首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The lipid mediators, platelet activating factor (PAF) and the eicosanoids, can be coordinately produced from the common phospholipid precursor, 1-O-alkyl-2-arachidonoylglycerophosphocholine (1-O-alkyl-2-arachidonoyl-GPC), through the initial action of a phospholipase A2 that cleaves arachidonic acid from the sn-2 position. The mouse macrophage cell line RAW 264.7, which was used as a model macrophage system to study the arachidonoyl-hydrolyzing phospholipase A2 enzyme(s), could be induced to release arachidonic acid in response to inflammatory stimuli. A phospholipase A2 that hydrolyzed 1-O-hexadecyl-2-[3H]arachidonoyl-GPC was identified in the cytosolic fraction of these macrophages. This phospholipase activity was optimal at pH 8 and dependent on calcium. Enzyme activity could be stimulated 3-fold by heparin, suggesting the presence of phospholipase inhibitory proteins in the macrophage cytosol. Compared to 1-alkyl-2-arachidonoyl-GPC, the enzyme hydrolyzed 1-acyl-2-arachidonoylglycerophosphoethanolamine (1-acyl-2-arachidonoyl-GPE) with similar activity but showed slightly greater activity against 1-acyl-2-arachidonoyl-GPC, suggesting no specificity for the sn-1 linkage or the phospholipid base group. Although comparable activity against 1-acyl-2-arachidonoylglycerophosphoinositol (1-acyl-2-arachidonoyl-GPI) could be achieved, the enzyme exhibited much lower affinity for the inositol-containing substrate. The enzyme did, however, show apparent specificity for arachidonic acid at the sn-2 position, since much lower activity was observed against choline-containing substrates with either linoleic or oleic acids at the sn-2 position. The cytosolic phospholipase A2 was purified by first precipitating the enzyme with ammonium sulfate followed by chromatography over Sephadex G150, where the phospholipase A2 eluted between molecular weight markers of 67,000 and 150,000. The active peak was then chromatographed over DEAE-cellulose, phenyl-Sepharose, Q-Sepharose, Sephadex G150 and finally hydroxylapatite. The purification scheme has resulted in over a 1000-fold increase in specific activity (2 mumol/min per mg protein). Under non-reducing conditions, a major band on SDS-polyacrylamide gels at 70 kDa was observed, which shifted to a lower molecular weight, 60,000, under reducing conditions. The properties of the purified enzyme including the specificity for sn-2-arachidonoyl-containing phospholipids was similar to that observed for the crude enzyme. The results demonstrate the presence of a phospholipase A2 in the macrophage cell line. RAW 264.7, that preferentially hydrolyzes arachidonoyl-containing phospholipid substrates.  相似文献   

2.
The synthesis of inflammation mediators produced from arachidonic acid is regulated primarily by the cellular concentration of free arachidonic acid. Since intracellular arachidonic acid is almost totally present as phospholipid esters, the concentration of intracellular arachidonic acid is primarily dependent on the balance between the release of arachidonic acid from membrane phospholipids and the uptake of arachidonic acid into membrane phospholipids. Cytosolic phospholipase A(2) is a calciumdependent enzyme that catalyzes the stimulus-coupled hydrolysis of arachidonic acid from membrane phospholipids. Following exposure of macrophages to various foreign or endogenous stimulants, cytosolic phospholipase A(2) is activated. Treatment with these compounds may also stimulate phospholipase D activity, and, in the presence of ethanol, phospholipase D catalyzes the synthesis of phosphatidylethanol. A cell-free system was used to evaluate the effect of phosphatidylethanol on cytosolic phospholipase A(2) activity. Phosphatidylethanol (0.5 microM) added to 1-stearoyl-2-[(3)H]-arachidonoyl-sn-glycero-3-phosphocholine vesicles stimulated cytosolic phospholipase A(2) activity. However, high concentrations (20-100 microM) of phosphatidylethanol inhibited cytosolic phospholipase A(2) activity. Phosphatidic acid, the normal phospholipase D product, also stimulated cytosolic phospholipase A(2) activity at 0.5 microM, but had an inhibitory effect on cytosolic phospholipase A(2) activity at concentrations of 50 and 100 microM. Ethanol (20-200 mM), the precursor of phosphatidylethanol, added directly to the assay did not alter cytosolic phospholipase A(2) activity. These results suggest that phosphatidylethanol alters the physical properties of the substrate, and at lower concentrations of anionic phospholipids the substrate is more susceptible to hydrolysis. However, at high concentrations, phosphatidylethanol either reverses the alterations in physical properties of the substrate or phosphatidylethanol may be competing as the substrate. Both interactions may result in lower cytosolic phospholipase A(2) activity.  相似文献   

3.
Arachidonoyl-hydrolyzing phospholipase A2 plays a central role in providing substrate for the synthesis of the potent lipid mediators of inflammation, the eicosanoids, and platelet-activating factor. Although Ca2+ is required for arachidonic acid release in vivo and most phospholipase A2 enzymes require Ca2+ for activity in vitro, the role of Ca2+ in phospholipase A2 activation is not understood. We have found that an arachidonoyl-hydrolyzing phospholipase A2 from the macrophage-like cell line, RAW 264.7, exhibits Ca2(+)-dependent association with membrane. The intracellular distribution of the enzyme was studied as a function of the Ca2+ concentration present in homogenization buffer. The enzyme was found almost completely in the 100,000 x g soluble fraction when cells were homogenized in the presence of Ca2+ chelators and there was a slight decrease in soluble fraction activity when cells were homogenized at the level of Ca2+ in an unstimulated cell (80 nM). When cells were homogenized at Ca2+ concentrations expected in stimulated cells (230-450 nM), 60-70% of the phospholipase A2 activity was lost from the soluble fraction and became associated with the particulate fraction in a manner that was partly reversible with EGTA. Membrane-associated phospholipase A2 activity was demonstrated by [3H]arachidonic acid release both from exogenous liposomes and from radiolabeled membranes. With radiolabeled particulate fraction as substrate, this enzyme hydrolyzed arachidonic acid but not oleic acid from membrane phospholipid, and [3H]arachidonic acid was derived from phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol/phosphatidylserine. We suggest a mechanism in which the activity of phospholipase A2 is regulated by Ca2+: in an unstimulated cell phospholipase A2 is found in the cytosol; upon receptor ligation the cytosolic Ca2+ concentration increases, and the enzyme becomes membrane-associated which facilitates arachidonic acid hydrolysis.  相似文献   

4.
Lam CW  Perretti M  Getting SJ 《Peptides》2006,27(2):404-412
Melanocortin peptides modulate cytokine release and adhesion molecule expression. Here we have investigated the early cell-signaling pathway responsible for the induction of interleukin-10 (IL-10) in RAW264.7 cells. Cell incubation with ACTH(1-39) or MTII (melanotan II) did not alter ERK1/2 and JNK phosphorylation, while p38 phosphorylation and intracellular cAMP accumulation occurred within minutes. ACTH(1-39) and MTII provoked a time-dependent accumulation of IL-10 that was abrogated by the PKA inhibitor H-89 and only partially blocked by the p38 MAPK inhibitor SB203580. Thus, in RAW264.7 cells, IL-10 induction by the melanocortins is via the PKA pathway, and this mechanism could contribute to their anti-inflammatory profile.  相似文献   

5.
6.
7.
We have previously demonstrated that dietary histamine is accumulated in the spleens of L-histidine decarboxylase (HDC)-deficient mice, which lack endogenous histamine synthesis. To characterize the clearance system for dietary histamine in mice, we investigated the cell type and mechanism responsible for histamine uptake in the spleens of HDC-deficient mice. Immunohistochemical analyses using an antihistamine antibody indicated that a portion of the CD14+ cells in the spleen is involved in histamine storage. Peritoneal macrophages obtained from Balb/c mice and a mouse macrophage cell line, RAW264.7, had potential for histamine uptake, which was characterized by a low affinity and high capacity for histamine. The histamine uptake by RAW264.7 cells was observed at physiological temperature and was potently inhibited by pyrilamine, chlorpromazine, quinidine, and chloroquine, moderately inhibited by N-methylhistamine, dopamine, and serotonin, and not affected by tetraethylammonium and 1-methyl-4-phenylpyridinium. Intracellular histamine was not metabolized in RAW264.7 cells and was released at physiological temperature in the absence of extracellular histamine. These results suggest that histamine uptake by macrophages may be involved in the clearance of histamine in the local histamine-enriched environment. cation transporter; chlorpromazine; pyrilamine; quinidine  相似文献   

8.
Cytosolic phospholipase A2 (cPLA2) is an interesting protein involved in inflammatory processes and various diseases. Its catalytic mechanism as well as its substrate specificity for arachidonyl phospholipids is not typical for other phospolipases. Furthermore, a lid structure, which ensures a hydrophilic surface of the protein without any substrate bound and the movement of this flexible loop to make the hydrophobic active site accessible, is of high interest. Therefore, the focus of this work was to determine the binding mode of cPLA2 with various substrates, such as arachidonic acid, a synthetic inhibitor, a saturated phospholipid, and most importantly an arachidonyl phospholipid. To understand the selectivity of the protein toward the arachidonyl phospholipid and the interaction in a protein–ligand complex, molecular dynamics simulations were performed using the GROMOS suite of simulation programs. The simulations provide insight into the protein and showed that selective binding of arachidonyl phospholipids is because of the shape of the sn‐2 tail. The amino acids Asn555 and Ala578 are involved in the strongest interactions observed in the protein–ligand complexes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Bacterial DNA can stimulate the production of cytokines and nitric oxide (NO), while mammalian DNA can block these responses. If mammalian DNA is transfected into macrophages, however, it can stimulate NO production, without inducing IL-12. To define further this activity, signaling pathways induced by transfected calf thymus (CT) DNA were studied. Using RAW264.7 cells as a model, CT DNA in the transfection agent FuGENE 6 activated cells through the NF-kappaB and MAPKs pathways, similar to bacterial DNA and LPS. The role of these pathways was further investigated using specific inhibitors, with studies indicating that NO production is blocked by inhibitors of NF-kappaB and p38 but not other MAPKs. These data indicate that the immune activity of DNA is influenced by context or intracellular location and that, when transfected into cells, mammalian DNA can activate cells through signaling pathways similar to those of bacterial DNA.  相似文献   

10.
11.
Acyl modification of the sn-2 position in phospholipids (PLs) was conducted by acidolysis reaction using immobilized phospholipase A(2) (PLA(2)) as the catalyst. In the first stage we screened different carriers for their ability to immobilize PLA(2). Several carriers were able to fix the enzyme and maintain catalytic activity; however, the final choice of carrier for the continued work was a non-ionic weakly polar macroreticular resin. Response surface methodology was applied to evaluate the influence of substrate ratio, reaction temperature, and water addition during acidolysis reaction between caprylic acid and soybean phosphatidylcholine (PC). Reaction temperature and water addition had significant effect on acidolysis reaction, however no effect was observed for substrate ratio (mol caprylic acid/mol PC) in range tested. In general an inverse relationship between incorporation of caprylic acid and PC recovery was observed. Highest incorporation obtained during acidolysis reactions was 36%. Such incorporation could be obtained under reaction temperature, 45 degrees C; substrate ratio, 9mol/mol caprylic acid/PC; water addition of 2%; 30wt.% immobilized enzyme; and reaction time, 48h. The yield under these conditions was however only 29%. Lysophosphatidylcholine (LPC) was the major by-product formed during the reaction. Incorporation of acyl donor into LPC was very low (<4%), which indicates that acyl migration is only a minor problem for PLA(2) catalyzed synthesis reaction. Conjugated linoleic acid and docosahexaenoic acid were also tested as acyl donors, and were able to be incorporated into PC with 30 and 20%, respectively.  相似文献   

12.
Oxidative stress generated during ischemia/reperfusion injury has been shown to augment cellular responsiveness. Whereas oxidants are themselves known to induce several intracellular signaling cascades, their effect on signaling pathways initiated by other inflammatory stimuli remains poorly elucidated. Previous work has suggested that oxidants are able to prime alveolar macrophages for increased NF-kappa B translocation in response to treatment with lipopolysaccharide (LPS). Because oxidants are known to stimulate the Src family of tyrosine kinases, we hypothesized that the oxidants might contribute to augmented NF-kappa B translocation by LPS via the involvement of Src family kinases. To model macrophage priming in vitro, the murine macrophage cell line, RAW 264.7, was first incubated with various oxidants and then exposed to low dose LPS. These studies show that oxidant stress is able to augment macrophage responsiveness to LPS as evidenced by earlier and increased NF-kappa B translocation. Inhibition of the Src family kinases by either pharmacological inhibition using PP2 or through a molecular approach by cell transfection with Csk was found to prevent the augmented LPS-induced NF-kappa B translocation caused by oxidants. Interestingly, while Src kinase inhibition was able to prevent the LPS-induced NF-kappa B translocation in oxidant-treated macrophages, this strategy had no effect on NF-kappa B translocation caused by LPS in the absence of oxidants. These findings suggested that oxidative stress might divert LPS signaling along an alternative signaling pathway. Further studies demonstrated that the Src-dependent pathway induced by oxidant pretreatment involved the activation of phosphatidylinositol 3-kinase. Involvement of this pathway appeared to be independent of traditional LPS signaling. Together, these studies provide a novel potential mechanism whereby oxidants might prime alveolar macrophages for altered responsiveness to subsequent inflammatory stimuli and suggest different cellular targets for immunomodulation following ischemia/reperfusion.  相似文献   

13.
Kim HW  Kim JH  An HS  Park KK  Kim BK  Park T 《Life sciences》2003,73(19):2477-2489
The role of myo-inositol in the regulation of taurine transport in activated murine macrophage cell line, RAW 264.7, was studied. Challenge of RAW 264.7 murine macrophages for 24 hr with phorbol ester 12-myristate 13-acetate (PMA) (10 ng/ml), a PKC activator, resulted in a 62% decrease in taurine transport activity. Among the various monosaccharides (1 mM) tested in the presence of PMA, myo-inositol was most effective in restoring the PMA-induced down-regulation of taurine transport in murine macrophages (82% increase compared to the value for cells treated with PMA Alone, p < 0.01). The protective role of myo-inositol against stress-induced down-regulation of taurine transport by macrophages was further investigated in conditions mimicking bacterial infection, inflammation, and immune-suppressed circumstances. A challenge of murine macrophages with lipopolysaccharide (LPS) (0.1 and 10 microg/ml) resulted in a 60% decrease in taurine transport activity compared to the value for untreated control cells (p < 0.01). When cells were co-treated with myo-inositol (100 nM approximately 10 mM) in the presence of LPS for 24 hrs, taurine transport activity increased in a dose-dependent manner compared to the value for cells treated with LPS only. Taurine transport activity in cells treated with LPS (10 microg/ml) plus interferon-gamma (IFN-gamma) (150 unit/ml) for 24 hrs was 13% of the value for untreated control cells (p < 0.01). Again, this inflammation-induced down-regulation of taurine transport activity was completely antagonized with co-administration of 100 nM or higher levels of myo-inositol in the culture medium. Similarly, myo-inositol effectively restored the taurine transport activity suppressed by cyclosporin A (0.5 and 50 nM) in murine macrophages (p < 0.01). From these results, myo-inositol appears to be a common accelerator of taurine transport by murine macrophages in diverse conditions of down-regulated taurine transport.  相似文献   

14.
Peroxiredoxin (PRX), a scavenger of H2O2 and alkyl hydroperoxides in living organisms, protects cells from oxidative stress. Contrary to its known anti‐oxidant roles, the involvement of PRX‐1 in the regulation of lipopolysaccharide (LPS) signaling is poorly understood, possible immunological functions of PRX‐1 having been uncovered only recently. In the present study, it was discovered that the PRX‐1 deficient macrophage like cell line (RAW264.7) has anti‐inflammatory activity when stimulated by LPS. Treatment with LPS for 3 hrs resulted in increased gene expression of an anti‐inflammatory cytokine, interleukin‐10 (IL‐10), in PRX‐1 knock down RAW264.7 cells. Gene expression of pro‐inflammatory cytokines IL‐1β and tumor necrosis factor‐ α (TNF‐α) did not show notable changes under the same conditions. However, production of these cytokines significantly decreased in PRX‐1 knock down RAW264.7 cells with 12 hrs of stimulation. Production of IL‐10 was also increased in PRX‐1 knock down RAW264.7 cells with 12 hrs of stimulation. We predicted that higher concentrations of IL‐10 would result in decreased expression of IL‐1β and TNF‐α in PRX‐1 knock‐down cells. This was confirmed by blocking IL‐10, which reestablished IL‐1β and TNF‐α secretion. We also observed that increased concentrations of IL‐10 do not affect the NF‐κB pathway. Interestingly, STAT3 phosphorylation by LPS stimulation was significantly increased in PRX‐1 knockdown RAW264.7 cells. Up‐regulation of IL‐10 in PRX‐1 knockdown cells and the resulting downregulation of proinflammatory cytokine production seem to involve the STAT3 pathway in macrophages. Thus, down‐regulation of PRX‐1 may contribute to the suppression of adverse effects caused by excessive activation of macrophages through affecting the STAT3 signaling pathway.  相似文献   

15.
Effect of lipopolysaccharide (LPS) on RAW264.7 macrophage cell line was studied. LPS-treated RAW264.7 cells increased in cell size and acquired distinct dendritic morphology. At the optimal dose of LPS (1 mg/ml), almost 70% RAW264.7 cells acquired dendritic morphology. Flow cytometric studies indicate that the cell surface markers known to be expressed on dendritic cells and involved in antigen presentation and T cell activation (B 7.1, B 7.2, CD40, MHC class II antigens and CD1d) were also markedly upregulated on LPS-treated RAW 264.7 cells. Our results suggest the possibility that LPS by itself could constitute a sufficient signal for differentiation of macrophages into DC-like cells.  相似文献   

16.
17.
目的研究β-葡聚糖的应用对Balb/c小鼠巨噬细胞株RAW264.7的刺激作用。方法将不同浓度(0~150μg/ml)的β-葡聚糖与Balb/c小鼠来源的巨噬细胞株RAW264.7作用1~7d后,以四甲基偶氮唑蓝(MTT)法检测细胞的增殖情况并绘制细胞生长曲线。结果β-葡聚糖在50~75μg/ml的浓度范围内能够明显地刺激细胞发生增殖。结论适当剂量的β-葡聚糖作用足够时间,RAW264.7细胞系可以发生显著的生长促进效应。  相似文献   

18.
Icilin is recognized as a chemical agonist of nociceptors and can activate TRPM8 channels. However, whether this agent has any effects on immune cells remains unknown. In this study, the effects of icilin on ion currents were investigated in RAW 264.7 murine macrophage-like cells. Icilin (1–100 μM) increased the amplitude of nonselective (NS) cation current (I NS) in a concentration-dependent manner with an EC50 value of 8.6 μM. LaCl3 (100 μM) or capsazepine (30 μM) reversed icilin-induced I NS; however, neither apamin (200 nM) nor iberiotoxin (200 nM) had any effects on it. In cell-attached configuration, when the electrode was filled with icilin (30 μM), a unique population of NS cation channels were activated with single-channel conductance of 158 pS. With the use of a long-lasting ramp pulse protocol, increasing icilin concentration produced a left shift in the activation curve of NS channels, with no change in the slope factor of the curve. The probability of channel opening enhanced by icilin was increased by either elevated extracellular Ca2+ or application of ionomycin (10 μM), while it was reduced by BAPTA-AM (10 μM). Icilin-stimulated activity is associated with an increase in mean open time and a reduction in mean closed time. Under current-clamp conditions, icilin caused membrane depolarization. Therefore, icilin interacts with the TRPM8-like channel to increase I NS and depolarizes the membrane in these cells.  相似文献   

19.
 We have elucidated the direct effects of PSK (a protein-bound polysaccharide) and OK-432 (a streptococcal preparation), both immunomodulating drugs, on the gene expression for an inducible nitric oxide synthase and on the production of nitric oxide (NO) in the RAW264.7 murine macrophage cell line. As determined by northern blot analysis, both immunomodulating drugs were potent inducers of gene expression for inducible NO synthase when cells were costimulated with interferon-γ (IFNγ). Expression of mRNA for the enzyme occurred in a dose-dependent manner after 3 h, when 10 – 50 μg/ml PSK or 0.001 – 1 KE/ml OK-432 was used. Furthermore, NO was also produced in response to these drugs, as detected by the Griess reagent reaction. The enhancement of NO synthesis was thought to be mediated, in part, through tumor necrosis factor α (TNFα) induction by these agents, since a neutralizing antibody to TNFα significantly suppressed NO production in RAW264.7 cells stimulated with PSK or OK432 in combination with IFNγ. We speculate that NO production may play a role in tumoricidal and microbicidal activities of PSK or OK-432 in vivo. Received: 9 August 1995 / Accepted: 1 April 1996  相似文献   

20.
Sosroseno W  Bird PS  Seymour GJ 《Anaerobe》2011,17(5):246-251
Nitric oxide (NO) may play a crucial role in the pathogenesis of periodontal disease and, hence, the aim of the present study was to test the hypothesis that Aggregatibacter actinomycetemcomitans surface-associated material (SAM) stimulates inducible nitric oxide synthase (iNOS) activity and NO production by the murine macrophage cell line RAW264.7. Cells were stimulated with untreated or heat-treated A. actinomycetemcomitans SAM and with or without pre-treatment with l-N6-(1-Iminoethyl)-lysine (L-NIL) (an iNOS inhibitor), polymyxin B, interferon-gamma (IFN-γ) and Interleukin-4 (IL-4), IL-10, genistein [a protein tyrosine kinase (PTK) inhibitor], bisindolylmaleimide [a protein kinase C (PKC) inhibitor], bromophenacyl bromide (BPB) [a phospholipase A2 (PLA2) inhibitor] or wortmannin [phosphatidylinositol 3-kinase (PI-3K) inhibitor]. The iNOS activity and nitrite production in the cell cultures were determined. Untreated but not heat-treated A. actinomycetemcomitans SAM-stimulated both iNOS activity and nitrite production in RAW264.7 cells. l-NIL, IL-4, IL-10, genistein, bisindolylmaleimide, or BPB, suppressed but IFN-γ enhanced both iNOS activity and nitrite production by A. actinomycetemcomitans SAM-stimulated cells. Wortmannin and polymyxin B failed to alter both iNOS activity or nitrite production by A. actinomycetemcomitans SAM treated cells. Therefore, the present study suggests that a heat-sensitive protein constituent(s) of A. actinomycetemcomitans SAM stimulates both iNOS activity and nitrite production by RAW264.7 cells in a cytokine, PTK, PKC, and PLA2 but not PI-3K-dependent fashion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号