首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A comparison of the small subunit rRNA sequences of a Chesapeake Bay strain of the dinoflagellate Akashiwo sanguinea and the dinoflagellate Amoebophrya sp. parasitizing it revealed several potential target sites that could be used to detect the parasite through in situ hybridization. The fluorescence of probed cells under various conditions of hybridization was measured by using a spot meter on a Nikon UFX-II camera attachment so that the effect of various hybridization parameters on probe binding could be determined. Probes directed against both the junction between helices 8 and 11 and helix 46 could detect the parasite, although the helix 8/11 probe produced a stronger signal under the conditions tested. The fluorescence of the probed cells increased with increasing hybridization time up to approximately twelve hours. The background fluorescence was lower at the wavelengths used to detect Texas Red than at those used to detect fluorescein, so probed cells were more distinct when Texas Red was used as the label. Cells stored in cold paraformaldehyde for a year still bound the probes. Young stages of the parasite could be seen more readily after in situ hybridization than after protargol impregnation.  相似文献   

2.
Atomic force microscopy (AFM) and an optical grating coupler system were used to improve the understanding of the biosensing layer on a Ta(2)O(5)-light-guiding surface. Exemplary, we investigated the immobilization of the protein avidin, the subsequent binding of biotinylated oligonucleotides and hybridization of a complementary 12-mer. The AFM measurements revealed the height of approximately 1.6 nm for a single avidin molecule, while the thickness of the avidin layer on the biosensor surface seemed to be 2.8-3.0 nm. This result lead to the conclusion that the protein was not forming a simple monolayer. However, the thickness of the avidin layer could not be determined directly, but only after shifting of protein by the tip of the AFM leading to grooves of 1 micro m(2) and approximately 3 nm depth. As the height of oxide particles forming the waveguide surface was also in the range of 1.5 nm, the depth of these grooves could also be a result of the deposition of proteins on top of the oxide particles. This was consistent with the increased roughness of the surface after protein binding. Thus, investigations with the grating coupler were used to determine quantitatively the amount of immobilized avidin. On a biotinylated surface the amount of immobilized avidin lead to the assumption of a complete monolayer, whereas simple adsorption proved to be less efficient. A binding ratio of 1:1.3 for avidin and a biotinylated oligonucleotide was achieved. Up to 83% of the bound single strand were accessible for a subsequent hybridization reaction with a 12-mer. These results supported the model of avidin being deposited mainly on top of the oxide particles leading to the picture of a 'rough' complete protein monolayer, which was postulated from the AFM investigations.  相似文献   

3.
Rapid detection of single nucleotide polymorphisms (SNPs) has potential applications in both genetic screening and pharmacogenomics. Planar waveguide fluorescent biosensor technology was employed to detect SNPs using a simple hybridization assay with the complementary strand ("capture oligo") immobilized on the waveguide. This technology allows real-time measurements of DNA hybridization kinetics. Under normal conditions, both the wild-type sequence and the SNP-containing sequence will hybridize with the capture oligo, but with different reaction kinetics and equilibrium duplex concentrations. A "design of experiments" approach was used to maximize the differences in the kinetics profiles of the two. Nearly perfect discrimination can be achieved at short times (2 min) with temperatures that destabilize or melt the heteroduplex while maintaining the stability of the homoduplex. The counter ion content of the solvent was shown to have significant effect not only on the melting point of the heteroduplex and the homoduplex but also on the hybridization rate. Changes in both the stability and the difference between the hybridization rates of the hetero- and homoduplex were observed with varying concentrations of three different cations (Na(+), K(+), Mg(2+)). With the difference in hybridization rates maximized, discrimination between the hetero- and the homoduplex can be obtained at lower, less rigorous temperatures at hybridization times of 7.5 min or longer.  相似文献   

4.
A large number of bacterial toxins, viruses and bacteria target carbohydrate derivatives on the cell surface to attach and gain entry into the cell. We report here the use of a monosaccharide-based array to detect protein toxins. The array-based technique provides the capability to perform simultaneous multianalyte analyses. Arrays of N-acetyl galactosamine (GalNAc) and N-acetylneuraminic acid (Neu5Ac) derivatives were immobilized on the surface of a planar waveguide and were used as receptors for protein toxins. These arrays were probed with fluorescently labeled bacterial cells and protein toxins. While Salmonella typhimurium, Listeria monocytogenes, Escherichia coli and staphylococcal enterotoxin B (SEB) did not bind to either of the monosaccharides, both cholera toxin and tetanus toxin bound to GalNAc and Neu5Ac. The results show that the binding of the toxins to the carbohydrates is density dependent and semi-selective. Both toxins were detectable at 100 ng/ml.  相似文献   

5.
A fluorescence-based biosensor has been developed for simultaneous analysis of multiple samples for multiple biohazardous agents. A patterned array of antibodies immobilized on the surface of a planar waveguide is used to capture antigen present in samples; bound analyte is then quantified by means of fluorescent tracer antibodies. Upon excitation of the fluorophore by a small diode laser, a CCD camera detects the pattern of fluorescent antibody:antigen complexes on the waveguide surface. Image analysis software correlates the position of fluorescent signals with the identity of the analyte. This array biosensor has been used to detect toxins, toxoids, and killed or non-pathogenic (vaccine) strains of pathogenic bacteria. Limits of detection in the mid-ng/ml range (toxins and toxoids) and in the 10(3)-10(6) cfu/ml range (bacterial analytes) were achieved with a facile 14-min off-line assay. In addition, a fluidics and imaging system has been developed which allows automated detection of staphylococcal enterotoxin B (SEB) in the low ng/ml range.  相似文献   

6.
We present a novel method using flow cytometry–fluorescence in situ hybridization (flow–FISH) to detect specific messenger RNA (mRNA) in suspended cells using locked nucleic acid (LNA)-modified oligonucleotide probes. β-Actin mRNA was targeted in whole A549 epithelial cells by hybridization with a biotinylated, LNA-modified probe. The LNA bound to β-actin was then stained using phycoerythrin-conjugated streptavidin and detected by flow cytometry. Shifts in fluorescence signal intensity between the β-actin LNA probe and a biotinylated, nonspecific control LNA were used to determine optimal conditions for this type of flow–FISH. Multiple conditions for permeabilization and hybridization were tested, and it was found that conditions using 3 μg/ml of proteinase K for permeabilization and 90 min hybridization at 60 °C with buffer containing 50% formamide allow cells containing the LNA-bound mRNA to be detected and differentiated from the control LNA with high confidence (< 14% overlap between curves). This combined method, called LNA flow–FISH, can be used for detection and quantification of other RNA species as well as for telomerase measurement and detection.  相似文献   

7.
Up-converting Phosphor Technology (UPT) particles were used as reporters in lateral-flow (LF) assays to detect single-stranded nucleic acids. The 400-nm phosphor particles exhibit strong visible luminescence upon excitation with infrared (IR) light resulting in the total absence of background autofluorescence from other biological compounds. A sandwich-type hybridization assay was applied using two sequence-specific oligonucleotides. One of the oligonucleotides probes was covalently bound to the UPT particle (reporter) for direct labeling and detection, whereas the second oligonucleotide probe contained biotin for capture by avidin during LF. The whole procedure of hybridization, UPT-LF detection, and analysis required a minimum time of 20 min. Moreover, aiming at minimal equipment demands, the hybridization conditions were chosen such that the entire assay could be performed at ambient temperature. During lateral flow, only targets hybridized to both capture and detection oligonucleotide were trapped and detected at an avidin capture line on the LF strip. Analysis (IR scanning) of the strips was performed in an adapted microtiter plate reader provided with a 980-nm IR laser for excitation of the phosphor particles (a portable reader was also available). Visible luminescence was measured and presented as relative fluorescence units (RFU) allowing convenient quantitation of the phosphor signal. With the assay described here as little as 0.1 fmol of a specific single-stranded nucleic acid target was detected in a background of 10 microg fish sperm DNA.  相似文献   

8.
9.
The feasibility of using protein A to immobilize antibody on silicon surface for a biosensor with imaging ellipsometry was presented in this study. The amount of human IgG bound with anti-IgG immobilized by the protein A on silicon surface was much more than that bound with anti-IgG immobilized by physical adsorption. The result indicated that the protein A could be used to immobilize antibody molecules in a highly oriented manner and maintain antibody molecular functional configuration on the silicon surface. High reproducibility of the amount of antibody immobilization and homogenous antibody adsorption layer on surfaces could be obtained by this immobilization method. Imaging ellipsometry has been proven to be a fast and reliable detection method and sensitive enough to detect small changes in a molecular monolayer level. The combination of imaging ellipsometry and surface modification with protein A has the potential to be further developed into an efficient immunoassay protein chip.  相似文献   

10.
The induction kinetics and surface accessibility of the outer membrane lipoprotein were studied in an Escherichia coli strain with the lpp gene under control of the lac promoter. Free lipoprotein appeared rapidly after induction with isopropyl-beta-D-thiogalactopyranoside and reached a steady-state level after 30 min. The newly induced lipoprotein was slowly bound to the peptidoglycan layer. Immunological methods were developed to detect lipoprotein accessible at the cell surface after various pretreatments as well as peptidoglycan-bound lipoprotein at the surface of isolated peptidoglycan sacculi with specific antibodies in combination with 125I-protein A. With these methods an increase in lipoprotein molecules at the cell surface and bound to the peptidoglycan sacculus could be detected following induction. The topology of newly synthesized lipoprotein was examined in thin sections as well as at the cell surface and the surface of the peptidoglycan sacculus with immunoelectron microscopy. Ultrathin cell sections, whole cells, and isolated peptidoglycan sacculi showed lipoprotein distributed homogeneously over the entire surface.  相似文献   

11.
《Biosensors》1987,3(4):211-225
The sensitivity of surface plasmon resonance techniques to changes in local interfacial refractive index has been exploited to detect immuno-complex formation in two model biochemical systems. A gold-coated diffraction grating has been used to excite surface plasmons at the gold/solution interface to which either human immunoglobulin G or the immunoglobulin fraction of sheep antiserum to human serum albumin was physically adsorbed. The complementary proteins, either affinity purified goat antihuman-IgG IgG or human serum albumin was subsequently specifically bound by immuno-complex formation. The binding reactions could be followed with respect to time.  相似文献   

12.
We theoretically study mode hybridization and interaction among surface plasmon polariton Bloch wave mode, Fabry–Perot cavity mode, and waveguide mode within a plasmonic cavity composed by two parallel planar bimetallic gratings. Four hybridized modes result from mode hybridization between surface plasmon polariton Bloch wave modes on the two gratings are observed. By changing the dielectric environment, mode hybridization behavior can be manipulated. Importantly, waveguide-plasmon polariton mode due to hybridization between grating supported surface plasmon polariton Bloch wave mode and cavity supported waveguide mode is observed. We demonstrate that surface plasmon polariton Bloch wave mode and Fabry–Perot cavity mode with the same mode symmetry can interact by presenting an anticrossing behavior, which can be controlled by laterally shifting one grating with respect to the other that causes a phase difference shift of the two involving modes. The proposed plasmonic cavity offers potentials for subwavelength lithography, tunable plasmonic filter, and controllable light-matter interaction.  相似文献   

13.
Electrical frequency dependent characterization of DNA hybridization   总被引:2,自引:0,他引:2  
The hybridization of oligomeric DNA was investigated using the frequency dependent techniques of electrochemical impedance spectroscopy (EIS) and quartz crystal microgravimetry (QCM). Synthetic 5'-amino terminated single stranded oligonucleotides (ssDNA) were attached to the exposed glass surface between the digits of microlithographically fabricated interdigitated microsensor electrodes using 3-glycidoxypropyl-trimethoxysilane. Similar ssDNA immobilization was achieved to the surface of the gold driving electrodes of AT-cut quartz QCM crystals using 3-mercaptopropyl-trimethoxysilane. Significant changes in electrochemical impedance values (both real and imaginary components) (11% increase in impedance modulus at 120 Hz) and resonant frequency values (0.004% decrease) were detected as a consequence of hybridization of the bound ssDNA upon exposure to its complement under hybridization conditions. Non-complementary (random) sequence sowed a modest decrease in impedance and a non-detectable change in resonant frequency. The possibility to detect the binding state of DNA in the vicinity of an electrode, without a direct connection between the measurement electrode and the DNA, has been demonstrated. The potential for development of label-free, low density DNA microarrays is demonstrated and is being pursued.  相似文献   

14.
15.
Aleutian disease virus (ADV) of mink is a nondefective parvovirus with a single-stranded DNA genome. We characterized the viral DNA forms found in infected cells prepared by a modified Hirt extraction procedure. Double-stranded DNA molecules corresponding in size to 4.8-kilobase-pair duplex monomers and 9.6-kilobase-pair duplex dimers were identified in agarose gels by blot hybridization to 32P-labeled ADV DNA. A rapidly reannealing ADV duplex monomer was isolated on a preparative scale and physically mapped with a series of restriction endonucleases. The map derived was similar to one derived from double-stranded ADV DNA produced by self-primed synthesis on virion DNA, but differed from restriction endonuclease maps reported for other parvovirus DNAs. The purified duplex monomer could be labeled with [32P]dCTP by nick translation and used as a probe in blot hybridization to detect ADV sequences in DNA from small numbers of infected cells. Additional studies indicated that double-stranded ADV DNA could first be detected at 24 h after infection.  相似文献   

16.
In electrochemical DNA hybridization assays target or probe DNAs end-labeled with electroactive compounds have been frequently used. We show that multiple osmium labels yielding faradaic (at carbon or mercury electrodes) and catalytic signals (at mercury electrodes) can be easily covalently bound to DNA molecules. We use (GAA)(7) (T)(n) oligodeoxynucleotides (ODNs) with n ranging between 5 and 50. (T)(n) tails are selectively modified with osmium tetroxide,2,2'-bipyridine leaving the (GAA)(7) repeat intact for the DNA hybridization. These ODNs are applied as reporter probes (RP's) in DNA hybridization double-surface (DS) assay using magnetic beads for the DNA hybridization and pyrolytic graphite (PGE) or hanging mercury drop (HMDE) electrodes for the electrochemical detection. We show that in difference to the usual single-surface methods (where the RP has to be bound to target DNA near to the surface to communicate with the electrode) in the DS assay the RP can be bound to DNA regardless of its position and can used for the determination of the length of DNA repetitive sequences. Several fmols or about a hundred of amol of a RP with osmium-labeled (T)(50) tail can be detected at PGE and HMDE, respectively, at 1-2 min accumulation time.  相似文献   

17.
As we have already shown in a previous publication [Kamahori, M., Ihige, Y., Shimoda, M., 2007. Anal. Sci. 23, 75-79], an extended-gate field-effect transistor (FET) sensor with a gold electrode, on which both DNA probes and 6-hydroxyl-1-hexanethiol (6-HHT) molecules are immobilized, can detect DNA hybridization and extension reactions by applying a superimposed high-frequency voltage to a reference electrode. However, kinetic parameters such as the dissociation constant (K(d)(s)) and the apparent DNA-probe concentration (C(probe)(s)) on a surface were not clarified. In addition, the role of applying the superimposed high-frequency voltage was not considered in detail. In this study, the values of K(d)(s) and C(probe)(s) were estimated using a method involving single-base extension reaction combined with bioluminescence detection. The value of K(d)(s) on the surface was 0.38 microM, which was about six times that in a liquid phase. The value of C(probe)(s), which expressed the upper detection limit for the solid phase reaction, was 0.079 microM at a DNA-probe density of 2.6 x 10(12)molecules/cm(2). We found that applying the superimposed high-frequency voltage accelerated the DNA molecules to reach the gold surface. Also, the distance between the DNA-probes immobilized on the gold surface was controlled to be over 6 nm by applying a method of competitive reaction with DNA probes and 6-HHT molecules. This space was sufficient to enable the immobilized DNA-probes to lie down on the 6-HHT monolayer in the space between them. Thus, the FET sensor could detect DNA hybridization and extension reactions by applying a superimposed high-frequency voltage to the DNA-probes density-controlling gold surface.  相似文献   

18.
Development of an electrochemical DNA biosensor, using a gold electrode modified with a self-assembled monolayer composed of a peptide nucleic acid (PNA) probe and 6-mercapto-1-hexanol, is described. The sensor relies on covalent attachment of the14-mer PNA probe related to the hepatitis C virus genotype 3a (pHCV3a) core/E1 region on the electrode. Covalently self-assembled PNA could selectively hybridize with a complementary sequence in solution to form double-stranded PNA-DNA on the surface. The increase of peak current of methylene blue (MB), upon hybridization of the self-assembled probe with the target DNA in the solution, was observed and used to detect the target DNA sequence. Some hybridization experiments with noncomplementary oligonucleotides were carried out to assess whether the suggested DNA sensor responds selectively to the target. Diagnostic performance of the biosensor is described and the detection limit was found to be 5.7 × 10−11 M with a relative standard deviation of 1.4% in phosphate buffer solution, pH 7.0. This sensor exhibits high reproducibility and could be used for detection of the target DNA for seven times after the regeneration process.  相似文献   

19.
S Li  R N Spear    J H Andrews 《Applied microbiology》1997,63(8):3261-3267
A 21-mer oligonucleotide probe designated Ap665, directed at the 18S rRNA of Aureobasidium pullulans and labelled with five molecules of fluorescein isothiocyanate, was applied by fluorescence in situ hybridization (FISH) to populations of the fungus on slides and apple leaves from growth chamber seedlings and orchard trees. In specificity tests that included Ap665 and a similarly labelled universal probe and the respective complementary probes as controls, the hybridization signal was strong for Ap665 reactions with 12 A. pullulans strains but at or below background level for 98 other fungi including 82 phylloplane isolates. Scanning confocal laser microscopy was used to confirm that the fluorescence originated from the cytoplasmic matrix and to overcome limitations imposed on conventional microscopy by leaf topography. Images were recorded with a cooled charge-coupled device video camera and digitized for storage and manipulation. Image analysis was used to verify semiquantitative fluorescence ratings and to demonstrate how the distribution of the fluorescence signal in specific interactions (e.g., Ap665 with A. pullulans cells) could be separated at a given probability level from nonspecific fluorescence (e.g., in interactions of Ap665 with Cryptococcus laurentii cells) of an overlapping population. Image analysis methods were used also to quantify epiphytic A. pullulans populations based on cell number or percent coverage of the leaf surface. Under some conditions, leaf autofluorescence and the release of fluorescent compounds by leaves during the processing for hybridization decreased the signal-to-noise ratio. These effects were reduced by the use of appropriate excitation filter sets and fixation conditions. We conclude that FISH can be used to detect and quantify A. pullulans cells in the phyllosphere.  相似文献   

20.
A method to detect viable Cryptosporidium parvum oocysts was developed. Polyclonal immunoglobulin G against C. parvum oocyst and sporozoite surface antigens was purified from rabbit immune serum, biotinylated, and bound to streptoavidin-coated magnetic particles. C. parvum oocysts were captured by a specific antigen-antibody reaction and magnetic separation. The oocysts were then induced to excyst, and DNA was extracted by heating at 95 degrees C for 10 min. A 452-bp fragment of C. parvum DNA was amplified by using a pair of C. parvum-specific primers in PCR. The method detected as few as 10 oocysts in purified preparations and from 30 to 100 oocysts inoculated in fecal samples. The immunomagnetic capture PCR (IC-PCR) product was identified and characterized by a nested PCR that amplified a 210-bp fragment, followed by restriction endonuclease digestion of the IC-PCR and nested-PCR products at the StyI site and a nonradioactive hybridization using an internal oligonucleotide probe labeled with biotin. PCR specificity was also tested, by using DNAs from other organisms as templates. In the control experiments, inactivated oocysts were undetectable, indicating the ability of this method to differentiate between viable and nonviable oocysts. Thus, this system can be used to specifically detect viable C. parvum oocysts in environmental samples with great sensitivity, providing an efficient way to monitor the environment for C. parvum contamination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号