首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oviposition site selection in insects is essential in terms of low egg mortality, high offspring survival and therefore a high reproductive output. Although oviposition height could be a crucial factor for the fitness of overwintering eggs, it has rarely been investigated. In this study the oviposition height of a polyphagous leaf beetle, Galeruca tanaceti Linnaeus in different habitats and at different times of the season was examined and its effect on egg clutch mortality was recorded. The leaf beetle occurs as an occasional pest on several agricultural plants. It deposits its eggs within herbaceous vegetation in autumn. Eggs are exposed to numerous biotic and abiotic mortality factors summarized as egg parasitism and winter mortality. Oviposition height of the leaf beetle was not uniform, but changed significantly with the structure of the habitat and during the season. Mean oviposition height per site (70.2+/-4.9 cm) was significantly higher than mean vegetation height (28.4+/-2.4 cm). Height of plants with egg clutches attached and oviposition height were significantly positively correlated. The results suggest that females try to oviposit as high as possible in the vegetation and on the plants selected. In accordance with this, the probability of egg parasitism and of winter egg clutch mortality significantly declined with increasing oviposition height. A preference of G. tanaceti for oviposition sites high up in the vegetation might therefore have evolved due to selection pressures by parasitoids and winter mortality.  相似文献   

2.
The sustainability of genetically engineered insecticidal Bacillus thuringiensis Berliner (Bt) maize, Zea mays L. (Poaceae), is threatened by the evolution of resistance by target pest species. Several Lepidoptera species have evolved resistance to Cry proteins expressed by Bt maize over the last decade, including the African maize stem borer, Busseola fusca (Fuller) (Lepidoptera: Noctuidae). The insect resistance management (IRM) strategy (i.e., the high‐dose/refuge strategy) deployed to delay resistance evolution is grounded on certain assumptions about the biology and ecology of a pest species, for example, the interactions between the insect pest and crop plants. Should these assumptions be violated, the evolution of resistance within pest populations will be rapid. This study evaluated the assumption that B. fusca adults and larvae select and colonize maize plants at random, and do not show any preference for either Bt or non‐Bt maize. Gravid female B. fusca moths of a resistant and susceptible population were subjected to two‐choice oviposition preference tests using stems of Bt and non‐Bt maize plants. Both the number of egg batches as well as the total number of eggs laid on each stem were recorded. The feeding preference of Bt‐resistant and susceptible neonate B. fusca larvae were evaluated in choice test bioassays with whorl leaf samples of specific maize cultivars. Although no differential oviposition preference was observed for either resistant or susceptible female moths, leaf damage ratings indicated that neonate larvae were able to detect Bt toxins and that they displayed feeding avoidance behaviour on Bt maize leaf samples.  相似文献   

3.
Abstract. 1. We tested the hypothesis that survival and sources of mortality of the leaf-folding sawfly ( Phyllocolpa sp.) varied significantly among host plants of the arroyo willow ( Salix lasiolepis Bent ham).
2. Survival of the leaf folder differed among field and potted willows in a common environment in two of three cases, and sources of mortality differed among plants in four of five cases.
3. Egg mortality differed among field plants but not among the potted willow plants.
4. Larval mortality and parasitism differed among field and potted willows in 2 years, and appeared to be compensatory mortality sources.
5. Leaf folder density among plants was not generally correlated with percentage of leaf folds with no egg (galls formed but no subsequent oviposition), percentage survival, or percentage mortality, indicating a general lack of density dependence.
6. The proportion of folds with no egg oviposited differed significantly among field and potted plants, and was only correlated with survival or sources of mortality in one of three years.
7. The data support the hypothesis that host plant genotype affects the interaction of the leaf folder with its natural enemies, and thus represents a three trophic level interaction.  相似文献   

4.
Summary In order to make clear the relationship between the mortality processes and aggregation on the walnut leaf beetle,Gastrolina depressa, life tables of individual colonies were developed and the major mortality factor and the mode of its action were investigated. Furthermore, the influences of the larval colony size on the survival rate and the developmental period were also investigated in the laboratory. In the laboratory, when the larvae were reared on suitable (soft) host plants, the larger the group size, the faster the development. When the larvae were reared on unsuitable (hard) host plants, the larger the group size, the higher the survival rate. In the field, one of the major mortality factors of the egg stage was physiological death. However, there was no particular relation between the egg mass size and hatchability. On the other hand, another mortality factor of eggs, predation byA. hexaspilota, tended to act more on the larger sized egg masses. The mortality of the 1st instar larvae decreased with the increase of colony size. During the larval stages, the major mortality factor was predation byA. hexaspilota andP. japonica. Both predators tended to attack the colony in an all-or-none manner. The number of male adults was much less than the number of females in the Ina populations.  相似文献   

5.
Turner NC 《Plant physiology》1975,55(5):932-936
Concurrent measurements of evaporation, leaf conductance, irradiance, leaf water potential, and osmotic potential of maize (Zea mays L. cv. Pa602A) in soil at either high or low soil water potential were compared at several hours on two consecutive days in July. Hourly evaporation, measured on two weighing lysimeters, was similar until 1000 hours Eastern Standard Time, but thereafter evaporation from the maize in the dry soil was always less than that in the wet soil; before noon it was 62% and by midafternoon, only 35% of that in the wet soil. The leaf water potential, measured with a pressure chamber, was between −1.2 and −2.5 bars and between −6.8 and −8 bars at sunrise (about 0530 hours Eastern Standard Time) in the plants in the wet and dry soil, respectively, but decreased quickly to between −8 and −13 bars in the plants in the wet soil and to less than −15 bars in the plants in the dry soil by 1100 to 1230 hours Eastern Standard Time. At this time, the leaf conductance of all leaves was less than 0.1 cm sec−1 in the maize in the dry soil, whereas the conductance was 0.3 to 0.4 cm sec−1 in the leaves near the top of the canopy in the wet soil. The osmotic potential, measured with a vapor pressure osmometer, also decreased during the morning but to a smaller degree than leaf water potential, so that by 1100 to 1230 hours Eastern Standard Time the leaf turgor potential was 1 to 2 bars in all plants. Thereafter, leaf turgor potential increased, particularly in the plants in soil at a high water potential, whereas leaf water potential continued to decrease even in the maize leaves with partly closed stomata. Evidently maize can have values of leaf conductance differing 3- to 4- fold at the same leaf turgor potential, which suggests that stomata do not respond primarily to bulk leaf turgor potential. Evidence for some osmotic adjustment in the plants at low soil water potential is presented. Although the degree of stomatal closure in the maize in dry soil did not prevent further development of stress, it did decrease evaporation in proportion to the decrease in canopy conductance.  相似文献   

6.
A transfer DNA (T-DNA) carrying the marker gene nptII was detected in the genomes of diploid and haploid maize plants obtained after the treatment of pistil filaments with a suspension of Agrobacterium during artificial pollination. PCR analysis of total DNA isolated from 155 canamycin-resistant diploid F1 seedlings revealed T-DNA insertions in the genomes of 111 plants (32.7% of the total number of analyzed seeds). The example of matroclinal haploids was used to demonstrate that T-DNA may be transported to the egg cell by the growing pollen tube (PT). Twelve out of 16 analyzed haploid plants contained the T-DNA insertion. The possible mechanism of the transfer of the Agrobacterium T-DNA to the maize genome during pollination is discussed.  相似文献   

7.
Laboratory and field trials were conducted to evaluate the effect of plant species (maize, sorghum), plant age (young, middle, old) and four different nitrogen fertilization levels (N0-N3) on the bionomics of the invasive crambid Chilo partellus and the performance of its braconid larval parasitoid Cotesia flavipes. Plant N varied significantly between N0 and N1-N3, but the differences among the latter were not significant. Intrinsic rates of increase and net-reproductive rates of C. partellus followed the same trends: they were lowest with N0 and similar among the other treatments. On maize only, mortality of C. partellus and parasitism by C. flavipes tended to decrease with age of the plant while the percentage of borers reaching adulthood (i.e. pupation) increased. Borer mortality and parasitism was lower and pupation higher on sorghum than on maize. On both host plants, percent dry matter content of frass, which could affect ingress of the parasitoid into the borer tunnel, did not vary with nitrogen level but varied with age of the host plants: on maize, it was highest on young plants and on sorghum on old plants. Tunnels were shorter on young maize and sorghum plants; longer tunnels on older plants indicated compensatory feeding by the larva as a result of lower nutritive value of the food source. Consequently, larval weight was lower on older than younger plants. The level of nitrogen fertilization had no effect on food conversion efficiency of C. partellus. Nitrogen did not affect number of C. flavipes progeny while egg load of progeny increased significantly with nitrogen level, on both plant species. Differences in egg load between sorghum and maize were mostly not significant. It was concluded that on depleted soils only, an increase in nitrogen via mulching, rotation with a leguminous crop or fertilization would increase survival of C. partellus on both maize and sorghum and an increase in acreage of maize and in application of nitrogen fertilizer in an area would also increase the parasitism of C. flavipes.  相似文献   

8.
9.
The objectives of this comparative study were to investigate the responses of biomass accumulation and partitioning to nitrogen supply and to examine the effect of low-nitrogen supply on the photosynthetic responses of maize leaves to steady-state and dynamic light. While the difference in leaf number and stem diameter was not statistically significant, there was a significant difference in plant height between the low-nitrogen and high-nitrogen maize plants. During grain-filling period, the ear leaf of the low-nitrogen maize plants possessed lower values of maximum photosynthetic rate, maximum stomatal conductance, maximum transpiration rate, apparent quantum yield, light compensate point, and carboxylation efficiency than did that of the high-nitrogen maize plants. Contrarily, lower values of intercellular CO2 concentration and dark respiration rate were observed in the high-nitrogen maize plants. In addition, a slower response to simulated sunflecks was found in the ear leaf of the low-nitrogen maize plants; however, stomatal limitations did not operate in the ear leaf of the high-nitrogen or low-nitrogen maize plants during the photosynthetic induction. As compared to the high-nitrogen maize plants, the low-nitrogen maize plants accumulated much less plant biomass but allocated a greater proportion of biomass to belowground parts. In conclusion, our results suggested that steady-state photosynthetic capacity is restricted by both biochemical and stomatal limitation and the photosynthetic induction is constrained by biochemical limitation alone in low-nitrogen maize plants, and that maize crops respond to low-nitrogen supply in a manner by which more biomass was allocated preferentially to root tissues.  相似文献   

10.
The quantitative changes of chloroplast ultrastructure and dimensions in mesophyll (MC) and bundle sheath (BSC) cells, associated with the onset of leaf senescence, were followed along the developmental leaf blade gradient of the third leaf of maize (Zea mays L.). To ascertain whether the rapidity of structural changes associated with the transition of chloroplasts from mature to senescent state is a heritable trait, the parental and the first filial generations of plants were used. The heterogeneity of leaf blade, associated with the development of maize leaf (with the oldest regions at the apex and the youngest ones at the base) was clearly discernible in the ultrastructure and dimensions of chloroplasts; however, there were differences in the actual pattern of chloroplast development between both genotypes as well as between both cell types examined. While the course of MC chloroplasts’ development at the onset of leaf senescence in maize hybrid followed that of its parent rather well, this did not apply for the BSC chloroplasts. In this case, each genotype was characterized by its own distinguishable developmental pattern, particularly as regards the accumulation of starch inclusions and the associated changes of the size and shape of BSC chloroplasts.  相似文献   

11.
Without developing new agronomic practices, present rates of improvement in seed yields of cereal crops globally are insufficient to fulfil the estimated increasing food demand for 2050 and beyond. Intercropping is one of the agricultural practices that can lead to greater crop yields. However, there exists leaf redundancy for maize in intercropping systems, and the top canopy leaves shade more competent leaves at middle strata of maize plants. Therefore, this work aimed to elucidate the effect of leaf excision treatments in maize to understand the optimum leaf area of maize plants under a maize–soybean relay‐intercropping system (MSR) and a sole cropping system (SM). The effects of four‐leaf excision treatments (T1, 0; T2, 2; T3, 4; T4, 6 leaves excised from the top of maize plants until 7 days after silking) on light interception, leaf area index (LAI), photosynthetic characteristics, total biomass accumulation at blistering stage (BS), dough stage (DS) and physiological maturity (PM), and seed yield of maize were investigated through field experiments for 2 years under MSR and SM. Results showed that, under MSR and SM, as compared to control (T1), optimum excision of leaves (T2) from the top of maize plants significantly improved the light interception (by 25, 18 and 16% at BS, DS and PM, respectively) to lower strata leaves and accelerated the biomass partitioning to maize seeds (by 13 and 12% at DS and PM, respectively). Importantly, plants under T2 exhibited higher green leaf area than control, that is, excision the top two leaves led to an increase in LAI at PM by 10%, suggesting that leaf senescence under T2 was delayed which enhanced the photosynthetic rate at PM by 7% in 2017 and 6% in 2018. Relative to T1, maize under T2 produced 19 and 13% higher maize yield under MSR and SM, respectively, and relay‐cropped maize had 90% of SM seed yield. These results suggest that by manipulating the canopy structure of maize plants we can enhance the biomass accumulation and seed yield of maize crops under MSR and SM.  相似文献   

12.
13.
Abstract:  Notwithstanding the introduction of several pest management tactics, the stalk borer Eldana saccharina Walker (Lep., Pyralidae) remains the most serious pest in South African sugarcane. A novel tactic for managing this pest in sugarcane would be the use of a dead-end trap crop that attracts moths for oviposition and curtails subsequent larval development, thereby reducing pest population size. Glasshouse bioassays, in which moths chose to oviposit on maize producing Bacillus thuringiensis Cry1Ab toxin ( Bt -maize), non- Bt -maize or sugarcane of two cultivars (borer-resistant and -susceptible), showed that E. saccharina laid significantly more eggs and egg batches per dry leaf and unit mass of dry leaf on maize ( Bt or non- Bt ) than on either of the cane cultivars. When moths had a choice of ovipositing on 2-, 3-, 4- or 5-month-old maize ( Bt and non- Bt ), dry leaf number and mass of dry leaf material was significantly correlated with number of eggs and egg batches, indicating that older plants, which carried larger amounts of dry leaf matter, were more attractive for oviposition. Finally, glasshouse assays in which hatching larvae fed on 2.5-, 3.5- and 4.5-month-old Bt and non- Bt -maize plants, showed that the Cry1Ab toxin was effective in killing E. saccharina larvae in all Bt -maize plant growth stages, confirming that Bt -maize fulfilled the third requirement (curtailing larval development) of a dead-end trap crop for this pest. We argue that Bt -maize warrants further testing in the field as a trap crop, both alone and as a component of a 'push–pull' or habitat management system for E. saccharina in sugarcane.  相似文献   

14.
Plants may take insect eggs on their leaves as a warning of future herbivory and intensify their defence against feeding larvae. Responsible agents are, however, largely unknown, and little knowledge is available on this phenomenon in perennial plants. We investigated how egg deposition affects the anti‐herbivore defence of elm against the multivoltine elm leaf beetle. Prior egg deposition caused changes in the quality of feeding‐damaged leaves that resulted in increased larval mortality and reduced reproductive capacity of the herbivore by harming especially female larvae. Chemical analyses of primary and secondary leaf metabolites in feeding‐damaged, egg‐free (F) and feeding‐damaged, egg‐deposited (EF)‐leaves revealed only small differences in concentrations when comparing metabolites singly. However, a pattern‐focused analysis showed clearly separable patterns of (F) and (EF)‐leaves because of concentration differences in especially nitrogen and phenolics, of which robinin was consumed in greater amounts by larvae on (EF) than on (F)‐leaves. Our study shows that insect egg deposition mediates a shift in the quantitative nutritional pattern of feeding‐damaged leaves, and thus might limit the herbivore's population growth by reducing the number of especially female herbivores. This may be a strategy that pays off in a long run particularly in perennial plants against multivoltine herbivores.  相似文献   

15.
Oviposition patterns of the diamondback moth (DBM), Plutella xylostella L. (Lepidoptera: Plutellidae), differ between common cabbage (Brassica oleracea L. var. capitata) and Chinese cabbage (Brassica rapa L. var. pekinensis) (Brassicaceae) host plants. This study shows that the moth prefers to oviposit on adaxial rather than abaxial leaf surfaces and petioles of both host plants. More eggs were laid in leaf veins than on leaf laminas of both host plants, especially in Chinese cabbage, where 94.6% of eggs were laid in veins. On Chinese cabbage, very few eggs were laid in clusters (≥2 eggs), whereas on common cabbage approximately 30% of eggs were laid in groups of 2 or more eggs. Removal of wax from common cabbage leaves dramatically increased the number of eggs laid singly on the leaf lamina of treated plants, suggesting that leaf waxes affect how eggs are distributed by ovipositing DBM. Eggs were most susceptible to removal by rainfall from the plant surface immediately (<1 h) after oviposition and when close to hatching (>72h old) whereas they were least susceptible 24 h after oviposition. Eggs laid on common cabbage plants were more susceptible to simulated rainfall than eggs laid on Chinese cabbage plants. On common cabbage plants, egg susceptibility to rainfall on different plant parts ranked adaxial leaf surfaces>petioles = abaxial leaf surfaces>stem, but there was no difference in egg susceptibility to rainfall on the various plant parts of Chinese cabbage. Furthermore, on common cabbage plants, eggs laid on both adaxial and abaxial leaf surfaces were afforded significant protection from the effects of rainfall by leaves higher in the plant canopy. On common cabbage plants, oviposition patterns reduce the potential impact of rainfall on eggs, possibly reducing the effect of this important abiotic mortality factor in the field.  相似文献   

16.
Plant anti‐herbivore defenses are known to be affected by life‐history evolution, as well as by domestication and breeding in the case of crop species. A suite of plants from the maize genus Zea (Poaceae) and the specialist herbivore Dalbulus maidis (DeLong & Wolcott) (Hemiptera: Cicadellidae) were used to test the hypothesis that anti‐herbivore defenses are affected by plant life‐history evolution and human intervention through domestication and breeding for high yield. The suite of plants included a maize (Zea mays ssp. mays L.) commercial hybrid, a maize landrace, two populations of the annual Balsas teosinte (Z. mays ssp. parviglumis Iltis & Doebley), and perennial teosinte (Z. diploperennis Iltis, Doebley & Guzman). Leaf toughness, pubescence, and oviposition preference were compared among the suite of host plants looking for effects of transitions in life history (i.e., from perennial to annual life cycle), domestication (i.e., from wild annual to domesticated annual), and breeding (i.e., from landrace to hybrid maize) on defense against D. maidis. Results on leaf toughness suggested that the life‐history and domestication transitions weakened the plant's resistance to penetration by the mouthparts and ovipositor of D. maidis, whereas results on pubescence suggested that this putative defense was strengthened with the breeding transition, contrary to expectations. Results on oviposition preference of D. maidis coincided with the expectation that life‐history and domestication transitions would lead to preference for Balsas teosinte over perennial teosinte, and of landrace maize over Balsas teosinte. Also, a negative correlation suggested that oviposition preference is significantly influenced by leaf toughness. Overall, the results suggested that Zea defenses against the specialist herbivore D. maidis were variably affected by plant life‐history evolution, domestication, and breeding, and that chemical defense may play a role in Zea defense against D. maidis because leaf toughness and pubescence only partially explained its host preferences.  相似文献   

17.
Abstract:  The efficacy of methyl iodide (MI) as a fumigant against all developmental stages of the maize weevil, Sitophilus zeamais Motsch. was investigated. Tests were conducted with concentrations of 1.5, 1.8, 2.1, 2.4, 2.7 and 3.0 mg/l, for a 6-h exposure period. Values of LC50, LC95 and LC99 of MI for immatures and adult stages were determined. The present laboratory tests showed that MI was toxic to various life stages of S. zeamais at relatively short exposure periods. At the LC50 and LC95 levels, the most susceptible stage was the egg stage followed by larvae, pupae and adults (1-day mortality). The egg was found to be most susceptible to MI, requiring 0.81 and 2.16 mg/l for 50 and 99% mortality, respectively, while the adult was most tolerant, requiring 2.30 and 3.02 mg/l for 50 and 99% mortality, respectively, based on 1-day mortality count. Pupae were less susceptible to MI than egg and larvae, requiring 1.47 and 3.19 mg/l for 50 and 99% mortality, respectively. Based on the present toxicity tests, MI has the potential for use as a fumigant to control all developmental stages of the maize weevil, S. zeamais .  相似文献   

18.
Andreas Kruess 《Oecologia》2002,130(4):563-569
Interactions between plants and their natural enemies are well studied, but investigations on the indirect interactions between plant enemies that simultaneously exploit a host plant are rare. Yet these plant-mediated interactions are important because they may affect not only the impact of plant antagonists on plant survival but may also influence the performance of the other plant exploiters. This study focused on the indirect effects of a systemic infection of creeping thistle, [irsium arvense (L.) Scop., with the necrotrophic fungus Phoma destructiva (Plowr.) on the phytophagous leaf beetle Cassida rubiginosa Müller, by examining egg deposition, food plant choice, and larval and pupal performance of the beetle. Thus, the results give a broader view than most other studies of plant-mediated effects of a pathogen on a phytophagous insect. Since both the beetle and the fungus are considered as agents for the biological control of C. arvense, the results are also of interest for applied ecology. Potted plants of C. arvense were inoculated with a conidiospore suspension of P. destructiva to cause a systemic infection of the plants. In a cage experiment, ovipositing females of C. rubiginosa showed a significant preference for healthy thistles. In dual-choice tests, adults of C. rubiginosa preferred leaf discs from healthy thistles over those from Phoma-infected thistles. The beetles also consumed significantly more leaf tissue from healthy than from infected plants. Development time from freshly hatched larvae until pupation was significantly longer for larvae fed on infected leaves. The weight of last-instar larvae and pupae was lower, and larval and pupal mortality was higher when larvae had been fed with infected compared to healthy leaves. Thus, the combined use of both potential biological control agents may be of lowered efficiency because (1) C. rubiginosa avoided infected thistles for both egg deposition and adult feeding and (2) Phoma infection negatively affected larval development and increased larval and pupal mortality of the beetle.  相似文献   

19.
Nematicidal activities of extracts from plants were assayed against Meloidogyne incognita in vitro. Leaves of six different plants were collected in and around Aligarh Muslim University Campus. Aqueous extracts of six plants were screened for egg hatchability and nematicidal activity against second stage juveniles of M. incognita in the plant pathology and nematology laboratory, AMU Aligarh. The nematode egg and juveniles were exposed 12, 24 and 48 h in (S, S/2, S/10, S/100) concentrations of plant extracts. The plant extracts of leaves of six plants species viz. Jatropha pandurifolia, Polyalthia longifolia, Wedelia chinensis, Nerium indicum, Duranta repens and Cassia fistula exhibited highly promising mortality of 99.00–72.00% after 48 h of exposure. Aqueous extracts of leaves of J. pandurifolia, P. longifolia, W. chinensis were recorded to be highly effective for inhibition of egg hatching and increasing juvenile mortality of M. incognita. There was a gradual decrease in egg hatching and increase in mortality rate of juveniles of M. incognita with increase in the concentration of leaf extract and exposure time.  相似文献   

20.
The RNA‐guided Cas9 system is a versatile tool for genome editing. Here, we established a RNA‐guided endonuclease (RGEN) system as an in vivo desired‐target mutator (DTM) in maize to reduce the linkage drag during breeding procedure, using the LIGULELESS1 (LG1) locus as a proof‐of‐concept. Our system showed 51.5%–91.2% mutation frequency in T0 transgenic plants. We then crossed the T1 plants stably expressing DTM with six diverse recipient maize lines and found that 11.79%–28.71% of the plants tested were mutants induced by the DTM effect. Analysis of successive F2 plants indicated that the mutations induced by the DTM effect were largely heritable. Moreover, DTM‐generated hybrids had significantly smaller leaf angles that were reduced more than 50% when compared with that of the wild type. Planting experiments showed that DTM‐generated maize plants can be grown with significantly higher density and hence greater yield potential. Our work demonstrate that stably expressed RGEN could be implemented as an in vivoDTM to rapidly generate and spread desired mutations in maize through hybridization and subsequent backcrossing, and hence bypassing the linkage drag effect in convention introgression methodology. This proof‐of‐concept experiment can be a potentially much more efficient breeding strategy in crops employing the RNA‐guided Cas9 genome editing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号