicating that they can function indistinguishably as TGF-beta-enhancing co-receptors. On the other hand, we found that the recently described ability of the wild type betaglycan to bind inhibin A is a property of the core protein that resides in the uromodulin-related region. Binding competition experiments indicate that this region binds inhibin and TGF-beta with the following relative affinities: TGF-beta2 > inhibin A > TGF-beta1. All together, the present results suggest that betaglycan ectodomain is endowed with two bona fide independent ligand binding domains that can perform specialized functions as co-receptors of distinct members of the TGF-beta superfamily.  相似文献   

17.
Abstract

Pulmonary arterial hypertension (PAH) is a vascular remodeling disease characterized by enhanced proliferation of pulmonary artery smooth muscle cells (PASMCs) and suppressed apoptosis. Platelet-derived growth factor (PDGF) is a potent mitogen involved in cell proliferation and migration. PDGF-BB induces the proliferation and migration of PASMCs and has been proposed to be a key mediator in the progression of PAH. Previous studies have shown that PDGF and its receptor are substantially elevated in lung tissues and PASMCs isolated from patients and animals with PAH, but the underlying mechanisms are still poorly manifested. MAP kinases, including extracellular signal-regulated kinase1/2 (ERK1/2), c-Jun NH2-terminal kinase1/2 (JNK1/2), and p38 are the key intracellular signals for stimuli-induced cell proliferation, survival, and apoptosis. Therefore, the purpose of this study is to determine whether PDGF-BB on cell proliferation process is mediated through the MAP kinases pathway in human PASMCs (HPASMCs). Our results showed PDGF-BB-induced proliferating cell nuclear antigen (PCNA), Cyclin A and Cyclin E expression in a concentration-dependent manner. The expression levels of phosphorylated JNK (p-JNK) was upregulated with 20?ng/ml PDGF-BB treatment, while PDGF-BB could not increase phosphorylated ERK1/2 (p-ERK1/2) and p-38 (p-p38) expression. The effects of PDGF-BB on cell proliferation and survival were weakened after the administration of antagonist of the JNK pathway or si-JNK. In addition, PDGF-BB protected against the loss of mitochondrial membrane potentials evoked by serum deprivation (SD) in a JNK-dependent manner. These results suggest that PDGF-BB promotes HPASMCs proliferation and survival, which is likely to be mediated via the JNK pathway.  相似文献   

18.
19.
Primary cultures of mouse keratinocytes maintain a basal cell phenotype in 0.05 mM Ca2+ medium, while culture in 1.4 mM Ca2+ results in terminal differentiation and inhibition of DNA synthesis. Induction of differentiation by Ca2+ results in a 10- to 20-fold increase in the expression of transforming growth factor-beta 2 (TGF-beta 2) mRNA and peptide, but a decrease in the expression of TGF-beta 1. In contrast, binding and cross-linking analyses show that the number of available surface 80 kilodalton (kDa) and 65 kDa TGF-beta receptor types decrease during differentiation. However, a mild acid wash significantly increases the number of available receptor sites on the differentiated keratinocytes, indicating that the TGF-beta receptors are unavailable for binding due to masking by endogenous ligand. A significant level of TGF-beta 2 secretion and receptor binding occur before the decrease in DNA synthesis, suggesting that the inhibition of DNA synthesis associated with differentiation of keratinocytes is mediated through the production and autocrine action of TGF-beta 2.  相似文献   

20.
SDS-polyacrylamide gel electrophoresis of a recently prepared alpha 2-macroglobulin solution showed only the polypeptide chains of 190,000 molecular weight. Reduction-alkylation of this preparation followed by gel-filtration on a Sephadex G-200 column in 5.2 M guanidine hydrochloride was unable to separate a fraction of 83,000 molecular weight as previously described. Nevertheless, after incubation of a mixture alpha 2-macroglobulin-trypsin during 45 minutes at 37 degrees C, approximately 60 per cent of the preparation were converted in a component with 83,000 molecular weight as detected in SDS polyacrylamide gel. That component was isolated on Sephadex G-200 in guanidine hydrochloride and corresponds to the subunit, fraction II. According to the results of the present work together with those of previous studies, it can be assumed that alpha 2-MG is a 780,000 molecular weight protein (19S) formed of two half-molecules of equal weight (11-12S). The half-molecule contains two polypeptide chains of 180,000-190,000 molecular weight, each of them having, in its middle, a specific region particularly susceptible to attack by proteases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号